小学数学一元一次方程的应用教案大全(21篇)

格式:DOC 上传日期:2023-11-27 07:32:09
小学数学一元一次方程的应用教案大全(21篇)
时间:2023-11-27 07:32:09     小编:影墨

教案的编写需要考虑学生的实际情况和学科特点,以及教学目标的实现程度。在教案中,教师应该注重培养学生的创新思维和实践能力。如果你想提高教案的质量,可以参考以下范文,相信会对你有所启发。

小学数学一元一次方程的应用教案篇一

(二)教材的重难点。

(一)知识技能目标。

1.目标内容。

(2)培养学生建立方程模型来分析、解决实际问题的能力以及探索精神、合作意识.。

2.目标分析。

(二)过程目标。

1.目标内容。

在活动中感受方程思想在数学中的作用,进一步增强应用意识.。

2.目标分析。

(三)情感目标。

1.目标内容。

2.目标分析。

小学数学一元一次方程的应用教案篇二

1、 经历由实际问题抽象为方程模型的过程,进一步体会模型化的思想。

2、 通过探究实际问题与一元一次方程的关系,感受数学的应用价值,提高分析问题,解决问题的能力。

探究实际问题与一元一次方程的关系。

建立一元一次方程解决实际问题

(师生活动)设计理念

创设情境提出问题

信息社会,人们沟通交流方式多样化,移动电话已很普及,选择经济实惠的收费方式很有理实意义。

出示教科书80页的例2;观察下列两种移动电话计费方式表:

全球通神州行

月租费50元/月0

本地通话费0.40元/分0.60元/分

1、 你能从中表中获得哪些信息,试用自己的话说说。

2、 猜一猜,使用哪一种计费方式合算?

3、 一个月内在本地通话200分和300分,按两种计费方式各需交费多少元?

4、 对于某个本地通通话时间,会出现两种计费方式的收费一样的情况吗? 本例是一道与生活相关的移动电话收费的问题,让学生讨论选择经济实惠的收费方式很有现实意义。

理解问题是本身是列方程的基础,本例是通过表格形式给出已知数据的,通过设计问题1、2、3让学生展开讨论,帮助理解,培养学生的读题能力和收集信息的能力。

解决问题学生充分交流讨论、整理归纳

解:1、用全球通每月收月租费50元,此外根据累计通话时间按0.40元/分加收通话费;用神州行不收月租费,根据累计通话时间按0.60元/分收通话费。

2、 不一定,具体由当月累计通话时间决定。

3、全球通神州行

200分130元120元

300分170元180元

0.6t=50+0.4t

移项得 0.6t-0.4t=50

合并,得0.2t=50

系数化为1,得t=250

以表格的形式呈现数据,简单明了,易于比较。

通过探究实际问题与一元一次方程的关系,提高分析问题,解决问题的能力。

学生练习,教师巡视,指导,讨论解是否合理

知识梳理 小组讨论,试用框图概括用一元一次方程分析和解决实际问题的基本过程

学生思考、讨论、整理。

实际问题题

列方程

数学问题 (一元一次方程)

实际问题的答案

数学问题的解

这是第一次比较完整地用框图反映实际问题与一元一次方程的关系。

让学生结合自己的解题过程概括整理,帮助理解,培养模型化的思想和应用数学于现实生活的意识。

小结与作业

布置作业

1、 必做题:教科书82页习题2.2第2题。

2、 一个两位数,个位数字是十位数字的3倍,如果把个位数字与十位数字对调,那么得到的新数比原数大54,求原来的两位数。

本课教育评注(课堂设计理念,实际教学效果及改进设想)

课程改革的目的之一是促进学习方式的转变,加强学习的主动性和探究性,本章内容涉及大量的实际问题,丰富多彩的问题情境和解决实际问题的快乐更容易激起学生对数学的兴趣,在本节中,引导学生从身边的移动电话收费,旅游费用等问题展开探究,使学生在现实、富有挑战性的问题情境中经历多角度认识问题,多种策略思考问题,尝试解释答案的合性的活动,培养探索精神和创新意识。

在前面几节学习中,已经对利用一元一次方程解决问题的基本过程进行多次渗透,逐步细化,本节要求学生用框图概括,使学生对应用一元一次方程解决实际问题有较理性的认识,进一步体会模型化的思想。

小学数学一元一次方程的应用教案篇三

3、使学生初步养成正确思考问题的良好习惯。

为了回答上述这几个问题,我们来看下面这个例题。

例1某数的3倍减2等于某数与4的和,求某数。

(首先,用算术方法解,由学生回答,教师板书)。

解法1:(4+2)÷(3-1)=3.

答:某数为3.

(其次,用代数方法来解,教师引导,学生口述完成)。

解法2:设某数为x,则有3x-2=x+4.

解之,得x=3.

答:某数为3.

纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一。

我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系。因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程。

本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤。

师生共同分析:

1、本题中给出的已知量和未知量各是什么?

2、已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)。

上述分析过程可列表如下:

解:设原来有x千克面粉,那么运出了15%x千克,由题意,得。

x-15%x=42500,

所以x=50000.

答:原来有50000千克面粉。

(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)。

(2)例2的解方程过程较为简捷,同学应注意模仿。

依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:

(2)根据题意找出能够表示应用题全部含义的一个相等关系。(这是关键一步);

(4)求出所列方程的解;

(5)检验后明确地、完整地写出答案。这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义。

小学数学一元一次方程的应用教案篇四

本节课先以龟兔赛跑问题引入,引起学生的学习兴趣,引出本节课课题——行程问题。进而以一个相对较简单的相遇问题开始新课,由于相遇问题学生小学时有所接触,所以该题主要采取学生独立思考的方式进行,以培养学生的自主学习能力。追及问题是本节课的重点也是本节课的难点,因此,关于这个问题的处理是本节课的关键,所以例2并没有直接给出问题,而是采用让学生自己出问题的方式,以唤起学生的思维和问题意识,进而采用小组合作,交流探索的方式解决该问题。

总的来说,本节课完成了教学目标,重点突出,时间安排合理,能调动学生的积极性,让学生积极参与教学。

需要反思的是:在教学中虽然减少了教师的讲解,给学生充足的时间思考,但是教师在做好学法指导,力求做到精而美,让学生学会学习方面还有不足,总是什么都不放心,总想跟学生抢着说,今后需要改进。另外关于部分课件的细节方面存有瑕疵,今后在细节处理方面要多向师傅和其他教师请教、学习,力图做到完美。

利用一元一次方程解应用题是学生学习的一个难点,必须激发学生的学习兴趣,让学生在教师的指导下主动学习。把这些理念,具体落实到教学中,有一定挑战性。我将继续努力与学生共同发展。

小学数学一元一次方程的应用教案篇五

2、过程与方法:使同学们了解列出一元一次方程解应用题的方法。

3、情感、态度与价值观:通过对实际问题的解决,体会方程模型的作用,发展分析问题、解决问题、敢于提出问题的能力.

【学习重难点】。

重点:列出一元一次方程解有关形积变化问题;。

难点:依题意准确把握形积问题中的相等关系。

【导学过程】。

一、预习准备。

1、长方形的周长=;面积=。

2、长方体的体积=;正方体的体积=。

3、圆的周长=;面积=。

4、圆柱的体积=。

5、阅读教材:第3节《应用一元一次方程——水箱变高了》。

二、合作交流。

6、理解解应用题的关键是找等量关系列方程。

将一个底面直径是10厘米,高为36厘米的“瘦长”形圆柱锻压成底面直径是20。

厘米的“矮胖”形圆柱,高变成了多少?

小学数学一元一次方程的应用教案篇六

(一)教材的地位和作用。

(二)教材的重难点。

二、教学目标分析。

(一)知识技能目标。

1.目标内容。

(2)培养学生建立方程模型来分析、解决实际问题的能力以及探索精神、合作意识.。

2.目标分析。

(二)过程目标。

1.目标内容。

在活动中感受方程思想在数学中的作用,进一步增强应用意识.。

2.目标分析。

(三)情感目标。

1.目标内容。

2.目标分析。

三、教材处理与教法分析。

小学数学一元一次方程的应用教案篇七

一元一次方程应用题的题型很多,每种题型又不完全孤立,其中有些题型的解题思想有相似之处,如工程问题和行程问题。所以一直受命题者青睐,近年来中考考查的实际问题多贴近生活,而且立意新颖,设计巧妙,所以决不能靠死背题型,要具体分析每一题的实际情况。

小学数学一元一次方程的应用教案篇八

2、掌握等式的性质,理解掌握移项法则。

3、会用等式的性质解一元一次昂成(数字系数),掌握解一元一次方程的基本方法。

5、初步学会用方程的思想思考问题和解决问题的一些基本方法,学会用数学的方法观察、分析、归纳和总结现实情境中的实际问题。

难点重点:解方程、用方程解决实际问题。

难点:用方程解决实际问题。

师生活动时间复备标注。

二、典例回顾。

(1)。x=5(2)。x2+3x=2(3)。2x+3y=5。

判断下列x值是否为方程3x-5=6x+4的解。

(1)。x=3(2)x=3。

4、解决问题的基本步骤。

解:设先安排x人工作4小时。根据两段工作量之和应是总工作量,由此,列方程:

去分母,得4x+8(x+2)=40。

去括号,得4x+8x+16=40。

移项及合并,得12x=24。

系数化为1,得x=2。

答:应先安排2名工人工作4小时。

注意:工作量=人均效率人数时间。

本题的关键是要人均效率与人数和时间之间的数量关系。

三、基础训练:课本第113页第1.2.3题。

四、综合训练:课本113页至114页4.5.6.7.8。

五、达标训练:3.7。

课件出示问题明确知识要点。

学生练习基础上,教师点拨。

小学数学一元一次方程的应用教案篇九

2、掌握等式的性质,理解掌握移项法则。

3、会用等式的性质解一元一次昂成(数字系数),掌握解一元一次方程的基本方法。

5、初步学会用方程的思想思考问题和解决问题的一些基本方法,学会用数学的方法观察、分析、归纳和总结现实情境中的实际问题。

难点重点:解方程、用方程解决实际问题。

难点:用方程解决实际问题。

师生活动时间复备标注。

二、典例回顾。

(1)。x=5(2)。x2+3x=2(3)。2x+3y=5。

判断下列x值是否为方程3x-5=6x+4的解。

(1)。x=3(2)x=3。

4、解决问题的基本步骤。

解:设先安排x人工作4小时。根据两段工作量之和应是总工作量,由此,列方程:

去分母,得4x+8(x+2)=40。

去括号,得4x+8x+16=40。

移项及合并,得12x=24。

系数化为1,得x=2。

答:应先安排2名工人工作4小时。

注意:工作量=人均效率人数时间。

本题的关键是要人均效率与人数和时间之间的数量关系。

三、基础训练:课本第113页第1.2.3题。

四、综合训练:课本113页至114页4.5.6.7.8。

五、达标训练:3.7。

六、课堂小结:收获了哪些?还有哪些需要再学习?

课件出示问题明确知识要点。

学生练习基础上,教师点拨。

小学数学一元一次方程的应用教案篇十

2、掌握等式的性质,理解掌握移项法则。

3、会用等式的性质解一元一次昂成(数字系数),掌握解一元一次方程的基本方法。

5、初步学会用方程的思想思考问题和解决问题的一些基本方法,学会用数学的方法观察、分析、归纳和总结现实情境中的实际问题。

解方程、用方程解决实际问题。

难点:用方程解决实际问题。

二、典例回顾。

(1)。x=5(2)。x2+3x=2(3)。2x+3y=5。

判断下列x值是否为方程3x-5=6x+4的解。

(1)。x=3(2)x=3。

4、解决问题的基本步骤。

解:设先安排x人工作4小时。根据两段工作量之和应是总工作量,由此,列方程:

去分母,得4x+8(x+2)=40。

去括号,得4x+8x+16=40。

移项及合并,得12x=24。

系数化为1,得x=2。

答:应先安排2名工人工作4小时。

注意:工作量=人均效率人数时间。

本题的关键是要人均效率与人数和时间之间的数量关系。

三、基础训练:课本第113页第1.2.3题。

四、综合训练:课本113页至114页4.5.6.7.8。

五、达标训练:3.7。

六、课堂小结:收获了哪些?还有哪些需要再学习?

小学数学一元一次方程的应用教案篇十一

1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。

3、积累活动经验。

感受方程作为刻画现实世界有效模型的意义。

1、课前训练一。

(1)如果||=9,则=;如果2=9,则=。

(2)在数轴上距离原点4个单位长度的数为。

(3)下列关于相反数的说法不正确的是()。

a、两个相反数只有符号不同,并且它们到原点的距离相等。

b、互为相反数的两个数的绝对值相等。

c、0的相反数是0。

d、互为相反数的两个数的和为0(字母表示为、互为相反数则)。

e、有理数的相反数一定比0小。

(4)乘积为1的两个数互为倒数,如:

(5)如果,则()。

a、互为倒数。

b、互为相反数。

c、都是0。

d、至少有一个为0。

2、由课本p149卡通图画引入新课。

3、分组讨论p149两个练习。

4、p150:某长方形的足球场的周长为310米,长与宽的差为25米,求这个足球场的长与宽各是多少米?设这个足球场的宽为米,那么长为(+25)米,依题意可列得方程为:()。

课本的宽为3厘米,长比宽多4厘米,则课本的面积为平方厘米。

解:设每个练习本要元,则每个笔记本要元,依题意可列得方程:

7、随堂练习po151。

p151习题5.1。

小学数学一元一次方程的应用教案篇十二

一.列方程解应用题的一般步骤:

1.认真审题:分析题中已知和未知,明确题中各数量之间的关系;

列方程应满足三个条件:方程各项是同类量,单位一致,左右两边是等量;

5.解方程:解所列出的方程,求出未知数的值;

6.写出答案:检查方程的解是否符合应用题的实际意义,进行取舍,并注意单位。

简记为六个字:审、找、设、列、解、答。

1.注意语言与解析式的.互化:

2.注意从语言叙述中写出相等关系:

如,x比y大3,则x-y=3或x=y+3或x-3=y。

3.注意单位换算:

如,“小时”、“分钟”的换算;s、v、t单位的一致等。

小学数学一元一次方程的应用教案篇十三

在2月21日的xx区教学常规互检协调会上,作为课改核心校的我们,向其他兄弟学校的教务主任和分管教学的副校长提出:教学开放周举行校际间同课异构的设想,这一个设想得到了大家的一致赞同,并在xx中学的课堂开放周中开始实行,在这次活动中,我校两个xx市校际组成员安排到xx中学进行授课,我是其中之一。

在接到这个任务时,我就先向xx中学的同课异构教师——xx老师了解他们的教学进度及学生的学习情况,得知该校学生的整体数学基础比较低。针对这一种情况,我采取导学案的形式来进行总复习,围绕着二元一次方程组解法及其应用展开,首先,我通过二元一次方程、二元一次方程组、方程组的解、二元一次方程组的解题方法的类型、解应用题的步骤等概念入手,帮助学生回顾旧知识。然后,通过两道二元一次方程组的解法让学生进行练习,再来,利用方程组的同解原理,了解二元一次方程组解的意义,最后,我引出xx年中考的那道数学应用题,让学生及时与中考题目进行对接,提高学生的实际解题能力。

在上完课之后,我与xx中学的数学教研组一起进行教研交流,首先,xx中学的同行们非常赞同我的教学设计及教学思路,觉得这样的教学设计学生很容易掌握,思路很清晰。但是,在帮助学生回顾旧知识的时间花得太多,导致后面的综合题没办法展开,应该淡化概念的'教学,强调学生的实际应用能力,同时,也应该通过二元一次方程组的一题多解的形式让学生选择方程组两种解法来比较出方法的优劣,提高学生对于“代入消元法”和“加减消元法”的选择依据。

听了xx中学同行们的建议之后,我也自己反思了一下,觉得现在作为初三年的总复习,应该重视的是学生的理解能力和综合应用能力的提升,而不是纠结于概念的记忆,作为概念的东西只要让学生了解就可以了,重点应放在应用题的分析以及对于二元一次方程组与一次函数之间的关系上,提高学生的综合水平和应用能力。

小学数学一元一次方程的应用教案篇十四

3.使学生初步养成正确思考问题的良好习惯.

教学重点和难点。

课堂教学过程设计。

一、从学生原有的认知结构提出问题。

为了回答上述这几个问题,我们来看下面这个例题.

例1某数的3倍减2等于某数与4的和,求某数.

(首先,用算术方法解,由学生回答,教师板书)。

解法1:(4+2)÷(3-1)=3.

答:某数为3.

(其次,用代数方法来解,教师引导,学生口述完成)。

解法2:设某数为x,则有3x-2=x+4.

解之,得x=3.

答:某数为3.

纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.

我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程.

本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤.

师生共同分析:

1.本题中给出的已知量和未知量各是什么?

2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)。

上述分析过程可列表如下:

解:设原来有x千克面粉,那么运出了15%x千克,由题意,得。

x-15%x=42500,

所以x=50000.

答:原来有50000千克面粉.

(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)。

教师应指出:

(2)例2的解方程过程较为简捷,同学应注意模仿.

依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:

(2)根据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步);。

(4)求出所列方程的解;。

(5)检验后明确地、完整地写出答案.这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义.

小学数学一元一次方程的应用教案篇十五

我们这堂课主要有五个特色:

1、学而时习之。

2、新课当旧课上。

3、重视引导学生再创造,再发现。

4、突出学习和强度,角度和反思。

5、创设情景,让学生主动积极参与。

一、学而时习之。

二、新课当旧课上。

三、重视引导学生再创造、再发现。

b组训练题较a组灵活,适用于学有余力的学生。

第(4)题,学生要考虑两种情况;目的是通过分类讨论的思想,培养学生思维的严密性。

四、突出学习的速度、角度、强度和反思。

例如:课前训练一和作业中对新旧知识的系统复习,通过多次巩固达到强化训练的目的。

另外,我们设计了强化a组题,在学生完成a组训练题后,可以自由选择是进入强化a组题还是进入b组训练题中这部分的设计主要是让学生养成客观的自我评价,和为在a组训练中未能形成基本技能的学生再次创造一个条件和空间,务求使学生掌握基础知识,再次有机会形成基本技能,充分体现学习强度和分层教学。

五、创设情境,让学生主动积极参与。

小学数学一元一次方程的应用教案篇十六

1.知道解一元一次方程的去分母步骤,并能熟练地解一元一次方程。

2.通过讨论、探索解一元一次方程的一般步骤和容易产生的问题,培养学生观察、归纳和概括能力。

二、重点:解一元一次方程中去分母的方法;培养学生自己发现问题、解决问题的能力。

难点:去分母法则的正确运用。

三、学习过程:(一)、复习导入1、解方程:(1);(2)2(x-2)-(4x-1)=3(1-x)。

像这样在方程两边同时乘以,去掉分数的分母的变形过程叫做。依据是(三)例题:例1解方程:解:去分母,得依据去括号,得依据移项,得依据合并同类项,得依据系数化为1,得依据注意:1)、分数线具有2)、不含分母的项也要乘以(即不要漏乘)。

练一练:见p101练习解下列方程:(1)(2)。

(3)思考:如何求方程。

小明的解法:解:去百分号,得同学看看有没有异议?

四、小结:谈谈这节课有什么收获以及解带有分母的一元一次方程要注意的一些问题。五、课堂检测:

(4)=+1(5)。

六、作业p102:3,10.

小学数学一元一次方程的应用教案篇十七

教师。

王命勇。

学科。

数学。

年段。

初一年。

课题。

时间。

教学目标。

使学生会掌握待定系数法,并能运用解题。

教学重点。

待定系数法。

教学难点。

解方程组。

教学步骤(体现教学内容、教学问题设计、时间安排、板书设计、作业布置和预习等)。

教学方法教学手段学法指导。

教学步骤。

教学方法教学手段。

教学随笔。

小学数学一元一次方程的应用教案篇十八

(二).过程与方法。

(三).情感态度与价值观。

开展探究性学习,发展学习能力。

(一).重点:会列一元一次方程解决实际问题,并会合并同类项解一元一次方程。

(三).关键:抓住实际问题中的数量关系建立方程模型。

(一)、复习提问。

1.叙述等式的两条性质。

2.解方程:4(x-)=2.

解法1:根据等式性质2,两边同除以4,得:

x-=。

两边都加,得x=.

解法2:利用乘法分配律,去掉括号,得:

4x-=2。

两边同加,得4x=。

两边同除以4,得x=.

(二)、新授。

公元825年左右,中亚细亚数学家阿尔、花拉子米写了一本代数书,重点论述怎样解方程。这本书的拉丁文译本取名为《对消与还原》.对消与还原是什么意思呢?让我们先讨论下面内容,然后再回答这个问题。

分析:设前年这个学校购买了x台计算机,已知去年购买数量是前年的2倍,那么去年购买2x台,又知今年购买数量是去年的2倍,则今年购买了22x(即4x)台。

题目中的相等关系为:三年共购买计算机140台,即。

前年购买量+去年购买量+今年购买量=140。

列方程:x+2x+4x=140。

如何解这个方程呢?

2x表示2x,4x表示4x,x表示1x.

根据分配律,x+2x+4x=(1+2+4)x=7x.

这样就可以把含x的项合并为一项,合并时要注意x的系数是1,不是0.

下面的框图表示了解这个方程的具体过程:

x+2x+4x=140。

合并。

7x=140。

系数化为1。

x=20。

由上可知,前年这个学校购买了20台计算机。

上面解方程中合并起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax=b的形式,其中a、b是常数。

例:某班学生共60分,外出参加种树活动,根据任何的不同,要分成三个小组且使甲、乙、丙三个小组人数之比是2:3:5,求各小组人数。

分析:这里甲、乙、丙三个小组人数之比是2:3:5,就是说把总数60人分成10份,甲组人数占2份,乙组人数占3份,丙组人数占5份,如果知道每一份是多少,那么甲、乙、丙各组人数都可以求得,所以本题应设每一份为x人。

问:本题中相等关系是什么?

答:甲组人数+乙组人数+丙组人数=60.

解:设每一份为x人,则甲组人数为2x人,乙组人数为3x人,丙组为5x人,列方程:

2x+3x+5x=60。

合并,得10x=60。

系数化为1,得x=6。

所以2x=12,3x=18,5x=30。

答:甲组12人,乙组18人,丙组30人。

请同学们检验一下,答案是否合理,即这三组人数的比是否是2:3:5,且这三组人数之和是否等于60.

(三)、巩固练习。

1.课本第89页练习。

(1)x=3.

(2)可以先合并,也可以先把方程两边同乘以2.

具体解法如下:

解法1:合并,得(+)x=7。

即2x=7。

系数化为1,得x=。

解法2:两边同乘以2,得x+3x=14。

合并,得4x=14。

系数化为1,得x=。

(3)合并,得-2.5x=10。

系数化为1,得x=-4。

2.补充练习。

(2)某学生读一本书,第一天读了全书的多2页,第二天读了全书的少1页,还剩23页没读,问全书共有多少页?(设未知数,列方程,不求解)。

解:(1)设每份为x个,则黑色皮块有3x个,白色皮块有5x个。

列方程3x+2x=32。

合并,得8x=32。

系数化为1,得x=4。

黑色皮块为43=12(个),白色皮块有54=20(个).

(2)设全书共有x页,那么第一天读了(x+2)页,第二天读了(x-1)页。

本问题的相等关系是:第一天读的量+第二天读的量+还剩23页=全书页数。

列方程:x+2+x-1+23=x.

初学用代数方法解应用题,感到不习惯,但一定要克服困难,掌握这种方法,掌握列一元一次方程解决实际问题的一般步骤,其中找等量关系是关键也是难点,本节课的两个问题的相等关系都是:总量=各部分量的和。这是一个基本的相等关系。

合并就是把类型相同的项系数相加合并为一项,也就是逆用乘法分配律,合并时,注意x或-x的系数分别是1,-1,而不是0.

1.课本第93页习题3.2第1、3(1)、(2)、4、5题。

2.选用课时作业设计。

合并同类项习题课(第2课时)。

1.(1)3x+3-2x=7;(2)x+x=3;。

(3)5x-2-7x=8;(4)y-3-5y=;。

(5)-=5;(6)0.6x-x-3=0.

二、解答题。

3.甲、乙两地相距460千米,a、b两车分别从甲、乙两地开出,a车每小时行驶60千米,b车每小时行驶48千米。

(1)两车同时出发,相向而行,出发多少小时两车相遇?

4.甲、乙二人从a地去b地,甲步行每小时走4千米,乙骑车每小时比甲多走8千米,甲出发半小时后乙出发,恰好二人同时到达b地,求a、b两地之间的距离。

小学数学一元一次方程的应用教案篇十九

听了潘**老师的《5.4一元一次方程的应用(1)》一课,给我启发很多,他的课风趣幽默,自然流畅,结构严密,给听课的人一种享受,在享受的同时,也学到了很多知识以及教法,一堂好课应该是自然的、生成的和常态下的课,我认为这是一节成功的课。

首先,他从学生感兴趣的画面入手,很快使学生进入了一种兴奋的状态之中,因为是应用题的讲解,一般情况下,学生学起来比较吃力,也觉得很没意思,但潘老师把题目改成学生所熟悉,所感兴趣的话题,譬如说去水立方去看跳水比赛,去看姚明比赛,问2008北京奥运会拿了几枚金牌?2012的伦敦奥运会拿了几枚金牌?大部分同学回答都不知道,于是潘老师说我给你们一个信息,“2008年奥运会上,我国获得金牌是2012年伦敦奥运会获得的金牌数的4倍少13枚。同学们都在积极的思考,有的同学马上举手,有的同学相互讨论,同学们的学习积极性一下就被潘老师推到了高潮。

潘老师在讲解行程问题时,让学生自己按题目要求表演,相遇问题,追及问题虽然在小学里已学过,但仍然是个难点,通过学生的表演,生动形象,让人一目了然,等量关系很容易找到,并且好多同学都能用几种方法解答。学生的学生思维活跃,气氛热烈。这样操作学生受益面大,不同程度的学生在原有基础上都有进步。知识、能力、思想情操目标达成的很到位。

潘老师的课安排的内容非常多,但整个一堂课上下来,听的人却不觉的累,主要是她这几方面做得很好。

(1)教学环节的时间分配的很合理,没有前松后紧或前紧后松的现象,并且讲与练时间搭配也很合理。

(2)教师活动与学生活动时间分配合理,潘教师占用时间与学生活动时间刚好相等。并且学生的个人活动时间与学生集体活动时间的分配也很合理。

制作的非常精美,画面生动形象,特别是行程问题中的相遇问题和追及问题中的动画制作非常吸引学生,几乎所有的学生看了都哈哈大笑,这也给课堂注入了新鲜血液,让他们重新振作起来,攻克一个又一个难题。

以上是我的一点粗浅认识,有不当之处,请各位同仁指正。

小学数学一元一次方程的应用教案篇二十

2.已知:如图1,,.。

求证:.。

3.什么叫做两条平行线间的距离?它有什么性质?

【引入新课】。

【讲解新课】。

图2。

(2)平行四边形性质,定理的综合应用:

图3。

例2已知:如图3的`对角线、相交于点,过点与、分别相交于点、.。

求证:.。

图4。

例3已知,如图4,,,.求的面积.。

(3)平行四边形面积的表示法,如图5表示为.。

(4)学生自己完成解答.。

图5。

【总结、扩展】。

1.小结。

(1)性质定理及其它新知识的灵活应用,防止思维定势,方法僵化.。

(2)引导学生填写下列表格(打出投影)。

名称。

平行四边形。

示意图。

定义。

对角线。

2.思考题:教材p144中b.4。

八、布置作业。

教材p141中2(4);p142中3(2)、4、5、6.。

九、板书设计。

标题例2。

小结(表格)。

平行四边形性质3例3。

十、背景知识与课外阅读。

国际数学奥林匹克。

十、随堂练习。

教材p.134中1、2。

2.在中,,,,则.。

3.已知是的边上任一点,则:的值为____.。

a.b.c.d.不确定。

小学数学一元一次方程的应用教案篇二十一

教学目标1.使学生掌握移项的概念,并能利用移项解简单的一元一次方程;2.培养学生观察、分析、概括和转化的能力,提高他们的运算能力。教学重点:移项解一元一次方程。教学难点:移项的概念教学方法:启发式教学教学过程:(一)情境创设(二):探索新知解方程:(1)3x-5=4.(2)7x=5x-4在分析本题时,教师应向学生提出如下问题:1.怎样才能将此方程化为ax=b的形式?2.上述变形的根据是什么?解:3x-5=4,方程两边都加上,得3x-5+5=4+5,(本题的解答过程应找多名学生分别口述,教师严格、规范板书,并请学生口算检验)解方程7x=5x-4.针对(1),(2)题的分析与解答,教师可提出以下几个问题:(1)将方程3x-5=4,变形为3x=4+5这一过程中,什么变化了?怎样变化的?(2)将方程7x=5x-4,变形为7x-5x=-4这一过程中,什么变化了?怎样变化的?我们将方程中某一项改变后,从方程的一边移到另一边,这种变形叫做移项。利用移项,我们可以将(2)题按以下步骤来书写。解:移项,得,合并同类项,得未知数x的系数化1,得(至此,应让学生总结出解诸如例1、例2这样的一元一次方程的步骤,并强调移项要变号).(三)自学例题:解方程:x-3=4-x解:移项,得和并同类项,得系数化为1练习:1(a)组(1)方程3x+6=2x-8移项后,得(2)方程2x-0.3=1.2+3x移项,得(3)下列方程变形正确的是()a若3x+2=1,则3x=3b若-x+1=0,则-x=1c若x-1=3x,则-1=3x-xd若-=o,则x=4(4)用移项法解下列方程:(a)10y+7=12y-5-3y(b)0.5x+=x+2(c)=+x(d)9+x=2x+12-4x(四):教学小结:

【本文地址:http://www.xuefen.com.cn/zuowen/15564567.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档