教案是指教学活动实施中所依据的一种详细计划,对于教师来说,写好教案是保证教学有效进行的重要保障。教案要注重培养学生的自主学习和合作学习能力,引导学生积极参与教学活动。这里收集了一些经典的教案范例,希望能够给大家提供一些指导。
数学线和角教案设计篇一
1、复习6以内数的组成,能正确地记录6以内数的分合形式。
2、练习5以内的加减运算,能看算式报出答案。
3、能大方地在集体面前回答问题。
1、经验准备:幼儿已学过6的组成和5的加减。
2、幼儿用书1-21页。
(一)游戏:碰球。
——鼓励幼儿前一已有经验大方地在集体面前回答。
——师幼共同玩“碰球”的游戏。
1、教师出示数字卡片“5”,请幼儿看数字卡片,要求幼儿口报的数字和老师报的数字合起来是“5”。
2、游戏2—3遍后,可更换出示数字“6”。“4”,提醒幼儿口报的数字要和老师报的数字合起来与卡片上的数字一样多。
(二)游戏:开快乐火车。
——师友共同玩游戏,鼓励幼儿快速地报出算式卡片上的得数,要求既要算得快,又要算的对:嘿嘿,我的火车就要开,幼儿:几点开?教师出示算式:你们猜?幼儿:()点开。
(三)幼儿操作活动。
——看分合式填空格。引导幼儿观察圆点和数字分合式。启发幼儿在空格中填写相应数量的圆点或数字,并说一说分合式。
——看算式进行5以内加减运算。
——看图列算式。
——算式与答案连线。
(四)活动评价。
——鼓励个别幼儿大方地在集体面前介绍自己的活动与记录,其他幼儿对照检查自己的操作活动。
——展示幼儿的操作材料,表扬画面整洁、正确的幼儿。
数学线和角教案设计篇二
教科书第58页的“用数学”。
教学目标。
1.使学生会用学过的数学知识解决简单的实际问题。
2.培养学生用不同的方法解决同一个问题的能力。
3.初步感受数学在日常生活中的作用。
教学重点、难点。
引导学生通过分析数量关系选择正确的计算方法解决问题。
教具学具准备。
课件,实物投影仪,展台,屏幕,练习用的图片。
教学过程。
一、创设情境,引入新知。
教师:同学们,鹿老师组织了一个旅游团要到大森林里去游玩。你们想参加吗?
生:想。
师:坐上我们的小火车,准备出发了。(放音乐;火车开了。学生以小组为单位做律动)。
出示课件:美丽的大森林。
师:瞧,美丽的大森林到了,有这么多可爱的小动物,你们喜欢吗?
生:喜欢。
师:今天小动物们要请喜欢数学的同学去他们中间玩,你们谁想去呀?
生:……(争先恐后地说想去)。
生:行。
师:我们先去看看草坪上的小动物都有什么问题呀?(课件拉近第一幅画面,并演示)。
师:你都看到了什么?
生:我看到了草地上原来有9只小鹿在吃草,后来走了3只。(课件出示:大括号和9只)。
师:那你能帮助小鹿提出一个数学问题吗?
生:草地上还剩几只鹿?(课件出示:?只)。
师:你的问题提得真好。谁能用学过的数学知识解决这个问题呢?先请你们集中五人的力量分小组研究一下。研究完以后,把算式写在小黑板上。然后进行汇报和订正。
师:哪个小组愿意来展示一下你们小组研究的结果?
生:我们组列的算式是:9―3=6,草地上还剩6只鹿。
师:谁有问题要问他们?(引导学生提问题)。
生提问:请问你们为什么要用减法计算?
生解答:因为原来草地上有9只小鹿,跑了3只,求草地上还有几只就是求还剩几只。这3只小鹿是从9只里面跑掉的,所以用从9只里面去掉3只,就是剩下的6只。
生提问:9-3为什么等于6?
生解答:因为9能分成3和6。或因为3+6等于9,所以9-3=6。
师小结:同学们真是太聪明了,这么快就帮助小鹿解决了问题,你们数学学得真好。老师真是太高兴了。
过渡:看着这幅画面,你还能发现什么数学问题?(引导学生看草地上的`蘑菇)。
学生可能出现三种情况:
1.生提问:草地上一共有8个蘑菇,左边有6个,右边有几个?
师:谁能解决这个问题?
生解答:8-6=2。
生提问:你为什么用减法?
生解答:因为知道了一共有8个蘑菇,左边有6个蘑菇,从8个里面去掉左边的6个就是右边的2个,所以用减法。
师引导:还有发现不同问题的吗?
2.生提问:草地上一共有8个蘑菇,右边有2个,左边有几个?
师:谁能解决这个问题?
生解答:8-2=6。
生提问:你为什么用减法?
生解答:因为知道了一共有8个蘑菇,右边有2个蘑菇,从8个里面去掉右边的2个就是左边的6个,所以用减法。
师引导:还有发现不同问题的吗?
3.生提问:左边有6个蘑菇,右边有2个蘑菇,一共有几个蘑菇?
师:你发现的问题真好,同学们听清楚了吗?我们再请他说一遍,好吗?
(生说,课件依次出示:6只,大括号,?只)。
师:这个问题我们请同学们分小组来解决,好吗?
请一个小组来汇报。提要求:要说清楚你们小组采用的是哪种计算方法,为什么?怎样列的算式。
生汇报:我们小组采用的是加法,因为这个问题得求总数,我们只要把左边的6个和右边的2个合起来就行了,所以用加法。列的算式是:6+2=8。
二、反馈练习,强化新知。
(课件出示鸭子图。)。
师:你会解决这个问题吗?不告诉别人,自己把算式写在纸上。
学生独立完成,然后集体订正。
师小结:大家帮助小鸭子解决了问题,听它们在谢你们呢?(课件演示鸭子叫)。
课件演示声音:小鸭子的问题解决了,我们还有问题呢?
师:这是谁的声音呀?(课件出示猴子图)原来是小树林里的猴子们等急了,你们能解决猴子们的问题吗?自己完成。
学生写出算式,然后集体订正。
三、当堂作业,巩固新知。
(一)做题小竞赛。
师过渡:同学们,你们还想不想继续帮助小动物们解决问题呀?
生:想。
学生独立做题。
集体订正。(指名直接说算式,集体判断,最后挑出一个题让学生说一说想法)。
(对全做对的同学进行奖励。)。
学生随意说。(教师相继进行热爱大自然,保护小动物的教育)。
让我们开启小火车回家吧。
(二)完成教科书第62页的第13、14题。
让学生独立完成,然后在小组里订正。最后集体订正。
(三)请学生想一想在日常生活中能用数学知识解决哪些实际问题。
学生随意说。
四、课堂总结。
师:数学知识真重要呀,他能帮我们解决这么多实际问题,我们一定要学好它。
数学线和角教案设计篇三
1.使学生通过观察,初步理解简单的同分母分数加法的算理,并能正确计算.。
3.培养学生抽象概括与观察类推的能力.。
教学重点。
1.理解同分母分数加法的算理.。
2.会计算简单的同分母分数加法.。
教学难点。
理解同分母分数加法的算理.。
教学过程。
一、铺垫孕伏.。
复习旧知.。
(1)用分数表示图中涂色部分(投影)。
问:是几个?是几个?是几个?
(2)填空。
是4个是是个是个.。
(3)口算并说明计算理由.。
30+28056+6139+20。
二、探究新知.。
1.导入新授.。
这样的分数加法应该怎样计算呢?这节课我们就来学习简单的分数加法.。
(板书:简单的分数加法)。
2.教学例1.【演示课件简单的分数加、减法】。
(1)出示例1。
一张长方形纸,做纸花用去,做小旗用去,一共用去这张纸的`几分之几?
(2)分析数量关系,列出算式.。
教师板书:
教师提问:这道题应该怎样想呢?(演示动画分数加法例1)。
是2个,是1个,2个加上1个是3个,就是.因此。
(板书:)。
(3)计算并说出思考过程。
3.教学例2.【演示课件简单的分数加、减法】。
(1)(演示动画分数加法例2)。
提问:怎样列式?
(板书:)。
思考:得多少?你是怎么想的?
(2)教师出示图片,板书。
(3)再让学生说的思考过程.。
4.练习.。
(1)口答:
(2)计算并说思考过程.。
提问:1用分数怎样表示?(可表示为、、、)。
小结:可以根据我们的需要写成分子、分母相同的任意分数.。
三、随堂练习.。
1.填空。
(l)2个加上3个,是5个;就是。
(2)3个加上4个,是个,就是。
(3)2个加上7个是个,就是.。
2.判断正误,把不正确的改正过来.。
3.计算.。
4.一块皮子,做皮包用去这块皮子的,做皮鞋用去这块皮子的,一共用去这块皮子的几分之几?(列式计算,并说明理由.)。
四、课堂小结。
今天我们学习了同分母分数加法,你们发现了什么规律吗?
五、课后作业.。
数学线和角教案设计篇四
1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;。
2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系;。
3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;。
4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。
教学建议。
1.知识结构:本小节先回顾了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出代数式的概念。
2.教学重点分析:教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地体现用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。运用算术的方法解决问题,是小学学生的思维方法,现在,从具体的数过渡到用字母表示数,渗透了抽象概括的思维方法,在认识上是一个质的飞跃。对代数式的概念课文没有直接给出,而是用实例形象地说明了代数式的.概念。对代数式的概念可以从三个方面去理解:
(1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性.
(2)代数式中并不要求数和表示数的字母同时出现,单独的一个数和字母也是代数式.如:2,m都是代数式.
等都不是代数式.
3.教学难点分析:能正确说出一个代数式的数量关系,即用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序。用语言表达代数式的意义,具体说法没有统一规定,以简明而不引起误会为出发点。
如:说出代数式7(a-3)的意义。
分析7(a-3)读成7乘a减3,这样就产生歧义,究竟是7a-3呢?还是7(a-3)呢?有模棱两可之感。代数式7(a-3)的最后运算是积,应把a-3作为一个整体。所以,7(a-3)的意义是7与(a-3)的积。
数学线和角教案设计篇五
教学设计思想:
本节课选自初一数学第三章第四节——角的比较与运算,是一节很受学生欢迎的数学课,在轻松、愉快中学到数学知识,本节课的成功之处在于:
一、体现探究式教学理念。
该课以探究式教学理念为指导营造一种轻松和谐的学习氛围,让学生通过自己动手操作,探索比较两角大小的方法,通过分组交流合作研究;归纳总结用一副三角尺可画哪些特殊角,通过群体间的交流与反思去领悟数学学习方法,学到数学知识。
二、以学生活动贯穿始终。
本课以学生活动、探究、交流、反思为主线,充分体现了“在实践中探索,在探索中反思,在反思中创造”的教学理念。通过线段知识的复习,首先,让学生有相互的知识准备,为学生“动”起来奠定基础,接着让学生利用手中准备的两个角研究如何比较大小,演示和、差,探究三角板画特殊角,让学生主动参与到教学的学习中来,而教师作为设计者,组织者与合作者,按照学生认知发展的需要,营造师生之间,生生之间轻松互动氛围,变教学过程为以学生为主的探究与思考过程。
三、重实效,以学生发展为本。
整节课,学生动口、动手、动脑,充分展示了主人的姿态,凡能由学生自行研究解决的问题,能表达的观点,教师决不代替解决和代述,教师面向全体学生,使每个学生都得到不断的提高和发展。
四、以“情感”为创新教学开道。
以“活动”促进学生思维发展,以“真情”为创新开道,整节课为学生提供了主动探究,自主学习,合作学习的时空,教师恰当运用评价手段,熟练运用语言、动作、神态等对学生进行心理激励,不断将教师期望关注传递给学生,使它们自信,从而敢于提出问题,发表见解,在一个个问题解决的过程中,升华自己的创造精神,丰富自身的创造力。教学目标:
1.知识与技能:
会比较两个角大小。
会画两个角的和、差。
会用三角尺画特殊角。
2.过程与方法:
通过观察、操作、类比、推断等教学活动,积累数学经验,感受数学思考过程的条理性,发展形象思维及动手操作、归纳分析、概括能力。
3.情感、态度与价值观:
通过分组学习,树立合作交流的意识和探索精神,激发兴趣。
教学重点:角的比较,画角的和差。
教学难点:角的和差,几何语言的使用。
教学关键:与线段类比学习。
教学方法:分组合作、观察、演示、探究。
教师准备:三角尺、两根木棍、小黑板、彩粉笔。
学生准备:三角尺一套、自制两个角模型。
教学过程:
一、复习准备。
师:(教师手中拿着两根长短不一的木棍)前面我们学习了线段的比较,请同学们回忆一下,如何比较两条线段的大小。
生:用刻度尺分别量出两条线段的长度,长度长的线段大,长度短的线段小。
师:回答非常准确,这说明线段的大小与其长度的大小是一致的,还有其他方法吗?
生:把两条线段的一个端点重合,另一个端点落在同一侧,由另一个端点的位置来判断大小,另一个端点在外侧的线段大。
师:叙述非常准确。看来同学们对前面的知识掌握非常好,语言表达也十分准确。线段有大小之分,同样角也有大小。今天,我们就来学习角的大小比较。
(板书课题§3.4.1角的比较)。
数学线和角教案设计篇六
教学目的`:
通过学习,培养学生分析能力和解决问题的能力。
教学重难点:
初步培养学生提出问题、思考问题、解决问题的能力。
教学过程设计:
一、复习。
1、口算:
3+74+95+67+812+6。
2、计算:
二、新授。
1、教学例4。
出示挂图。
问:你看到了什么?请你仔细看看,你发现了什么问题?
师指出:对评比牌前面的灌树挡住了,你有办法知道每个班红旗获得情况吗?
2、小组讨论。
教师要注意引导学生观看条件。
3、小组汇报。
如:二(2)班16-3=13。
注意:强调让学生通过多种方法进行计算。
4、问:谁知道二(1)班、二(2)班得几面红旗呢?
小组讨论,师生共同总结出:没办法知道。因为被树挡住了。
问:那他们可能得几面红旗呢?
你是在怎么知道的?
三、练习。
1、p23做一做。
2、练习四第1—4题。
教学反思:
数学线和角教案设计篇七
1.使学生进一步理解乘数是两位数的连续进位乘法的算理,掌握两位数的进位乘法的计算方法。
2.培养学生的分析推理能力。
理解乘数是两位数的连续进位乘法的`算理。
掌握两位数的进位乘法的计算方法。
一、自主探索,领悟知识。
1.创设情景,提出问题。
一个牌子写着“门票每人48元”,有7名同学进入博物馆参观展览。
(1)学生根据以上情景提出数学问题。
2.改变情景,引出新课。
改变条件:一共进72人。学生根据新情景提出问题。
(1)教师根据学生提出的问题有选择性地解答并板书:48×72。
(2)小组研究计算方法。
(3)小组汇报。
(4)教师根据情况,重点指出以下两个方面:
计算方法与前面的相同,相同的数位要对齐。不同的是48×72需要连续进位,要特别注意。
(5)练习:683745。
×34×82×46。
2.学习例4。
出示例题。
(1)让学生读题理解题意,再口头列出算式。
(2)让学生独立试做。
(3)请一名学生展示计算过程,并说一说算理。
(4)其他学生补充完整,必要时教师给予指导。
(5)练习215309。
×32×25。
二、巩固反馈,深化知识。
1.第11页的做一做。
2.判断。
(1)57(2)306(3)193(4)403。
×35×35×36×35。
25515301158215。
17112043791612。
196513570494816335。
板书:用两位数乘(连续进位)。
48×72=3456114×59=6726(分)。
48114。
×72×59。
961026。
336570。
34566726。
答:要用6726分。
数学线和角教案设计篇八
“倒数的认识”是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。“倒数的认识”是分数的基本知识,学好倒数不仅可以解决有关实际问题,而且还是后面学习分数除法、分数四则混合运算和应用题的重要基础。
三、1.理解倒数的意义,掌握求倒数的方法。
2.能熟练地写出一个数的倒数。
3.结合教学实际培养学生的抽象概括能力。
四、:理解倒数的意义,掌握求倒数的方法。
五、熟练写出一个数的倒数。
(一)、谈话。
1.交流。
师:我们的黑板是什么颜色?
生:黑色。
师:教室的墙面又是什么颜色?
生:黑色。
师:黑与白在语文上是什么关系?
生:黑是白的反义词。
生:白是黑的反义词。
师:能说黑是反义词或白是反义词吗?
生:不能,因为黑与白是相互依存的关系。必须说清楚谁是谁的反义词。
师:那么,数学上有没有相互依存关系的现象呢?
生:约数和倍数。
师:你能举例说明约数和倍数的相互依存关系吗?
生:例如8是4的倍数,4是8的约数。不能说成8是倍数或4是约数。因为8和4是相互依存的。
2.导入今天,我们继续来研究数学中具有相互依存关系的现象的有关知识。
(二)、学习新知。
对数游戏。
1.学习倒数的意义。
我们六年级办公室里有7人,男教师4人,女教师3人,下面我和同学们做个对数游戏,就是我先根据3和4说一个数,同学们跟着根据3和4说一个数。
师:4是3的4/3,
生:3是4的3/4。
师:7是15的7/15;生:15是7的15/7。
提问;看我们做游戏的结果,你们有没有发现什么?
生1:第一个分数的分子就是第二个分数的分母,第一个分数的分母就是第二个分数的分子。
生2:两个分数的分子、分母相互调换了位置。
生2:两个分数的乘积是1。
提问:那么怎样的两个数才是互为倒数呢?指导看书。
思考:(1)什么是倒数?满足什么条件的两个数互为倒数?
(2)你能找出互为倒数的两个数吗。请举例。
评析:回答问题。
理解“互为”的意义。怎样的两个数互为倒数。
找朋友游戏(课前每位同学发一张数字卡片)。
练习。
(!)出示卡片(六位同学举着卡片依次站在黑板前)。
7/911/41/5086/599。
(2)规则:如果下面的同学拿到的数是以上这些数字的倒数就到相应的同学前面排队。
提问:下面的同学你们找到自己的朋友了吗?那么你们能找到自己的朋友吗?
3教学求一个数倒数的方法。
出示例题:找出下列各数的倒数。
2/37/41/591/7/80.4。
小组讨论指名板演。
提问:1.你是怎么找出2/3的倒数的?
生1:因为2/3与3/2乘积是1,所以2/3的倒数是2/3。
生2:因为互为倒数的两个数的分子与分母正好调换位置。2/3的分子与分母调换位置后是3/2,所以2/3的倒数是3/2。
2.你是怎么找出7/4的倒数的?
……。
提问:我们怎样才能很快地找到一个数的.倒数?为什么?
4.练习请剩下的没有找到朋友的同学继续找倒数。
5.讨论:1的倒数是谁?0的倒数呢?
生:1的倒数是1。
师:能说明一下理由吗?
生1:因为1与1的乘积还是1。
生2:因为1可以化成1/1,1/2的分子与分母调换位置后还是1/1,即1,所以1的倒数是1。
师:0的倒数呢?
生1:0的倒数是0。因为1的倒数是1,所以0的倒数是0。
生2:因为0与任何数相乘都得0,所以0的倒数是任何数。
生3:0的倒数是没有的。因为乘积是1的两个数才互为倒数,而0乘任何数都得0,说明0乘任何数都不得1,所以0没有倒数。
生4:0可以写成0/1,0/1的倒数是1/0。
生5:不对,1/0分母是0,没有意义,所以0是没有倒数的。
6.完善求一个数的倒数的方法。
三、巩固练习。
(一)填空。
1.因为5/3*3/5=1,所以()和()互为();
2.因为15*1/15=1,所以()和()互为();
3.4/7与()互为倒数;
4.()的倒数是6/11。
5.()的倒数是2。
6.1/8的倒数是()。
7.1/2/7的倒数是()。
8.0.3的倒数是()。
(二)判断。
1.得数是1的两个数互为倒数。()。
2.互为倒数的两个数乘积一定是1。()。
3.1的倒数是1,所以0的倒数是0。()。
4.分数的倒数都大于1。()。
(四)思考。
4/5*()=()*8。
四、总结:今天我们学习了什么知识?你有什么收获?还有什么问题吗?
五、布置作业。
简评:
一、自主学习中让学生勇于创新。
新课程标准指出:“学生是学习的主人。”“有效的数学学习活动不能单纯地依赖模仿与记忆。动手实践,自主探索,合作交流是学生学习数学的重要方式。”因此,教师在课堂上应相信学生、大胆放手,引导学生主动地进行自学、思考、讨论、合作交流等活动,发现规律,掌握知识,提高能力。让学生在讨论交流中力图创新,学习创新。本案里例中“你有没有发现什么?”“怎样求一个数的倒数”“1的倒数是几,0的倒数呢?”等处的交流促进了学生对知识的感悟与理解。特别是对“0的倒数呢?”一问的回答,学生各抒几见,有的用推理的方法解释0的倒数是谁;有的用旧知识来解决新问题;也有的用反证法来阐述理由。虽然有对也有错,但用不同的方式或不同的角度来思考问题,无疑体现了学生学习方法上的创新,进而实现知识上的统一。
二、在游戏活动中实现新知的推进。
游戏是小学生喜闻乐见的活动方式。游戏可以使学生的注意力更持久,积极性更高。可以让学生在轻松愉快的气氛中学到知识。这节课设计的两个游戏贯穿了新授内容的始终。第一个对数游戏让学生通过听一听,想一想,说一说来感受倒数的特征,即互为倒数的两个数分子与分母调换了位置。为后面学习“求一个数的倒数的方法“打下基础。第二个找朋友游戏,首先,让学生通过找朋友巩固了怎样的两个数互为倒数这一知识点;其次,在剩下的数中选取典型让学生通过讨论想办法找到朋友。并概括出求一个数的倒数的一般方法。这样使学生在不知不觉中接受新知;再次,在剩下的数中继续找朋友,起到了“做一做”的效果;最后,想办法找1和0的朋友,完善找一个数的倒数的方法。本节课上设计的游戏不仅在教学上实现了合理、自然的过度,而且让学生学到了知识,还使学生品尝到游戏带来的快乐。
数学线和角教案设计篇九
1、使学生理解约分和最简分数的意义,并掌握约分的方法和能正确熟练地进行约分。
2、培养学生综合运用已有知识解决问题的能力。
3、渗透恒等变换思想。
4、培养学生良好的书写习惯。
约分的意义和方法。
训练学生很快看出分子、分母的公约数,并能准确判断约分的结果是否是最简分数。
操作法、合作学习、归纳法。
正方形纸、练习题。
一、创设情境。
4/86/1515/2030/4540/6084/96105/120。
提问:能被2、3、5整除的数的特征是什么?
2、写出28和42的公约数。
3、说出下面各组数的最大公约数。
45和1530和1228和42。
13和3936和2729和30。
4、下面哪几组数中的两个数是互质数?
3和812和1815和16。
13和2625和4021河2。
5、口答。
3/4=9/()=()/208/24=()/6=1/()。
你做这道题的依据是什么?
今天我们就根据分数的基本性质,把分数改变成一个与原分数大小相等的另一个分数,看谁最会善于开动脑子。
二、探究新知。
(一)教学例1。
2、请学生用涂色的方法进行验证。
观察这三幅图,什么发生了变化?什么又没有变?(等分的份数发生了变化,涂色部分的面积没有变)。
则说明这三个分数相等。那你知道18/24是怎样变成9/12的,又是怎样变成3/4的呢?请你们相互讨论,说说自己的想法。
3、学生汇报。
学生汇报时老师进行板书。
4、揭示约分的意义。
刚才把18/24化成9/12,又化成3/4,这个过程就叫约分。什么叫约分呢?(引导学生观察这三个分数,分子的大小怎样,它的分子、分母变的比原来怎么样?)。
把一个分数化成同它大小相等,但分子、分母都比较小的分数,叫做约分。
你读了这句话,认为什么词最重要?
约分的依据是什么呢?(分数的基本性质)。
3/4还能化简吗?为什么?什么叫最简分数?
像3/4这样的分数,分子和分母是互质数的分数,叫做最简分数。
5、即时训练。
112页顶上的做一做。
指出下面哪些分数是最简分数。
4/76/93/108/105/1215/40。
(二)、教学例2化简12/30。
1、你看见这个题目知道了什么?
2、怎样化简呢?请你们讨论。
3、汇报(约分时我们尽量用口算)。
(2)、一次约分法(用分数的分子、分母的最大公约数去除分子分母,一次就能得到最简分数)。
这两种方法,你喜欢哪一种?为什么?(做题时,如果能很快看出分子分母的最大公约数,就直接用他们的最大公约数去除分数的分子分母,这样比较简便;如果不能很快看出它们的最大公约数,就用分子分母的公约数1除外去除分子、分母,一般要得出最简分数为止)。
三、反馈练习。
1、112页下面的做一做(把下面的分数约分)。
4/69/125/1024/3012/1621/28。
2、练习二十四3题。
3、判断正误,并说明理由。
(1)36/48=36/48=3/8。
(2)54/72=54/72=7/9。
(3)把一个分数化成和它相等的最简分数,叫做约分。
(4)把一个分数化成大小和它相等,但分数的分子分母都比较小的分数叫做约分。
四、反思质疑。
今天我们学习了什么内容?你收获最大的是什么?
值得注意的又是什么呢?还有不懂的吗?
五、拓展训练。
1、写出分子是18的所有最简分数。
2、写出分母是12的所有最简分数。
六、作业:练习二十四的2题。
数学线和角教案设计篇十
教学目标:
1.在具体情境中认识列与行,理解数对的含义,能用数对表示具体情境中的位置。
2.使学生经历由具体的实物图到方格图的抽象过程,提高学生的抽象思维能力,渗透坐标思想,发展空间观念。
3.使学生体验数学与生活的密切联系,拓宽知识视野,体会数学的价值,进一步增强用数学的眼光观察生活的意识,提高学习数学的兴趣。
重点难点:
理解数对的含义,能用数对表示位置。
课前准备:
课件。
教学过程:
一、谈话导入。
生:从右向左数第4排的第2个。
师:谁还想说?
生:从左向右数第2排的第3个。
师:还有不同的说法吗?
生:从后往前数,第4排的第3个。
师:怎么同一个人的位置有这么多种说法呢?
生1:人们是从不同的角度和不同的方位观察的。
生2:人们的视觉不同,也就是观察的角度不同,说的方法就不一样了。
生:有点乱。
师:我们能不能寻找一种既简单又准确的方法来描述位置呢,这节课我们就一起来探讨如何确定位置。(板书:确定位置)。
数学线和角教案设计篇十一
1.让学生学会运用转化的策略,用简便的方法解决有关分数的实际问题。
2.让学生在学习过程中加深对转化策略的认识,增强策略意识,培养思维的灵活性。
3.感受转化策略对学习的作用,能有意识、有目的、适当地运用转化策略。
掌握用转化的策略解决分数问题的方法,增强策略意识。
根据具体问题,确定转化后要实现的目标和转化的具体方法。
讨论、观察。
多媒体课件。
老师这儿有一个图形,你能求出阴影部分的面积吗?你是怎么求的?为什么这样做呢?通过转化,我们把不规则的图形转化为了规则的图形。今天我们继续学习如何用转化的策略解决问题。
出示练习十六第4题,学生在书上独立完成。交流汇报时说说自己是如何思考的。
提问:在刚才的做题、交流过程中,你有什么感受或发现?
1.教学例2。
课件出示例2,学生观察。提问:你有什么发现?你会做这道题吗?每个学生用自己的方法独立解答,交流汇报,说说自己是怎么做的。
能不能转化成更简单的算式?
出示题目右边的正方形图,提出要求:你能说说图中哪一部分表示这几个数的和吗?
引导:看图想一想,可以把这一算式转化成怎样的算式计算?
提问:这时该怎么做呢?学生独立列式计算。
和刚才的方法比较,这2种方法哪种更简单呢?你有什么体会呢?
小结:在解决问题时,要善于从不同的角度灵活地分析问题,有时候画图可以帮助我们找到合理的转化方法。
2.练一练。
1.练习十六第5题比较几种方法哪种更简单呢?你有什么体会呢?
2.练习十六第6题。
出示问题,指导学生理解图意。
明确图中每一排的点分别表示每一轮参加比赛的球队,把两个点合成一个点的过程表示进行了一场比赛。单场淘汰制就是每场比赛都要淘汰1支球队。
如果不画图,有更简便计算方法吗?
进一步提问:如果有64支球队,产生冠军一共要比赛多少场?
3.练习十六第7、8、10题。
弄清27+19的和就是最大长方形的长与宽的长度之和。
作业布置练习十六第9、11、12、13题。
数学线和角教案设计篇十二
教学目标:
1、使学生理解除数是一位数,商是整十、整百数的口算方法,学会正确、熟练地进行计算。
2、引导学生将掌握的口算乘法知识迁移到口算除法中去,培养学生迁移类推的能力。
3、培养学生的语言表达能力。
教学重点:
能正确进行口算。
教学难点:
掌握口算除法的思维方法,理解算理。
教具准备:
口算卡片、小棒。
教学过程:
一、学前准备。
1、口算。
教师出示口算卡片,学生抢答。
2、口答。
60里面有几个十?800里面有几个百?240里面有几个十?
3、把6根小棒平均分成3份,每份是多少根?
二、探究新知。
1、学习教材第11页例1。
(1)教师:我们来帮助小朋友解决问题吧。
教师板书:60÷3。
(2)尝试解答60÷3。
(3)交流、汇报计算方法。
(4)动手操作。
请同学们拿出6捆小棒,分一分。
(5)说说谁的.方法最简单,你喜欢用哪种方法进行口算。
(6)同桌交流60÷3的口算过程。
教师指导,帮助学习有困难的学生。
2、学习600÷3=。
(1)板书:600÷3=。
师:这道题应怎样想呢?
(2)尝试口算600÷3=。
(3)提问:谁能说出600÷3的口算方法。
3、学习教材第12页例2。
板书:120÷3。
(2)观察被除数与刚才所学例题中的被除数有什么不同。
(3)引导学生独立口算。
(4)说一说思考的过程。
三、课堂作业新设计。
1、教材第11页“做一做“。
(1)集体看“做一做“。
(2)观察每组中上下两题的异同。
(3)找出其中的运算规律。
(4)独立完成。
(5)验证其运算规律是否正确。(当被除数扩大到原来的10倍,除数不变时,商也扩大到原来的10倍)。
2、教材第13页练习三的第1―3题。
(1)独立完成。
(2)边做边口述口算过程。
四、思维训练。
1、列式并写出得数。
(1)6000除以3的多少?
(2)3600除以4的多少?
2、抢答。(口算卡)。
【本文地址:http://www.xuefen.com.cn/zuowen/15412780.html】