找最大公因数教案(汇总19篇)

格式:DOC 上传日期:2023-11-26 20:09:15
找最大公因数教案(汇总19篇)
时间:2023-11-26 20:09:15     小编:笔砚

教案的编写要体现学科知识的循序渐进和层次性。教案编写需要教师认真审视每一节课的内容和重点,确保教学的完整性和连贯性。教案是教学设计的具体实施方案,是教师在备课过程中编写的一种教育教学手段。写教案前应充分了解学生的学习情况和学习需求。以下是小编为大家整理的教案范例,供大家参考学习。

找最大公因数教案篇一

您现在正在阅读的人教版数学《最大公因数》说课稿文章内容由收集!本站将为您提供更多的精品教学资源!人教版数学《最大公因数》说课稿各位领导、各位老师:你们好!

今天,我说课的题目是《最大公因数》,这是人教版义务教育课程标准实验教科书数学五年级下册第四单元7981页的内容。

一、教材分析和学情分析。

(出示课件)这部分教材是建立在学生已经掌握因数、倍数的含义及其特点的基础上来学习。通过本节课学习,为学生以后学习约分和分数四则运算奠定基础。

二、教学目标。

(出示课件)根据《新课标》要求:数学教学应以学生发展为本,培养能力为重。因此,我制定如下教学目标:

1、理解公因数和最大公因数的意义。会求两个数的公因数和最大公因数。

2、通过解决实际问题,初步了解公因数和最大公因数在现实生活中的应用。

3、培养学生的抽象概括能力和解决问题的能力。

三、教学重难点。

依据教学目标,我确定了这节课教学的重点和难点是:理解公因数和最大公因数的意义。会求两个数的最大公因数。

四、教法、学法。

根据教学目标及重难点,结合本节课实际,我采用的教学方法有:引导自学法、尝试探究法等等。相应地,指导学生采用自学探究、合作交流等方法来学习。

五、教具、学具。

为了便于学生更好地进行操作,我要求学生准备长方形方格纸等教具。

六、教学流程。

根据新课标理念,结合教材特点和学生实际情况,这节课我安排了玩一玩看一看做一做议一议练一练五个教学步骤来进行。这样设计符合教研室倡导的学导练三三教学原则,符合新课标提出的自学探究、合作交流等新的学习形式,也体现出蔡林森教授所创新的洋思教学方法。突出了课堂教学以学生为主体,教师为主导,训练思维为主线,实现高效课堂为主要目的的教学方式。

(一)玩一玩。

这一步骤,我采用游戏的方式来完成。

学号是16的因数,这些同学请起立。

学号是12的因数,这些同学请起立。

哪些同学站起来2次?为什么?

(新课开始,用游戏引入,激发学生的学习兴趣。既复习了旧知,又为学习新知做好铺垫。)。

(二)、看一看:

这一步骤,我出示自学了提示,让学生自学。

自学提示:

自学课本80页的内容。思考下面的问题。

16和12的因数分别有哪些?

哪些是16和12独有的因数,

哪些是16和12公有的因数?

什么叫公因数?最大公因数?

6分钟后检测。

(这样,学生带着问题来自学、探究。体现出学生可持续能力的培养。体现出学生良好学习习惯的养练。)。

独有公有最大。

16的因数:1,2,4,8,168,16。

12的因数:1,2,3,4,6,123,6,12。

可以看出:1、2、4这三个数是16和12公有的因数,所以说:1、2、4这三个数是16和12的公因数。

2、议一议:学生再看1、2、4这三个数,你想说点什么?(学生知道了1是最小的公因数,4是最大的公因数)。

(三)、做一做:

学生自学完毕,请程度偏下的两位同学上台板演。其余学生在答题卡上完成。这一步能检查出学生自学的效果。体现出学生的尝试探究,体现出科学的学习态度。

1、填一填:

(1)10和15的公因数有:

(2)14和49的公因数有:()。

您现在正在阅读的人教版数学《最大公因数》说课稿文章内容由收集!本站将为您提供更多的精品教学资源!人教版数学《最大公因数》说课稿(四)、议一议:

1、初议:做对的同学说一说你为什么要这样做?

做错的同学对照课本找错因,找不出错因的同学让别的同学帮忙改正。

3、运用:现在,你会求两个数的最大公因数了吗?

请用你喜欢的方式求出18和27的最大公因数。

学生的方法可能有:

a、找对应因数。

b、从18的因数中找27的因数。

或者从27的因数中找18的因数。

c、排序法。

d、短除法。

e、分解法。

总之:不论采用哪种方法,我们都要:先找出它们的`因数,

再找出它们独有的和公有的因数,然后找出在公有的因数中,谁最大?

4、总结;这节课,我们学了什么?

根据学生回答板书课题:最大公因数。

(整个议一议环节,体现了生生互动、师生互动。体现了以学定教。)。

(五)练一练:

(为了检测学生的学习情况,我进行了分层训练。第一层:基本性练习。第二层:综合性练习。第三层:发展性练习。实现层层深入,由浅入深。使学生深刻体会到数学来源于生活,并为生活服务的道理。)。

(出示课件)第一层:基本性练习。

1、把下面的数填到合适的位置。

1,2,3,4,6,9,12,18,

12的因数:

18的因数:

12和18的公因数:

2、填一填:

8的因数:

16的因数:

8和16的公因数:

(出示课件)第二层:综合性练习。

5和118和95和8。

4和89和328和7。

通过练习,你发现了什么?

(出示课件)第三层:发展性练习。

七、板书设计:

这节课,我的板书设计科学、醒目、美观,便于学生直观理解。

八、反思:

回顾这节课,学生通过自学,理解公因数和最大公因数的意义,但要求出两个数的最大公因数是本节课教学的难点。因此,教学时,我鼓励学生运用多种方法,让学生在感悟、理解的基础上,总结出求最大公因数的方法。顺利完成了本节课的教学任务。

找最大公因数教案篇二

《最大公因数》这一课,新教材要求让学生在一定的情境下导出最大公因数这一概念,使得学生也体会到数学知识与实际生活的亲密关系,同时为后面的约分、通分作铺垫,所以起着承上启下的作用。葛老师在本节课中,努力将公因数的概念教学课,设计成为学生探索问题,解决问题的过程,这样设计各个环节的教学流程,体现了教师是组织者——提供数学学习的材料;引导者——引导学生利用各种途径找到公因数,最大公因数;合作者——与学生共同探讨规律。在整个教学的过程中,学生真正成了课堂学习的主人,学生个性得到发挥,课堂成了学习的乐园,不乏是一节成功的代表课。

本节课中有以下几个方面值得我去学习。

一、在生活中寻找数学知识,使学生乐学。

以帮助王叔叔家解决铺地砖的问题,引入课题,设计巧妙,极大地调动了学生参与的积极性,使学生乐意去学习新知。

二、在动手操作中学习新知,使学生能学。

葛老师通过让学生在一张纸上“铺地砖”来让学生尽情摆一摆,观察、分析、思考,找到规律,必须是两数的共同因数才满足王叔叔的要求,得出公因数概念,选择哪种地砖铺的最快,使学生在生活中体会到最大公因数的意义。充分发挥学生动手操作的`能力,使他们在充分的动手中获得新知,使每个学生都能学会新知。

总之,教师能变教学生学会知识为指导学生会学知识;能变重视结论的记忆力为重视学生获取结论时的体验和感悟;能变模仿的学习为探究式的学习,以小组合作式学习来解决生活中遇到问题的方法,将主动权交给了学生,学生参与面广,教学效果非常好。

找最大公因数教案篇三

1.知识与技能:理解公因数、最大公因数的意义,初步掌握求两个数的最大公因数的方法。

2.过程与方法:使学生经历理解公因数、最大公因数的意义,初步掌握求两个数的最大公因数的方法的过程,培养学生观察、比较、分析和概括的能力。

3.情感、态度与价值观:在师生共同探讨的学习过程中,激发学生的学习兴趣,体会数学与生活的联系,渗透事物是普遍联系的和集合的数学思想。

找最大公因数教案篇四

本课是在学生已经理解和掌握倍数、因数的含义,初步学会找一个数的倍数和因数,知道一个数的倍数和因数的特点的基础上进行教学的。这部分内容既是“数与代数”领域基础知识的重要组成部分,又是进一步学习约分和通分以及分数四则计算的基础。

第一节课,根据教材是以铺地砖的生活实际作为切入点,要铺整分米数的地砖而且要求要整数块,引入了求两个数的公因数的必要性。教材主要的教学方法是先分别求出两个数的因数,并按照从大到小的顺序排列出来,从而找出两个数的公有因数,称为这两个数的公因数,其中最大的数就是这两个数的最大公因数。通过例1的教学后,我引导学生总结出求两数的公因数以及最大公因数的方法。练习时发现部分学生还是容易在找一个数的'因数的有疏漏,导致求出来的公因数和最大公因数出错。

第二节课,我引入了求最大公因数的另一种方法,分解质因数法,介绍用短除法求两个数的最大公因数。这种方法学生掌握起来比较容易,但也发现部分学生没有除尽,最后的商不是互质数,导致找错最大公因数。

不过相对于第一钟方法,第二种方法在书写上更简便,学生解题时还是比较容易理解,写起来也比较简洁,大部分学生在求几个数的最大公因数时还会选择第二种方法。当然,我还是鼓励学生选择自己喜欢的方法,关键是能理解,懂应用。

找最大公因数教案篇五

师:18和24公有的因数,叫做它们的公因数。公因数中最大的一个因数,叫做它们的最大公因数。

师:你还有不同方法求两个数的最大公因数吗?

生1:筛选法。

先写出较大数的因数,24的.因数有1,2,3,4,6,8,12,24。

从大到小找24的因数中谁是18的因数就是它们的最大公因数,24、12、8都不是18的因数,6是18的因数。

找最大公因数教案篇六

教材分析:

例3是公因数、最大公因数在生活中的实际应用。教材通过创设用整块的正方形地砖铺满长方形地面的问题情境,应用公因数、最大公因数的概念求方砖的边长机器最大值。

学情分析:

学生已掌握了公因数和最大公因数的概念及求法,本课内容主要是帮助学生通过分析,使学生发现这样的地砖必须即使16的因数又是12的因数。在此基础上学习本课不难。

教学目标:

1.通过解决实际问题,初步了解两个数的公因数和最大公因数在现实生活中的应用。

2.在探索新知的过程中,培养学好数学的信心以及小组成员之间互相合作的精神。

重点难点:

初步了解两个数的公因数和最大公因数在现实生活中的应用。初步了解两个数的公因数和最大公因数在现实生活中的应用。

方法指导:

自主学习合作探究。

教学过程:

一、激趣导入。

(约5分钟)。

课件展示教材62页例3,今天我们要给这个房子铺砖大家感兴趣吗?要求要用整数块。

二、自主学习。

(约5分钟)。

1.几个数()叫做这几个数的公因数,其中最大的一个叫做()。

2.16的因数有(),24的因数有(),16和24的公因数是(),最小公因数是(),最大公因数是()。

3.a=225,b=235,那么a和b的最大公因数是()。

4.用短除法求出99和36的最大公因数。

三、合作交流。

(约13分钟)。

小组合作学习教材第62页例3。

1.学具操作。

用按一定比例缩小的方格纸表示地面,用不同边长的正方形纸表示地砖,我们发现边长是厘米的正方形的纸可以正好铺满,没有剩余,其它的都不行。

2.仔细观察,你们发现能铺满的地砖边长有什么特点?把你的发现在小组里交流。

3.总结。

解决这类问题的关键,是把铺砖问题转化成求公因数的问题来求。

四、精讲点拨。

(约8分钟)。

根据自主学习、合作探究的情况明确展示任务,进行展示。教师引导讲解。

五、测评总结。

(约9分钟)。

1.达标练习。

六、全课总结。

这节课你都学到了什么知识?有什么收获?

七、作业布置。

练习十五5,6题。

板书设计:

铺砖问题:求公因数。

找最大公因数教案篇七

教材第82、83页练习十五的第2一9题。

二教学目标。

1.培养学生独立思考及合作交流的能力,能用不同方法找两个数的最大公因数。

2.培养学生抽象、概括的能力。

三重点难点。

四教具准备。

投影。

五教学过程。

1.完成教材第82页练习十五的第2题。

学生先独立完成,然后集体交流找最大公因数的经验,并将这8组数分为三类。

2.完成教材第82页练习十五的第3一5题。

学生独立填在课本上,集体交流。

3.完成教材第83页练习十五的第6题。

学生独立填写,集体交流,体会两个数的最大公因数是1的几种情况。

4.完成教材第83页练习十五的第7一11题。

学生独立审题,理解题意,然后试着解答,集体交流。

5.指导学生阅读教材第83页的“你知道吗”。

请学生试着举例。提问:互质的两个数必须都是质数吗?你能举出两个合数互质的例子吗?

(四)思维训练。

(五)课堂小结。

通过本节课的`学习,主要掌握了找两个数的最大公因数的方法。找两个数的最大公因数,可以先分别写出这两个数的因数,再圈出相同的因数,从中找到最大公因数;也可以先找到一个数的因数,再从大到小,看看哪个数是另一个数的因数,从而找到最大公因数。

找最大公因数教案篇八

各位老师:

分析教材。

本课是苏教版教材五年级上册第三单元《公倍数和公因数》中的内容。在四年级(下册)教材里,学生已经建立了倍数和因数的概念,会找10以内自然数的倍数,100以内自然数的因数。本单元继续教学倍数和因数的知识,要理解公倍数、最小公倍数和公因数、最大公因数的意义,学会找两个数的最小公倍数和最大公因数的方法。为以后进行通分、约分和分数四则计算作准备。

《课程标准》要求学生“动手操作、自主探索、合作交流”,结合教材的特点,我力求达到下面的教学目标:

1、经历找两个数的最大公因数的过程,理解公因数和最大公因数的意义。探索找公因数的方法,会正确找出两个数的公因数和最大公因数。

2、结合具体实例,渗透集合思想,培养学生有序思考的能力,让学生养成不重复、不遗漏、不重复的思考习惯。

3、培养学生能用自己的语言表述自己的发现,善于发现规律,利用规律解决问题的能力。

依据《课程标准》的要求和教学目标,我确定本课教学重点是理解公因数和最大公因数的意义,教学难点是会求两个数的公因数和最大公因数。

设计理念。

在教学中我发挥“教师是学习活动的组织者、引导者与合作者”的作用,激发学生兴趣、引导学生自己探索。学生才是学习的主体,让学生在玩中学、学中玩,合作交流中学、学后合作交流并根据学生原有的认识基础和认知规律,并结合“以学生的发展为本“的理念,力求突出以下三点:

1、将教学内容活动化,让学生在做中学。

2、采用小组合作学习,让学生在交往互动中学。

3、充分利用原有的认知经验,在迁移中学。

教学过程。

依据教材特点及小学生认知规律和发展水平,整个教学过程安排了四个环节:

分为五个步骤:

2、想象延伸:接下来让学生思考还有那些边长是整厘米数的正方形也能铺满大长方形。学生思考后,回答边长是1厘米,2厘米,3厘米的正方形也能铺满大长方形。引导学生说出只要边长“既是”18的因数“又是”12的因数,就能铺满大长方形。从而引出公倍数的概念,再强调因为一个数的因数的'个数是有限的,所以两个数的公因数的个数也是有限的(最小是1),让学生在自主参与、发现、归纳的基础上认识并建立公因数的概念的过程。

3、归纳总结:只要正方形的边长既是12的因数又是18的因数,这样的正方形就能铺满大长方形。1、2、3、6既是12的因数又是18的因数,它们就是12和18的公因数。

4、根据学生的总结我及时板书课题,让学生的形象思维转变成抽象思维。

5、反例教学:让学生说明4是12和18的公因数吗?为什么?

学生通过上面的一正一反教学总结出:公因数要同时是两个数的因数。

为了及时巩固,完成练一练:先让学生在图上画一画,找出公因数和最大因数,填写在书上。

(设计目的:通过具体的操作和交流活动,帮助学生理解公因数,使知识不在枯燥无。让学生到感受成功的喜悦。)。

找最大公因数教案篇九

这部分内容的结构与“公倍数和最小公倍数”基本相同,结合具体的情境,引导学生通过观察、操作、分析、比较、抽象和概括等活动,探索并理解公因数、最大公因数的含义,掌握求两个数的最大公因数的方法。

1、我让学生依托动手操作,加强对比观察,沟通新旧知识的联系,优化概念引进的过程。在教学例3时,我分四步组织学生的活动。

第一步,让学生“分别用边长6厘米和4厘米的正方形纸片铺长18厘米、宽12厘米的长方形”,铺前先思考:边长是多少的正方形可以铺满这个长方形?通过操作,学生都知道边长6厘米的正方形可以铺满长18厘米、宽12厘米的长方形。引导学生具体感知公因数的含义。

第二步,组织讨论“还有哪些边长是整厘米数的正方形纸片也能正好铺满这个长方形”,通过思考,学生明白:“只要边长的厘米数既是12的因数,又是18的因数,就能正好铺满”这个长方形。

第三步,可以先让学生说一说1、2、3和6的共同特征,再告诉学生1、2、3和6的共同特征,再告诉学生“1、2、3和6既是12的因数,又是18的因数,它们是12和18的公因数。

第四步,让学生说一说4为什么不是12和18的公因数,使学生加深对公因数含义的理解,知道4是12的因数,但不是18的因数,所以4就不是12和18的公因数。通过正、反两方面的比较,优化概念的形成。

2、着眼于问题的解决,鼓励学生自主探索,逐步形成概念结构。教学例4是,我让学生先独立思考,用自己的方法找出8和12的公因数和最大的公因数。再通过交流,使学生在相互启发的过程中进一步打开思路,明确方法。由于学生已经积累了较为丰富的求两个数的最小公倍数的方法,因而这里的重点是让学生在自主探索的基础上合乎逻辑地表达自己的思考过程,并体会不同方法的内在一致性。

这时,我适时引导学生建立概念结构:因数——公因数——最大公因数,并且辨析这些概念的联系与区别。此外,考虑到学生也已经初步认识了用集合图表示两个相交的集合圈,所以我让学生根据对有关概念的理解,独立把8和12的因数分别填在集合图中的合适部分,然后再看图说说各自的想法,说说每一个区域内的数分别表示什么,把静态的集合图转化成动态的探索对象,让学生加深对集合图的理解,也使集合思想的渗透落到实处。

3、练习的重点是让学生通过操作和填空,进一步理解求公因数和最大公因数的方法。让学生在解决问题的过程中提炼解题策略,优化概念应用的过程。

找最大公因数教案篇十

最大公因数这部分内容是在学生掌握了因数概念的基础上进行教学的,主要是为学习约分做准备。按照《新课程标准》的要求,教材中只出现求两个数的公因数和最大公因数。

2、教学目标。

结合教材所处的地位和学生实际,我制定了以下教学目标:

知识目标:让学生在自学的过程中理解公因数和最大公因数的意义,探索找公因数的方法,会正确找出两个数的公因数与最大公因数。

能力目标:能根据两个数的不同关系灵活地求两个数的最大公因数。渗透集合思想,体验解决问题策略的多样化。

情感目标:利用课件,让孩子结合在生活经验,体会成功解决问题的快乐,体会数学与人类的密切联系,感受数学与日常生活的关系。通过动手能力的培养,体验“生活中处处有数学,处处用数学”的理念。

3、教学重、难点:据以上的目标,我确定了本课的教学重点是让学生在自学的过程中理解公因数和最大公因数的意义,探索找公因数的方法,会正确找出两个数的公因数与最大公因数。

在概念教学中,注重问题情境的创设,充分地发挥情境的作用,发挥学生的合作探究学习。由“求”转变为“找”两个数的公因数,体现方法多样化。材料准备了自制课件,方格纸。

结合教材、教学目标及学生的实际,按照“先学后教当堂训练”教学要求,我设计了下面五环节:

2、教学新课:只有明确了学习目的,学生才能更好的去自主完成本节课的学习任务,因而在学习新课之前我首先把学习目标出示给学生,让他们明确本节课的学习任务。

3、出示自学提示:为了帮助学生更好的自学,在给出目标后,我又帮助学生拟定了两个学习的提示,让学生学有所依,学而得法,从而培养学生的自学能力。

4、自主探究,汇报交流:

在学习“公因数,最大公因数”的概念,探究求两个数的最大公因数的方法时,让学生为24分米宽,36分米长储藏室铺上正方形地砖,怎么样铺的满而没有剩余,让学生自己小组合作学习,并在遇到困难时在小组群体中自由自在地交流,无拘无束地讨论,独立思考、相互学习。在讨论与交流中,思维呈开放的态势,不同见解、不同观点相互碰撞、相互引发、相互点燃,在汇报交流中强化对比,选出合适方法,从而实现个人与他人、小组与全班的全程对话。例二是让学生结合教学目标进行一一合作讨论,8和12的共有的因数和最大公因数是那些?学生交流后回答,教师评议。最后小结出什么是公因数,什么是最大公因数?并进行小结。

5、教师的教:教师在引导学生汇报时结合本节课的特点进行相机教学,对重难点问题反复讲,让学生理解。

在学生的练习中,教师巡视指导,发现问题及时解决,对表现好的给予肯定。

课本练习五中的第1、2题。

找最大公因数教案篇十一

思维一旦被激发,就有点一发不可收拾。

从第一课时开始,孩子们与我是完全浸润在了公倍数与公因数的欢乐中。我的态度也从一开始对教材安排的质疑,到现在极力拥护教材的安排。

只有放手给孩子们一个构建的机会,孩子们才能在构建过程中频频发起智慧的邀请。

在学习公倍数的时候,课上巧遇“思维定势”,孩子们以为两个数的公倍数就是它们的乘积;但是在解决书本上的6和9的公倍数是多少时,猛然发现,这个方法不能次次实施。孩子们提出了一系列猜想。其中小彧发现,如果将错就错,把6和9相乘,也可以,但是要除以它们的最大公因数。并且,小彧通过举例,把这个发现从特殊上升到了一般。

因为当时还未学习公因数,我就躲避了问题的内里。

呵呵,好家伙,知道了是什么,自觉追问了为什么?

明天我们要对本章节的内容做个整体梳理,我准备结合短除法,让孩子们意识到小何追问思想的可贵,以及这个方法可行之处究竟是什么。

2、孩子们很爱思考,从第一课时的下课时间开始,就发现两个数若有倍数关系,它们的最小公倍数很奇妙,就是较大的数。

第二课时,我们通过教材上的习题,一起说了这个规律,即诉说了看到的表面现象。

孩子们还不甘心,提出了问题,为什么两个数是倍数关系,最小公倍数就是大的那个数呢?

一时安静后,好几个孩子举高手,并说清了原因:大数本身是小数的倍数,大数又是自己最小的倍数,理所应当是两数的最小公倍数。

3、公倍数的种种猜想,在学习公因数的时候,思想方法得到了迁移。

要做找公倍数的上本子作业了,我板书给孩子们看书写格式,他们拉着脸。

我说,我小时候,就是写这么多字的。不过,我可以介绍你们写一种简单的,用“()”包住两个数,中间用逗号隔开,这样就能代替写这么多字。孩子们一看,多方便呀!居然都“啪啪啪”鼓起掌来,哈!

我满怀惬意的说,你们的掌声与微笑中包含着对数学简洁美的追求啊!

孩子们爽歪歪了。

不过事后,一个资深老师告诉我,这个环节,如果让孩子们创造一下,如何追求简洁。也许,这样对于孩子们的思维发展更有效。一想,我也同意这般。

找最大公因数教案篇十二

《数学课程标准》指出:“学生是学习的主人,教师是教学学习的组织者、引导者与合作者。”本课是在学生掌握了因数、倍数、找因数的基础上进行教学,通过找公因数的过程,让学生懂得找公因数的基本方法。引出公因数和最大公因数的概念,并探索出求最大公因数的方法。在教学的每一个环节,我注重让学生快乐学习,享受学习的过程。

一创设铺地砖问题情境,由实际生活导出概念。

以铺地砖的生活实际作为切入点,要铺整分米数的地砖而且要求要整数块,引入了求两个数的公因数的必要性。揭示了数学与现实世界的联系有,有利于培养学生的抽象概括能力。同时激发了学生探索的欲望。

二通过充分的小组合作讨论,让学生自己概括出公因数与最大公因数的概念及二者的包含关系。

结合铺地砖问题,学生知道了1、2、4既是16的因数,又是12的因数,明白了1、2、4是16和12的公有的因数,即是16和12的公因数,4是公因数中最大的一个,叫做16和12的最大公因数。因为有了这一层铺垫,我就放手让学生去讨论、概括出公因数与最大公因数的概念,以及这两者之间的包含关系。学生在小组合作、讨论、概括中体验到了学习的乐趣。

三通过“找”18和27的最大公因数,放手让学生尝试用多种方法来解决。

再求18和27的最大公因数的过程中,有的学生有列举法,有的用筛选法,还有的孩子用分解质因数的方法,还有的孩子给大家介绍了短除法。孩子们在分享不同方法的过程,体会到了解决问题策略的多样性。我鼓励学生选择自己喜欢的方法,关键是能理解,懂应用。

四精心设计练习,由浅入深,注意概念的辨析。

在练习过程中鼓励每一个学生参与探索,重视引发学生思考,注重学生间的交流,让学生用自己的语言表述自己的发现。对学有困难的学生予以帮助。真正体现学生的主体作用。

总而言之,在本节课中,我将找最大公因数的概念教学课,设计成为学生探索问题,解决问题的过程,这样设计各个环节的教学流程,体现了教师是组织者――提供数学学习的材料;引导者――引导学生利用各种途径找到公因数,最大公因数;合作者――与学生共同探讨规律。在整个教学的过程中,学生真正成了课堂学习的主人,所以整堂课学生个性得到发挥,课堂成了学生学习的乐园。

找最大公因数教案篇十三

分析教材。

本课是苏教版教材五年级上册第三单元《公倍数和公因数》中的内容。在四年级(下册)教材里,学生已经建立了倍数和因数的概念,会找10以内自然数的倍数,100以内自然数的因数。本单元继续教学倍数和因数的知识,要理解公倍数、最小公倍数和公因数、最大公因数的意义,学会找两个数的最小公倍数和最大公因数的方法。为以后进行通分、约分和分数四则计算作准备。

《课程标准》要求学生“动手操作、自主探索、合作交流”,结合教材的特点,我力求达到下面的教学目标:

1、经历找两个数的最大公因数的过程,理解公因数和最大公因数的意义。探索找公因数的方法,会正确找出两个数的公因数和最大公因数。

2、结合具体实例,渗透集合思想,培养学生有序思考的能力,让学生养成不重复、不遗漏、不重复的思考习惯。

3、培养学生能用自己的语言表述自己的发现,善于发现规律,利用规律解决问题的能力。

依据《课程标准》的要求和教学目标,我确定本课教学重点是理解公因数和最大公因数的意义,教学难点是会求两个数的公因数和最大公因数。

设计理念。

在教学中我发挥“教师是学习活动的组织者、引导者与合作者”的作用,激发学生兴趣、引导学生自己探索。学生才是学习的主体,让学生在玩中学、学中玩,合作交流中学、学后合作交流并根据学生原有的认识基础和认知规律,并结合“以学生的发展为本“的理念,力求突出以下三点:

1、将教学内容活动化,让学生在做中学。

2、采用小组合作学习,让学生在交往互动中学。

3、充分利用原有的认知经验,在迁移中学。

教学过程。

依据教材特点及小学生认知规律和发展水平,整个教学过程安排了四个环节:

分为五个步骤:

2、想象延伸:接下来让学生思考还有那些边长是整厘米数的正方形也能铺满大长方形。学生思考后,回答边长是1厘米,2厘米,3厘米的正方形也能铺满大长方形。引导学生说出只要边长“既是”18的因数“又是”12的因数,就能铺满大长方形。从而引出公倍数的概念,再强调因为一个数的因数的个数是有限的,所以两个数的公因数的个数也是有限的(最小是1),让学生在自主参与、发现、归纳的基础上认识并建立公因数的概念的过程。

3、归纳总结:只要正方形的边长既是12的因数又是18的因数,这样的正方形就能铺满大长方形。1、2、3、6既是12的因数又是18的因数,它们就是12和18的公因数。

4、根据学生的总结我及时板书课题,让学生的形象思维转变成抽象思维。

5、反例教学:让学生说明4是12和18的公因数吗?为什么?

学生通过上面的一正一反教学总结出:公因数要同时是两个数的因数。

为了及时巩固,完成练一练:先让学生在图上画一画,找出公因数和最大因数,填写在书上。

(设计目的:通过具体的操作和交流活动,帮助学生理解公因数,使知识不在枯燥无。让学生到感受成功的喜悦。)。

学生在已经掌握公因数概念的基础上,让学生学习怎样找两个数的公因数,学以致用。教学例4时,让学生独立思考,自主探索解决问题的方法,然后小组交流。通过具体的运用,巩固公因数的概念。让学生说说怎样找12和18的公因数,学生可能说三种方法,一是先找12的因数,从12的因数中找18的因数;二是先找18的因数,再从中找出12的因数,三是分别找出12和18的因数,再找出相同的因数。通过比较三种方法,让学生感受哪种方法比较简捷。在此基础上,揭示最大公因数的含义,并介绍用集合圈的形式来表示12和18的公因数和最大公因数,明确集合图中省略号的作用。

(设计目的:通过学生自主学习,弄清怎样用集合图来表示两个数的公因数。帮助学生更加直观地理解概念,感受数学方法的严谨性。)。

三、综合实践、学以致用。

为了体现数学来源与生活,用与生活的理念我设计三个层次的练习:

首先设计关于公因数和最大公因数的概念判断题,进一步让学生对公因数和最大公因数的认识。做到知识和技能融为一体。

接着让学生完成练习五第1题。学生独立完成后交流。

然后分别完成2、3题。小组交流。

(练习的设计是从认识到理解,再到拓展应用,逐层加深,培养学生抽象概括能力和合作意识,教学由课内到课外延伸,增加运用实践机会。)。

四、全课小结、过程回顾。

学生回忆整堂课所学知识。学生通过这一环节可以将整个学习过程进行回顾、按一定的线索梳理新知,形成整体印象,便于知识的理解记忆。

找最大公因数教案篇十四

聆听了李晶老师执教的人教版五年级下册《最大公因数》一课,我颇受感触,现在说说自己粗浅的认识:

本节课是在学生掌握了因数、倍数的基础上进行的教学,通过找公因数的过程,让学生懂得找公因数的基本方法。这节课与传统的概念教学相比,有所创新、有所突破,变教学生学会知识为指导学生会学知识;变重视结论的记忆力为重视学生获取结论时的体验和感悟;变模仿的学习为探究式的学习。

一、生活实际;导入新课。

李老师利用身边的数学帮李叔叔铺瓷砖很自然的引入新知教学,让学生按要求自主操作,发现用边长6厘米的正方形正好铺满长18厘米,宽12厘米的长方形。再把初步发现的结论进行类推,发现用边长1厘米、2厘米、3厘米6厘米的正方形都正好铺满长18厘米,宽12厘米的长方形。在此基础上,引导学生思考1、2、3、6这些数和18、12有什么关系。这时揭示公因数和最大公因数的概念,突出概念的内涵是“既是……又是……”即“公有”。并在此基础上,借助直观的集合图显示公因数的意义。实实在在让学生经历了概念的形成过程。

二、发挥学生的主体;自主探究。

教学新知识时,李老师并没有直接讲授内容,教师抛出问题后而是让学生独立探究。为了解决问题,学生充分调动了已有知识经验、方法、技能,找出了各种求“12和18的公因数和最大公因数”的方法。在这个过程中,由学生自己建构了公因数和最大公因数的概念,是真正主动探索知识的建构者,而不是模仿者,充分的发掘了学生的自主意识,也充分体现了教师驾驭教材,调控学生的能力。

三、及时练习;加深理解。

习题设计精简,并很有针对性引入了最大公因数的求法,帮助学生更好的理解并掌握了本节课的重难点。对练习的设计层次清楚,照顾到全班不同层次学生的需要。本节课是非常成功的。

总之,通过听这节课还是有很大的收获的,特别是对我以后在教学最大公因数更是有借鉴的价值,所以非常感谢李老师给我们上的这宝贵的一课。同时也深刻体会到了自己的一些不足,今后的教学中我会努力学习。

找最大公因数教案篇十五

认真备好每一节课,胸有课而上课堂,这是我一直希望能做到的。昨天晚上备课,我认真研读教材,对于本节课,我觉得有以下需要解决和认识。

1.复习寻找因数的'方法。

2.联系实际体会学习寻找公因数的必要性。

6.结合短除法寻找最大公因数的方法。(这个在人教版中作为了解,在本课中,我向孩子们了解介绍,但未做要求)。

在课上,我以为长16dm宽12dm的客厅铺上正方形方砖,刚好铺满,能选用集中方砖,这在无形中蕴含这寻找16和12的因数,这样能够孩子们体会寻找公因数的必要性,引起探究欲望。

孩子们有不同的方法和方式去表示公因数的方式,在最后介绍集合方式,在交集中更直观现实公因数,这样更直观的显示,初步渗透集合思想。

找最大公因数教案篇十六

《标准》指出“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。”这一理念要求我们教师的角色必须转变。我想教师的作用必须体现在以下几个方面。一是要引导学生思考和寻找眼前的问题与自己已有的知识体验之间的关联;二是要提供把学生置于问题情景之中的机会;三是要营造一个激励探索和理解的气氛,为学生提供有启发性的讨论模式;四是要鼓励学生表达,并且在加深理解的基础上,对不同的答案开展讨论;五是要引导学生分享彼此的思想和结果,并重新审视自己的想法。

一、引导学生思考和寻找眼前的问题与自己已有的知识体验之间的关联。

《公因数与最大公因数》是在《公倍数和最小公倍数》之后学习的一个内容。如果我们对本课内容作一分析的话,会发现这两部分内容无论是在教材的呈现程序还是在思考方法上都有其相似之处。基于这一认识,在课的开始我作了如下的设计:

学生已经学过公倍数与最小公倍数,这两部分内容有其相似之处,课始放手让学生自由猜测,学生通过对已有认知的检索,必定会催生出自己的一些想法,从课的实施情况来看,也取得了令人满意的效果。什么是公因数和最大公因数?如何找公因数与最大公因数?为什么是最大公因数面不是最小公因数?这一些问题在学生的思考与思维的碰撞中得到了较好的生成。无疑这样的设计贴近学生的最近发展区,为课堂的有效性奠定了基础。

二、提供把学生置于问题情景之中的机会,营造一个激励探索和理解的气氛。

三、让学生进行独立思考和自主探索。

通过学生的猜测,我把学生的提出的问题进行了整理:

(3)为什么是最大公因数而不是最小公因数?

(4)这一部分知识到底有什么作用?

我先让学生独立思考?然后组织交流,最后让学生自学课本。

这样的设计对学生来说具有一定的挑战性,在问题解决的过程中充分发挥了学生的主体性。在这一过程中学生形成了自己的理解,在与他人合作与交流中逐渐完善了自己的想法。我想这大概就是《标准》中倡导给学生提供探索与交流的时间和空间的应有之意吧。

找最大公因数教案篇十七

这一节课的教学内容是新课程人教版小学数学五年级下册,第四单元分数的意义和性质里面的最大公因数。本节课的教学目标是:

3、培养有序思考的思维习惯,灵活运用知识解决问题的能力;

4、培养合作交流的学习习惯,严谨细心的学习态度。

教学的重点是理解两个数的公因数以及最大公因数的概念,学会用列举法找出两个数的最大公因数。教学的难点是灵活运用多于一种的列举法找出两个数的最大公因数。

这节课的设计我分为三个主要部分:分别是引入、理解新知和理解运用。在引入的教学部分,我设计了解密码锁的环节,分别让学生找出18与20的所有因数,再找出它们共同的因数。这样除了可以复习找出一个数因数的方法以外,还进行了对新知识两个数的公因数的铺垫,为后面的概念教学起到启发的作用。

在理解概念的教学部分,我最主要的设计是让学生亲自动手操作,感受两个数的公因数在实际生活中的应用。让他们根据已知的条件,把边长4厘米与边长6厘米的正方形分别铺在长18厘米,宽12厘米的长方形上面,要选择出合适的正方形。通过这些操作进行比较分析,从具体形象方面去感受理解什么是两个数的公因数这个概念。接着再通过相关的提问与沟通,把两个数的公因数这个概念的内涵和本质梳理清晰,使学生从概念的定义上明确什么是两个数的公因数和最大公因数,促进了概念从形象到抽象的过程。其中,学生们还通过与别人的合作、交流,逐渐学会用合适的语言把概念表达清楚。

在理解运用的教学部分,我把重点放在让学生用不同的列举法求出两个数的最大公因数上,引导学生应用两个数的最大公因数这个概念,运用多于一种的方法灵活有效率地找出两个数的最大公因数。在全部学生都能够理解最基本方法的基础上,通过学生之间的互相交流讨论,发掘出效率更高、更快找出两个数最大公因数的方法,并且让学生通过比较练习逐渐学会选择合适的方法,优化解决问题的方案,为后面约分的学习奠定基础。

在整节课的教学过程中,学生之间的合作交流、互动学习是关键,因此,有效的小组合作活动与有效的教学有密切联系,必须在学生进行小组活动的时候提供必要的指引与点拨,关注活动的情况。同时,充分利用学生在发表意见时的有效生成,梳理并引导理解,也是达到教学目标的重要资源。

找最大公因数教案篇十八

学习本课之前,本册教材已经安排了认识因数和找一个数的所有因数,这些内容与本节课紧密相联,是学习本课的铺垫和基础。同时,找最大公因数又是约分的基础,而约分又是分数四则运算的重要基础,因此,理解和掌握最大公因数就显得尤为重要。由此可见,本课在分数运算中起着承前启后、举足轻重的作用。

教材编写者编写本节课时,贯彻数学课程标准(20xx年版)的理念,非常注意促使学生经历观察、操作、比较、讨论、归纳等学习活动,在“找最大公因数”的过程中发展抽象概括的能力,培养学生的实践能力和创新意识,帮助学生实现可持续发展发挥。

这里分析本节课在教材中的地位和作用,同时也是我们确定教学目标和教学重点的一项重要依据。

学习本课之前,五年级学生已经认识了倍数和因数,能找出100以内某个自然数的所有因数;积累了一定的观察、操作、归纳等数学活动经验,具备了初步的抽象概括能力。但是,这个年龄阶段的学生处于从具体的形象思维向抽象逻辑思维过渡的阶段,他们的数学学习一个重要特点是:探索发现和抽象概括的过程中需要具体的、形象的数学例证作支撑;同时他们在进行数学概括时往往不够完整,在数学表达上往往不够严谨,这些都需要精心的引导。

以上学情,是我们确定教学目标和教学重点、难点以及确定教法、学法的一项重要依据。

1、在解决问题的过程中理解公因数和最大公因数的意义,探索找公因数的方法,会正确找出两个数的公因数与最大公因数。

2、渗透集合思想,体验解决问题策略的多样性。

3、培养学生分析、归纳等思维能力,激发学生自主学习、积极探索的热情,培养合作交流的良好习惯。

教学重点:能理解公因数和最大公因数的意义,探索找公因数的方法。

教学难点:能正确找出两个数的公因数与最大公因数。

教材首先呈现了找公因数的一般方法:先用想乘法算式的方式分别找12和18的因数,再让学生将这些因数填入两个相交的集合圈中,引导学生重点思考的问题是:两个集合相交的部分填哪些因数?在此基础上,引出公因数与最大公因数的概念。教材用集合的方式呈现思路,让学生经历知识的形成过程,引发学生的数学思考。

教材在练一练中,呈现了两组找因数、公因数和最大公因数的练习,一组是8和16,另一组是5和7。第一组是两个数存在倍数关系找最大公因数;第二组是找互质数的最大公因数。我在教学这两种特殊情况时,给出更多的数字,安排了三对数,第一组4和8,16和32,6和24,每对都存在倍数关系,先让学生找一找公因数和最大公因数,然后观察最大公因数,发现每组的最大公因规律。第二组安排了三对数3和7,8和9,15和16,都存在互质的关系,也先让学生找一找公因数和最大公因数,然后观察、发现每组的最大公因数都是1,然后现去想一想,每组数都有些什么特点,从而概括这两种特殊情况组找最大公因数的方法。

依据《数学课程标准(20xx版)》,数学教学活动要注重把四基目标有机结合,整体实现;要重视学生在学习活动中的主体地位,我对本节课主要选用了探究性学习方式。同样的,依据《数学课程标准(20xx版)》,为了使学生主体地位和教师的主导作用达到和谐统一,我还选用了启发式的教学方式。

我使用了现代信息技术,以手段多样化,促进学生的探索研究。主要使用了四种教学手段:

1、学具操作:合理的使用学具能促进学生的亲身经历与体验,帮助学习建立数学建模。

2、白板运用:恰当的演示,给课堂带来清晰的层次感,体现教师的主导作用和引导方式。强大的电子白板可以更好的辅助教师和学生之间的互动。

4、课堂板书:必要的板书有利于实现学生的思维与教学过程同步,有助于学生更好地把握教学内容的脉络。

回忆旧知识,又是为向新知识的延升做好铺垫。

让学生找出12的所有因数。并说说是怎样找的?找因数的时候需要注意些什么?

(白板上出示1、2、3、4、5、6、7、8、9、10、12、15、18、20数字和集合圈1)。

让学生将12的因数拖入集合圈中,回忆找因数的方法。怎么找因数才能又快又有顺序?

用乘法算式,有序、不易遗漏。

再找一找18的所有因数,并出示集合圈2,让学生将18的所有因数拖入集合圈2中。

9、18。

移动集合圈。展示交集动态的过程。

师:左边的集合圈填的是什么?(12的因数)右边的集合圈填的是什么?(18的因数)中间的圈里是?(即是12的因数也是18的因数)。

那我们可以给他取个名字?(公因数)。

我们可以将4放到中间的集合圈中吗?为什么?

根据学生的回答,小结:即是12的因数也是18的因数,我们就称他为12和18的公因数。

巩固练习。

你学会了找两个数的公因数了吗?试一试吧。

找6和9的公因数找30和45的公因数。

如果请你找出12和18的最大公因数,你会觉得是哪一个数字呢?

在前次练习的基础上,找6和9;30和45的最大公因数。

我们学会了找最大公因数,那同学们能找出这三组数的最小公因数吗?你有什么发现?

1、4和816和326和24。

2、3和78和915和16。

做完后分小组相互交流,从中你能发现些什么?

每组的两个数有些什么特点,和他们的最大公因数有什么关系?是不是有这些特点的两个数,它们的最大公因数都有这些规律呢?分小组验证。

反馈得出结论:两个数是倍数关系的,较大的数是两个数的最大公因数。

两个数只有公因数1时,他们的最大公因数为1。

1、这节课我们学到了那些知识?

2、我们是运用什么方法获得这些知识的?

(不但让学生谈知识技能方面的收获,还着重让学生谈谈了学习方法、情感态度方面的收获,再一次激起良好的情绪体验。)。

找最大公因数教案篇十九

在晚自习上,我观看了王xx老师讲授的《最大公因数》这堂录像课。王老师这节课,听后给人的感觉是“很扎实”,每一个教学环节都很到位,教师让学生在课堂中动脑、动手、动口,在合作中学习,在活动中学习。本节课教学重点突出,课堂气氛和谐融洽,教学过程清晰流畅,各个教学环节衔接自然,学生思维活跃,参与面广。在整个教学过程中,教师只是一个情境的创设者、知识的引导者、活动的组织者,而参与、体验、主动获得知识的是学生自己,真正体现了“学生是学习的主体”这一教学思想。教师将“知识与技能”、“过程与方法”、“情感态度与价值观”三维目标有机结合,关注了学生的全面发展。

本节课主要目标是:掌握求两个数的最大公因数的方法,理解公因数中最大公因数是谁。王老师通过地面铺砖的这种生活情景,让学生从这些生活情景中发现问题,并提出疑惑,这样调动了学生兴趣,感受数学与生活的密切关系,还培养学生分析问题和解决问题的能力。本节课重点让学生理解公因数和最大公因数的意义,难点是如何找两个数的公因数及最大公因数。王老师这节课首先以列举法来引导学生找公因数,随后,又用集合图的方式反映12和16的公因数各有哪些,然后让学生观察发现12和16的公因数中最大公因数是谁,通过一系列媒体资源的展示,逐一解决了每个问题,大大加深了学生对公因数和最大公因数的印象。他鼓励学生运用多种方法,让学生在感悟、理解的基础上,总结出求最大公因数的方法。顺利完成了本节课的教学任务。

(1〕培养学生自主探索,形成概念。

王老师这节课通过铺地砖的事例要求学生掌握抽象的数学结论,引导学生参与探讨知识形成过程,尽可能的挖掘出学生的潜能,让学生通过讨论,交流努力出解决问题,形成概念。

〔2〕让学生发现问题,探索出方法。

王老师整节课是通过课件演示,采用了列举法,集合法,这两种方式教学12和16的公因数有哪些,其中最大公因数是几,利用这种方式教学,让学生自己去观察,去发现,为学生自主探索,发现,创新增添了活力。

〔3〕练习层次分明,巩固新知。

练习的设计,能让学生更好的巩固新知,并能在此基础上有所提高和拓展。尤其是通过游戏巩固了学习知识,也极大地调动了他们学习数学的兴趣!帮助学生进一步理解因数和公因数的联系和区别。

巩固练习做到了有趣、有益、有层、有度。

1、导入设计巧妙。

教材是落实课程标准理念的重要载体,也是教师进行课堂教学的主要依据。教师只有“创造性地教”,学生才能“创造性地学”。教师在课堂教学过程中进行的教学活动,并不是对教材的简单复制,而是教师对教材的二度开发,是一种再开发、再创造的活动过程,这也是教师参与课程开发的主要形式。本节课王老师把数学知识设置在具体情境之中,最大公因数的概念,是用铺地砖的问题引出的。课堂上,王老师运用多媒体动态呈现王叔叔家用地砖铺贮藏室地面的现实情境,请同学们帮助王叔叔选择地砖。学生在帮助王叔叔选择地砖的活动中,通过动手操作,发现正方形地砖的边长与长方形地面的长、宽之间的关系;通过讨论交流,抽象出公因数、最大公因数概念。教学概念的教学与解决实际问题结合在一起,自然揭示了教学与现实世界的联系。学生在获取数学知识的过程中,切实体会到了数学来源于生活,服务于生活,体会到了数学与生活的密切联系。

2、给学生提供了充分的探索空间。

数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程。本节课教师能够“以学论教”,在探索新知中采用了自主探究、合作交流的学习方式,突出了学生的主体地位。学生通过动手“摆一摆”“画一画”,发现了可以选择边长是1dm、2dm、4dm的正方形地砖。接着,各小组围绕这几种可选择的地砖的边长与长形地面的长、宽之间的关系展开讨论。学生凭借已有的知识,很快发现:1、2、4是16的因数,也是12的因数。在这个基础上,王老师请学生用简洁的话说一说“1、2、4是16和12的什么数”,由学生抽象出公因数、最大公因数的概念。最后用集合圈形式的展示,让学生懂得了,公因数和最大公因还可以用不同的形式来表示。然后,返回帮王叔叔选择地砖的问题,进而制造认知冲突,引导学生自己想办法解决问题。教师在这里的充分放手,给学生提供了充分的探索空间。这样安排教学过程,可以让学生经历发现问题、独立思考、合作探究、解决问题、主动获得新知识的过程。

学生在解决问题的过程中获得了感悟,就能为抽象出概念提供感性认识基础。这节课的内容学生掌握的非常好。由学生自己建构了公因数和最大公因数的概念,使公因数、最大公因数这两个抽象的概念,变得非常具体、直观,学生摸得着,看得见。从而增强了感知事实、建立概念的效果。学生是真正主动探索知识的建构者,而不是模仿者,充分的发掘了学生的自主意识,也充分体现了教师驾驭教材,调控学生的能力。

【本文地址:http://www.xuefen.com.cn/zuowen/15392179.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档