读后感是我们通过阅读一本书,对书中的情节、角色、主题等进行思考和概括的一种文章形式。怎样写一篇有深度的读后感是每位读者都需要面对的问题。以下是一些有意思的读后感范文,希望能够激发大家的写作灵感和创造力。
数学与猜想读后感篇一
要判断一个理论(或者说法)是否正确,首先要分析它的陈述是否科学。如果它对概念的定义以及它作出的结论模棱两可,你就没有办法针对其定义和结论进行反驳或验证。用卡尔·波普尔的话说,这样的理论就是不科学的(不可验证,不可证伪,不可反驳)。
例如古希腊时期有一个著名的预言。公元前547年,吕底亚国王克罗索斯想对波斯发动攻势,就派使者去希腊德尔斐阿波罗神殿请求神谕。女巫回复说有一个帝国将会陷落。克罗索斯断定是波斯帝国将陷落,于是便挥军向波斯发起攻击。结果,灭亡的不是波斯帝国,而是吕底亚自己。这个预言在陈述上就是不科学的,因为它作出的结论模棱两可。当战争结果出来之后,你无法指出它的预言究竟是正确的还是错误的。
假如女巫预言:“波斯帝国将陷落。”那么这个预言作出的结论就是明确的,具有可检验性,可证伪性和可反驳性。按照卡尔·波普尔的划分,这样的预言在陈述上就是科学的,因为你可以对其进行验证,证伪和反驳。当战争结果出来之后,你可以肯定的指出它的预言是正确的还是错误的。
只有陈述清晰明确的理论才是可验证和可证伪的理论。陈述不清不楚、模棱两可的理论都是不可验证和不可证伪的理论,这样的理论都是用来愚弄傻子的。遗憾的是,这个世界上大量的理论都是不清不楚模棱两可的,宗教领域尤其如此(基督教和犹太教除外)。可以不夸张的说,宗教领域(基督教和犹太教除外)绝对是愚弄傻子的天然乐园。
数学与猜想读后感篇二
为什么我看这个数学思维方法几页就觉得很受益,有触动。因为以前自己数学能学好感觉只是天然的选择,下意识的动作,在这里能找到原理,让你的行为有理论依据,更加明晰思维方法的重要性。自己就是受益于这些思维方法,但却没意识到,看了书才恍然大悟。很多习以为常,想当然的事情明白了这样设计的道理了。比如为啥设计小学五年级六年级。为什么三四年级、初中一年级会是槛。区别主要是抽象能力的发展不同。思维在低年级作用不是特别大。差距显现不出来。从作者的言外之意也可以看到数学思维方法是最重要的东西,但却不是课堂教学的常态目标,只是教学的附属品,渗透出来的,有人悟性高,捕获的多,发展的好。有人不敏感,攫取的少。差距就出来了。
但不管从数学教育从业者还是我们个人的经历来说,数学思维方法都是最基本的。属于对数学本质的认识,理性的认识。
奥数就是为了训练数学思维方法啊。但是真假奥数不一样,假奥数就是教给你套路,记住就好。
我自己数学学习也是原发性的。没人指导,没人培训。不过有人指点肯定会更轻松,或者能更进一步。
我们常说语文学习,词汇是理解力的基础。在数学中,概念是数学学习的基础,是抽象思维的基础和基本形式。概念大概等同于中文阅读里的抽象词汇,不过概念是有相关系统的东西。说这个是为了说明我们平时说的打好基础再拓展。到底什么是基础。基础就是概念与概念之间的关系构成的知识结构。
所以也自然明白日常我们说的“拓展”是什么。拓展就是在理解概念之间关系的知识结构基础上,利用思想方法、模型思想、推理思想等学习数学,解决问题。
将本文的word文档下载到电脑,方便收藏和打印。
数学与猜想读后感篇三
《数学与猜想》这是美国g・波利亚写的,由李心灿翻译而来的一本书。书的英文名字叫做《mathematics・and・plausible・reasoning》,也可以译作《数学与合情推理》,译者为了更加通俗一点直接是把本书译作《数学与猜想》,当然合情推理本质就是猜想。这是第一次看这本书,全书不仅涉及到了数学的很多方面,同时还有部分物理数学,古今中外,旁征博引,通俗易懂。
读了这本书,对我来说有两个启示,首先,要树立正确的归纳的态度,其次,要关注学生的合情推理。
先来说说归纳的态度。因为这种非常独特、不同一般的态度可以在教学中渗透给学生,从而潜移默化的影响学生的实际生活以及学习,甚至在未来成长的道路上给学生带来巨大的帮助。在归纳的态度中,有三点比较重要:第一,我们应当随时准备修正我们的任何一个信念;第二,如果有一种理由非使我们改变信念不可,我们就应当改变这一信念;第三,如果没有某种充分的理由,我们不应当轻率地改变一个信念。
数学与猜想读后感篇四
众所周知,世界上所有的实数都可以分为有理数和无理数。然而,在最初的时候并没有发现无理数的存在,所以很多数学家认为所有数都是有限小数,而希帕苏斯首先提出了二的算术平方根概念,发现了世界上有一类数,他们是无限不循环小数,然而遭受了当时科学界的否定。
二、微积分理论。
微积分是世界数学史上璀璨的辉煌,微积分使用微元的概念,解决了很多不能够解决的问题。特别对于复杂的图形,有很厉害的求解作用,但是由于微积分刚提出来的时候,理论非常复杂,没有在当时的数学界广为接受。
三、罗素悖论。
罗素悖论是对于集合理论的悖论,世界上所有的物体都能够通过集合来表达,但是罗素指出,如果一个集合中所有的元素都不是他本来的元素,那么这样的.一个集合是否还能表现为原有的集合,这理论被称为罗素悖论,后来根据数学家修改集合的定义规则,才避免了这样的悖论。
四、费马大定理。
费马大定理有这样一个猜想当整数n2时,关于x,y,z的不定方程x^n+y^n=z^n无正整数解。这样的一个看似简单的地理,后来经过后世许多人的证明,终于确定费马大定理成立,是数学史上的一个伟大猜想。
五、四色定理。
四色定理表明,如果许多国家围绕着一个点拥有很多的边界,那么只要用四种颜色就能够将所有的国家全部区分开来,四色定理是对二维空间的终极解释,也表明了两个直线,只要相交一定有四个区的出现。
六、哥德巴赫猜想。
哥德巴赫猜想,如果把1算做一个质数,那么世界上任何大于二的数都可以由三个质数通过相加的方式得成,后来科学家们经过艰难的计算,终于算出了哥德巴赫猜想。
数学与猜想读后感篇五
最近我看了《不知道的世界》丛书的其中一本《数学猜想》。
书的作者是李毓佩,我还读过他的《探索形状奥秘》等好几本书。书的主要内容是数学中的一系列迷案,反映了人们在解迷中作出的努力和遭遇的障碍,介绍了各种有代表性的假说、猜想和目前达到的研究水平,并指出了可能的途径。
我很喜欢这本书。这本书让我懂得了许多以前不懂的东西。以前我只知道哥德巴赫猜想这个名字,现在我知道了是怎么个猜想法,目前处在领先地位的是我国数学家陈景润,他证明了哥德巴赫猜想的(1+2),剩下的(1+1)也就等待我来证明了。我还知道了费马猜想、梅根猜想等等。这些猜想都让我觉得很难、伤透脑筋,但又觉得很有趣。
我以后要解哥德巴赫猜想成为全世界都知道的数学家。
数学与猜想读后感篇六
全国白酒一线品牌,致力于定位高端品牌形象,主攻中国白酒高端市场。具有行业领袖风范的中国白酒品牌三甲茅台、五粮液、泸州老窖,总是能高瞻远瞩地适时调整企业发展战略,冷静、积极应对新形势下的新变化。
20发生的许多事件,如“限制三公消费”政策,反腐力度加大,抑制通货膨胀,经济大环境走势平稳放缓等等待,影响到了一线品牌高端酒的销售增长,尤其是对飞天茅台产品影响较大。高端白酒年年高走,走到,发现了“天花板”。
另有一些事件也在悄悄影响着一线品牌企业的发展,如全国二线品牌、区域强势品牌努力抢占中高端、中端白酒市场,纷纷“拍案而起”的酱酒区域品牌,开始全国化征程,力图先行一步,争抢“中高端、中端酱酒领导品牌”地位等等,都在挤压一线品牌市场空间。
全国一线品牌面临的处境,打个比喻就是在一栋楼里,身处三层的一线品牌原本不太关注一层、二层被谁占位,于是全国二线品牌、区域强势品牌占据了二层,区域品牌占据了一层;这时,一线品牌发现三楼的空间在缩小,同时还发现,这栋楼没有四层。
于是,20的茅台集团,冷静应对新变化,积极开展战略调整,强势实施“立体化”战略思路。所谓“立体化”战略,就是“品牌立体化,产品立体化,市场立体化”,一言而概之,就是――每一个市场,都要有我的成功产品!
茅台集团有众多子品牌,2012年,飞天茅台品牌在固守国内高端白酒市场的同时,倾向于国际市场的推广与开拓;紧接着,茅台集团重磅推广“习酒”子品牌,其目标直指中高端、中端白酒市场;几乎同时,茅台集团白金酱酒以茅台集团酱香型白酒的身份上市,主打中端市场,主攻中高端的汉酱,和主攻中端的酱香型迎宾酒产品,亦出现在全国市场。
白酒立体化战略,不同于跨酒种的多元化战略,由于是在同一酒种内的经营,不存在多元化所产生的不利因素。
白酒立体化战略,又不同于多贴牌战略,它是由企业直接并具体掌控、管理、规划的子品牌、子产品的资源融合,所以也不存在多贴牌战略所产生的各种弊端。
白酒立体化战略,更不同于简单的“产品线完善”,产品与产品之间只有价位不同,缺乏清晰的产品差异化诉求,也缺乏明确的渠道分工、目标市场分工、目标消费群体分工。
白酒立体化战略,是全国一线品牌、知名品牌的品牌价值深度挖掘,是一个品牌经过多年成长、推广才能拥有的影响力体现,品牌价值越高,品牌影响力与知名度越高,实施立体化战略的成功率也就越高,所以,这是二线品牌、区域品牌要慎重考虑与选择的战略。
2012年,全国一线品牌都在积极探索战略调整的方向与思路。寻求更多的市场,是他们的方向,有的品牌战略调整,令业界眼前一亮、充满信心,而有的品牌战略调整,却业界褒贬不一、心生忧虑。
白酒二线品牌:中国好声音。
2012年沱牌舍得酒业的“生态之旅”,被业界和消费者誉为“绿色之旅”。2012年12月,经历塑化剂**的白酒行业尚处于伤痛期时。从中最快恢复过来的竟是全国二线品牌沱牌舍得。12月17日,沱牌舍得午后封住涨停板;18日,又以5.23%的涨幅,成为白酒板块的领涨标杆。表面观察,这是股民和消费者对沱牌舍得的信心与支持;深入分析,不难发现,在举国上下关注食品安全、关注绿色健康消费的2012年,在“放大镜之下”的白酒行业,沱牌舍得生态酒的“生态”酿酒理念,无疑为白酒行业指明了一个方向。
沱牌舍得生态酒的意义,不仅是开创了一个崭新的“生态白酒”品类,还为白酒行业的生产企业的未来发展指明了一个方向:不论是冠名“生态”二字,还是没有冠名“生态”二字的,企业的生产过程都应该是生态的、环保的、节能的;其产品都应该是生态的,绿色的,健康的;生态白酒,应该是每一款白酒产品最基本的质量要求、最核心的产品竞争力。
生态白酒,是白酒行业的“中国好声音”,也是全国二线品牌未来发展的“好声音”。在全国二线阵营里,有的品牌力推生态酿酒理念,成为了行业“正能量”,而有的品牌却背道行之,成为了行业“负面教材”。
白酒区域品牌:谁的百亿不是梦。
相比而言,2012年的白酒区域品牌,日子还算好过,因为市场发展的趋势是中端产品主流化,区域品牌主攻的中端价位区间的市场空间越来越大,前景光明。作为区域品牌,其战略变化灵活,可攻可守,也可攻防结合;可继续实施全国化战略,也可重点防守,精耕细作根据地市场。
百亿目标,不仅是全国二线品牌的期待,也是许多区域品牌的热望;2012年,百亿作为区域品牌阵营的一个热词,成为了一些区域品牌具体的战略目标。
同样是百亿目标,有的品牌提出来,赢得业界赞声一片;可是有的品牌提出来,却收获了“板砖”和“鸡蛋”,引起业界质疑声声。
高端白酒:下行。
受经济形势和相关政策影响,2012年终端售价1000元以上的高端白酒全年销售形势不容乐观。三公消费政策对高端白酒的下行趋势贡献“颇大”,未来高端白酒仍将受此类政策的影响,并且打压程度会进一步加深。
主要原因是新一届中央领导人加大反腐力度,从《中央军委加强自身作风建设十项规定》的内容就可见一斑,因此高端白酒公务消费的渠道进一步变窄。但是这并不代表高端白酒毫无市场可言,只是其消费群体将会随着消费升级而以商务群体和个人为主。
一方面是销量下降,一方面是企业向经销商发出的“保价令”,于是形成了高端白酒在渠道环节的库存积压,所以年节期间、白酒销售旺季,没有出现涨价、断货等现象。
数学与猜想读后感篇七
这个暑假,我读了《数学王国探秘》这一本书,这本书让我了解到数学的历史以及一些数学知识,逸事。让我有了很深的感触。
数学是起源于生活,也应用于生活。人们创造数目的最早的动机便是想知道一堆物体具体的数目。在数学的发展中,出现了一个智慧的迷宫,那就是幻方。这个游戏是给定1,2……n2。这些数字要求它们排列成n×n的方阵,并要使每一行,每一列,每一条对角线上的所有数字之和相等。每条直线上的数字之和叫做幻方常数。但有一个问题如何快速解决标准幻方,即从1按自然数顺序依次填到n2,这首先就要确定幻方常数例如三阶幻方常数是15,四阶幻方常数是34,那么n阶幻方的常数m是多少呢。我们可以先把n阶幻方的所有数的之和求出,得s=1+2+3+……+(n2―1)+n2=(1+n2)+(2+n2-1)+(3+n2―2)+……=n2/2(1+n2)再除n得m=1/n×n2/2(1+n2)=n/2(1+n2)所以标准幻方均可用m=n/2(1+n2)。
而幻方的的排法也是异常的多,五阶幻方超过2亿,七阶幻方超过3亿,让我也不得不感叹数学的灵活多变。
书中让我另一处感触最深的一个便是巧算勾股数,在学习勾股定理的时候我们便会注意到整勾股数的问题也就是x2+y2=z2的正整数解组,简称勾股数,例如(3,4,5)所以如果a,b,c都是勾股数并具有(a2+b2=c2)那么a,b,c就称为一组勾股数那么,只需要将他们同时乘以正整数k,其结果(ka,kb,kc)也是一组勾股数。所以只要考虑a,b,c两两互素的勾股数,并把它称为基本勾股数组。那么怎么创造出一组勾股数来呢?毕达哥拉斯提出的一组在课本里出现过,便是设m是任意大于或等于2的正整数,则(m2―1,2m,m2+1)一定是一个勾股数,因为这组是两两互素,是基本勾股数组。但无法给出所有勾股数组。我国的数学名著《九章数论》给出了更妙的方法:若给两个数m,n那么,1/2(m2―n2)、mn、1/2就是一组勾股数每次给的m,n不同所得勾股数也不同。并且如果m,n互素,这个公式便能套出所有两两互素的勾股数组。因此这个公式叫做x2+y2=z2的通解公式。
数学的奇妙我只领略一二,以后还有更长的数学道路需要我去体味。
数学与猜想读后感篇八
昨天,妈妈送给了我一本书,叫做《奇妙的数王国》,我先看了这一篇《一场莫名其妙的战争》。
这一篇故事讲的是:弟弟小华和哥哥小强听到了枪炮声,就跑到了山顶上,他们看到有两支军队正在打架,一支军队穿着红色军装,他们胸前都有一个数字,这些数字都是偶数,另一支队伍穿着绿色军装,他们胸前也都有一个数字,但是,这些数字都是奇数。这时,小强和小华听到草丛里有人哭泣,于是小强就扒开草地一看,有一个衣着华丽的胖老头,他就是正在哭泣的人。
小强发现这个人胸前的数字是0,就以为他是0号,其实那个人告诉小强他就是0,那个人就是零国王。这时,响起了嘹亮的军号声,接着,偶数队伍中亮出了一面大红旗,突然,出来了一位军官,他的胸前写着一个“2”字,他就是偶数军团的2司令,在奇数这边也有一个军官,他的胸前写着一个“1”字,他就是奇数军团的1司令。这时,1司令和2司令已经让战斗进入了高潮。
其实,1司令和2司令是零国王的左膀右臂。这时,小强就问零国王:“是不是最小的正整数就能当司令?”其实不是这样的,1司令和2司令都有一种很特殊的能力。2司令逼着1司令和零国王把偶数叫做男人数,把奇数叫做女人数,可1司令和零国王都不同意,2司令这下可发火了,他就让战争继续开始。
数学与猜想读后感篇九
这本书给我带来了极大的震撼,虽然由于没有哲学知识的基础,只看懂了五成。但是我不妨碍从中找到一些共鸣。全书一共600页,看到两百多页,便忍不住先写点东西下来。
读中学那会儿,我一直是老师比较头疼的学生。这不是说我是那种爱捣乱的学生。而是我的怀疑特别多,尤其是物理和化学。我想老师不愿意回答,或许的确是因为他们回答不出。因为当寻根究底为什么到了最后,就上升到了哲学层面。这不是老师专业范围内能解决的。我是一个爱执着于怀疑的人,因为不仅我自己痛苦还把这种痛苦顺带捎给了老师。
为什么是这样的啊?原子那么小,我又看不到。因为道理很简单,其实这些都是只是猜想而已。而老师不能说这些都是猜想,一个是没这个水平,另一个是他们的意识中这些都是正确的不容置疑的真理。
还有就是我们能知道什么错的,却很难说明什么是对的?这个在我遇上选择题的时候,真是深有同感。那一排的选择题来看看,尼玛全是错的么。尤其是语文和政治的选择题。有些语言表述不清,这个时候就特别痛苦。你能怪我做错题目么?明明是你没有表述清楚。然后解决这个问题的办法就是去买本标准答案来背。
我一直觉得我从小到大所经历的教育,其实磨灭了我们的想象力。其实很多人都知道这一点,但是说来说去也说不出原因。我觉得原因就是,一直以来学校爱告诉你什么是对的,教科书列出的都是真理。广大教师,甚至不惜用人身攻击来教育你什么是好的。爱之深责之切,在高尚的目的之下,一切的伤害似乎都只是必要的。但是,如果说有人能告诉你什么是真理,那你还用思考做什么。只要乖乖地接受这一切便是了。然后你每天所需要做的便是,不断地重复记忆这些真理。从这个角度来说,义务教育和邪教没什么区别。
数学与猜想读后感篇十
在这个寒假中,我读了一本书,名叫《不一样的数学故事》。这是一本有趣的书,本书的作者是梦小得。
这本书主要讲数学十分好玩,书中的人物有怪怪老师和他的一群学生。
我读完了这本书,我感受到了,数学特别好玩。我特别喜欢书中的怪怪老师,因为,我觉得他讲的数学课非常好玩,所以,在我读了《不一样的数学故事》我就发现,学习是快乐的,是简单的,只要你找对方法。最后,我建议同学们读一读这本书。
我爱数学!
这本书的作者是张秀丽,书里写了这几个主要的人物,它们是:怪怪老师,皮豆,蜜蜜,女王,十一,和乌鲁鲁(它是怪怪老师从外星球带来的一只狗狗)。这本书每章都有数学知识。我来给大家说说这本书的主要内容吧!
这本书讲了怪怪老师回到阿瓦星球充电,皮豆他们还是在数学的世界了遨游,又一次,皮豆是东西是在零食包里发现了一张卡片。上面写着集齐10000张卡片就可以得到宇宙飞船的船票,于是皮豆他们向乌鲁鲁要了40000张,因为他们有四个人。所以要了40000张,。第二天他们和乌鲁鲁一起出发前往宇宙飞船,当他们见到宇宙飞船时个个都很兴奋。就在这时乌鲁鲁却在一边大声地叫着说:“这不是真的,这是3d电影“。大家一下子就没有了兴奋劲,感觉上当受骗了。
他们一起回到家打电话给了报社,把工厂骗人的事情和报社的人说了。之后关于工厂骗人的新闻就上了头条。他们虽然是上当受骗了,但是他们却从中学到了计数单位。他们也和怪怪老师学到了四则运算。他们在打假的同时也学到了很多的知识。
我突然很想很想能成为皮豆他们这样子。这样真好啊!
《好玩的数学》的作者是中国有名的科普教授――谈祥柏,这本书也是他送给少年儿童最好的礼物。
谈祥柏教授是我国着名的科普作家,从事数学科普工作已经有半个多世纪了,他与张景中院士,李毓佩教授一起被称为“中国科普三驾马车”。谈祥柏教授还有着扎实的古文功底与非常渊博的文史知识,并通晓英、日、德、法以及阿拉伯文等多种语言,因此谈祥柏教授写的《趣味数学》的内容妙趣横生,并且与智力的训练巧妙的结合在了一起,深受我们少年儿童的喜爱。
谈祥柏教授还将许多国外的着名而且优秀教学科普作品翻译给了中国所有读者,其中包括世界着名数学科普大师马丁加德纳等许多着名人物的作品。
谈祥柏教授写的《好玩的数学》中分为许多种类,包括:数学是大花园,数学史大作坊,数学是大超市,数学是大课堂,数学是大戏台,这些内容都表达着自己含义的大题目,中题目,还有“弹子盘上的数学”中有的小题目……还有许多有趣的题目和有趣的内容,只有有趣的题目才是最吸引人的,因为只有题目新奇才可以吸引读者。
同学们,听了这些你是不是也对这本书很感兴趣了呢?不妨和我一起看看吧!
数学与猜想读后感篇十一
《数学教学的激情与智慧》,郑老师在书的第一辑里讲述了她生命化教育心路的历程。当儿时的梦想已成真,踏上了梦想中的三尺讲台,烦琐,机械性的劳作慢慢侵蚀着教师梦,使人感觉到了现实与梦想之间的差距。是啊,十多年了,一成不变,毫无生机的教学工作,永远做不完的事情常常使我感觉自己就像一只陀螺,在鞭子的抽打下不停地转啊转啊,慢慢地失去了自我。
任教十几年来,对自己的工作还是比较满意的。但最近几年,总觉得自己在课堂上缺少了一些激情,课堂语言太平淡,语言不精练,所以学生的兴趣不能被完全的调动,课堂学习的氛围也不是很浓厚。读了这本书,从郑老师的教学案例中我得到了很大的启示。优秀的课堂语言修养,可以使教师教得生动活泼,学生学得有情有趣。在很大程度上,教师的语言、动作、表情决定着课堂教学的效率和质量。郑老师在书中介绍了几种数学教师的语言艺术。第一,以情激情,教师的语言要具有感染力;第二,深入浅出,教师的语言要具有启发性和目的性;第三,寓教于乐,教师的语言要具有趣味性;第四,严密准确,教师的语言要具有规范性;第五,机智敏锐,教师的语言要具有灵活性。郑老师通过这五点分别举了相应的教学案例,让我受益匪浅。其次,教师的动作,教师的表情也是引起学生注意,让学生感兴趣的法宝。在课堂上只有充满激情的老师才会有投入地忘我学习的孩子。
除了语言的修炼外,一个优秀教师还得充满智慧。郑老师在书中介绍了改进教学策略,促进学生主动学习的方法。第一、创设问题情景,鼓励学生主动参与;第二、适时,适度地点拨,为学生主动学习创设时空;第三、营造主动探究氛围,使学生享受成功。
创设情境是数学教学中常用的一种策略,它有利于解决数学的高度抽象性和小学生思维的具体形象性之间的矛盾。在自己多年的教学过程中也发现,如果课前的情境创设得很好,能很好的调动学生学习的积极性,很顺利的引入讲授内容。反之,则画蛇添足。那么到底应该怎样创设数学学习的情境才是有效的呢?郑老师根据多年的教学经验,也给了我一些启示:情境创设要有目的性,实效性,真实性和吸引力。遵循这几条规律,我相信自己在以后的教学中一定能创设很好的有助于教学的情境。
读完这本《数学教学的激情与智慧》,我还明白了一个道理,要想成为一名优秀的'教师,首先要充满爱,只有内心充满爱的老师,才能让学生健康地成长。其次,要全面,不光会上精彩的课,还要能育人,用自己高尚的人格魅力去感染每一位学生。最后才能达到书中一学生对郑老师师生情的升华总结:感动,感激,感怀,感佩,感知。从书中我了解了郑老师的教育心路的历程,欣赏了她的优秀的教学设计,学习了她的教学经验,我相信在我以后的从教历程中,这将是一份宝贵的财富。
我要感谢这本书,是它让我找回了这几年丢失的东西——激情,它让我对以后的教学充满了期待,我不会再像陀螺那样在鞭子的抽打下无奈的转动,而应乘着课改的春风在教学之路上自由地飞翔。
数学与猜想读后感篇十二
观察和理性都不是权威。理智的直觉和想象极端重要,但它们并不可靠:它们可能非常清晰地向我们显示事物,但他们也可能把我们引向错误。它们作为我们理论的主要源泉是必不可少的;但我们的理论大都是虚假的。观察、推理甚至直觉和想象的最重要功能,是帮助我们批判考察那些大胆的猜想,我们凭借这些猜想探索未知。
对一个问题的每一种解决都引出新的未解决的问题;原初的问题越是深刻,它的解决越是大胆,就越是这样。我们学到的关于这世界的知识越多,我们的学识越深刻,我们对我们所不知道的东西的认识以及对我们的无知的认识就将越是自觉、具体,越有发言权。因为,这实际上是我们无知的主要源泉——事实上我们的知识只能是有限的,而我们的无知必定是无限的。
科学不同于伪科学或者形而上学的地方,是它的经验方法;这主要就是归纳方法,是从观察或实验出发的。1919年有一次我向他报告一个病例,我觉得这个病例似乎并不特别符合于阿德勤学说,可是他却感到不难用他的自卑感理论来加以分析,虽然他甚至没有见过这个孩子。我略感吃惊,问他怎么会这样有把握。他回答说:“因为我有上千次的经验”;因此我不得不说:“我料想,由于这个新病例,你现在有了一千零一次经验。”我在想,他以前的观察可能并不比这个新的观察更可靠多少;可是每个观察都用“以前的经验”加以解释,同时本身又成了补充的确证。
我不把我们指望规则性的倾向解释为重复的结果,而建议把我们认为的重复解释为我们指望和寻找规则性倾向的结果。我们不是被动地等待重复把规则性印在或强加在我们头脑里,而是主动地企图把规则性强加给世界。我们企图在世界中发现相似性,并用我们发明的规律来解释世界。我们不等待前提就跳到结论。这个结论如果被观察证明是错的,以后就得放弃。这就是试探错误的方法——猜想和这就是试探错误的方法——猜想和反驳的学说。这使我们可以懂得为什么我们把解释强加于世界的企图在逻辑上先于相似性的观察。由于这种程序有逻辑理由的支持,我觉得这种程序也可以应用到科学领域里来;科学理论并不是观察的汇总,而是我们的发明——大胆提出来准备加以试探的猜想,如果和观察不合就清除掉;而观察很少是随便的观察,通常按一定目的进行,旨在尽可能获得明确的反驳根据以检验理论。
人都帶有一種期望去觀察或思考現實,這必然導致扭曲現實:诚然,我们选择的任何特殊假设在它前面都将有过一些观察——诸如它打算解释的一些观察。但是这些观察反转来又预先假定已经采纳了一种参考框架,一种期望的框架,一种理论的框架。如果这些观察是值得注意的,如果这些观察需要加以解释,因而导致人们发明一种假设,那是因为这些观察不能在旧的理论框架、旧的期望水平上加以说明。这里并没有无穷倒退的危险。如果追溯到越来越原始的理论和神话,我们最后将找到无意识的、天生的期望。所以我们生来就有期望,生来就有“知识”,这些知识虽则不是先天地正确的,在心理学上或遗传学上却是先天的,即是说,先于一切的观察经验。这些期望里面最重要的一个,就是期望找到规则性。它和指望规则性的天生倾向,或者和寻找规则性的需要连在一起,这一点我们可以从婴儿满足了这种需要的快乐上看出来。
ai:为了把对休谟的归纳心理学进行的这个逻辑批判总结一下,我们可以考虑建造一台归纳机的设想。当这样一台机器放在一个简化的“世界”(例如颜色计数器的某种程序)之中时,它能通过重复而“学会”甚至“提出”在它的“世界”中有效的相继定律。如果能够建造这样一台机器(我不怀疑这种可能性),那末可以证明我的理论必定是错误的;如果一台机器能够根据重复进行归纳,就没有逻辑理由阻止我们自己这样做。
right:信念”一词用来指我们对科学理论的批判接受——尝试性地接受,同时渴望,如果我们成功地设计出该理论经受不住的一种检验,就修正这一理论。假定我们自觉规定我们的任务是:生活在这个未知世界之中,使我们自己尽可能适应它;利用我们可能从中找到的机会;如有可能(不必假定真是这样),则尽可能借助于规律和解释性理论来解释世界。如果我们以此为我们的任务,那末,就没有比试探和除错——猜想和反驳的方法更加理性的程序。这种方法就是大胆地提出理论,竭尽我们所能表明它们的错误;如果我们的批判努力失败了,那就试探地加以接受。当然,试错法并不简单等同于科学的、批判的方法——猜想和反驳的方法。不仅爱因斯坦用试错法,变形虫阿米巴也用试错法,然而它是以比较教条的方式用。二者的差别与其说在于试探,不如说在于对错误采取批判的建设性的态度;科学家有意识地、审慎地试图发现错误,以搜寻论据驳倒其理论,包括诉诸他以自己的理论和才智设计的最严格的实验检验。
照维特根斯坦的说法,它的真正性质不是一种理论,而是一种活动。一切真正哲学的任务是揭露哲学的胡说八道,并教导人们如何谈论有意义的东西。
数学与猜想读后感篇十三
今年暑假,我迷上了数学绘本,一口气把李毓佩爷爷的“数学故事系列”全套读完了。我已经对这套书如痴如醉了,有时候几个小时赖在书桌上,不肯挪动;有时老妈叫我几十遍“吃饭了!”我都没听见。七本书中,我最痴迷的要数《数学西游记》了!《数学西游记》是在原版《西游记》的故事情节上改写的,把更多的数学知识融入了精彩的名著中,这样,让我们学起数学来更加生动有趣了。
其中我最感兴趣的一个情节是数学猴和猪八戒智斗公蜘蛛精的故事:猪八戒打败了母蜘蛛精,扛着钉耙,嘴里哼着小曲,独自往前走:“打死妖精多快活!啦,啦,啦!再找点好吃的多美妙!啦,啦,啦!”突然一只大蜘蛛精拦住了八戒的去路,原来是公蜘蛛精来为“爱妻”报仇雪恨,猪八戒与那公蜘蛛精大战了有一百回合,八戒渐渐不是对手,决定“三十六计,走为上策”可那公蜘蛛精不依不饶,紧紧追赶,半路又跑出些蜻蜓精、蝉精支援公蜘蛛精,正当走投无路的时候,数学猴出现了,它一把把八戒拉进山洞里,并告诉八戒蜘蛛,蜻蜓,蝉都怕鸟,必须请鸟来帮忙!
但是到底有几只蜘蛛,几只蜻蜓,几只蝉,得请几只鸟来帮忙呢?八戒忙于逃跑,只记得三种妖精总共有18只,共有20对翅膀,118条腿,于是就产生了一个“鸡兔同笼”的数学问题:蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和一对翅膀,假设这18只都是蜘蛛精,应该有8×18=144(条)腿。实际腿数少了144-118=26(条)腿,蜻蜓或蝉币蜘蛛少2条腿,26÷2=13(条)腿,说明18只昆虫中有13只或是蜻蜓,或是蝉。18-13=5(只),所以这里有5只蜘蛛精,假设13只都是蜻蜓精,应该有2×13=26(对),但实际上只有20对翅膀,每只蜻蜓比蝉多出一对翅膀,26-20=6对,说明有6只是蝉精,7只是蜻蜓精。
《数学西游记》中的猪八戒贪吃可爱,沙僧忠厚老实,孙悟空有勇无谋,数学猴聪明机灵,这些形象栩栩如生。《西游记》本身就是一本深受中国孩子们喜爱的魔幻小说,经过李毓佩爷爷幽默的笔触,把数学故事融入其中,让我们更快、更生动地了解数学,爱上数学。
【本文地址:http://www.xuefen.com.cn/zuowen/15371238.html】