教案是教师根据教学大纲和学生特点,对教学内容、教学目标、教学方法和教学过程进行详细规划的一种教学设计文稿。为了编写一份完美的教案,教师需要充分了解教学内容和教学目标,确保教学过程具有可操作性和逻辑性。首先,要明确教学目标,确保教学目标与学生的实际情况相符。其次,要科学安排教学内容,符合学生的学习规律和发展需要。还要选择合适的教学方法和教学活动,充分发挥学生的主体作用,激发学生的学习兴趣。此外,还需要准备好所需的教学资源,确保教学活动的顺利开展。如果你对教案的编写感到困惑,以下是一些教案范文,希望能够给你一些启发。
初二数学因式分解教案篇一
会应用平方差公式进行因式分解,发展学生推理能力。
2、过程与方法。
经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性。
3、情感、态度与价值观。
培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值。
1、重点:利用平方差公式分解因式。
2、难点:领会因式分解的解题步骤和分解因式的彻底性。
3、关键:应用逆向思维的方向,演绎出平方差公式,对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来。
采用“问题解决”的教学方法,让学生在问题的'牵引下,推进自己的思维。
一、观察探讨,体验新知。
【问题牵引】。
请同学们计算下列各式。
(1)(a+5)(a—5);(2)(4m+3n)(4m—3n)。
【学生活动】动笔计算出上面的两道题,并踊跃上台板演。
(1)(a+5)(a—5)=a2—52=a2—25;
(2)(4m+3n)(4m—3n)=(4m)2—(3n)2=16m2—9n2。
【教师活动】引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律。
1、分解因式:a2—25;2、分解因式16m2—9n。
【学生活动】从逆向思维入手,很快得到下面答案:
(1)a2—25=a2—52=(a+5)(a—5)。
(2)16m2—9n2=(4m)2—(3n)2=(4m+3n)(4m—3n)。
【教师活动】引导学生完成a2—b2=(a+b)(a—b)的同时,导出课题:用平方差公式因式分解。
平方差公式:a2—b2=(a+b)(a—b)。
评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式)。
二、范例学习,应用所学。
【例1】把下列各式分解因式:(投影显示或板书)。
(1)x2—9y2;(2)16x4—y4;
(3)12a2x2—27b2y2;(4)(x+2y)2—(x—3y)2;
(5)m2(16x—y)+n2(y—16x)。
【思路点拨】在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解。
【教师活动】启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演。
【学生活动】分四人小组,合作探究。
解:(1)x2—9y2=(x+3y)(x—3y);
(5)m2(16x—y)+n2(y—16x)。
=(16x—y)(m2—n2)=(16x—y)(m+n)(m—n)。
初二数学因式分解教案篇二
1.会求反比例函数的解析式;2.巩固反比例函数图象和性质,通过对图象的分析,进一步探究反比例函数的增减性.
【过程与方法】。
经历观察、分析、交流的过程,逐步提高运用知识的能力.
【情感态度】。
提高学生的观察、分析能力和对图形的感知水平.
【教学重点】。
会求反比例函数的解析式.
【教学难点】。
反比例函数图象和性质的运用.
教学过程。
一、情景导入,初步认知。
【教学说明】复习上节课的内容,同时引入新课.
二、思考探究,获取新知。
1.思考:已知反比例函数y=的图象经过点p(2,4)。
(1)求k的值,并写出该函数的表达式;。
(2)判断点a(-2,-4),b(3,5)是否在这个函数的图象上;。
分析:
(1)题中已知图象经过点p(2,4),即表明把p点坐标代入解析式成立,这样能求出k,解析式也就确定了.
(2)要判断a、b是否在这条函数图象上,就是把a、b的坐标代入函数解析式中,如能使解析式成立,则这个点就在函数图象上.否则不在.
(3)根据k的正负性,利用反比例函数的性质来判定函数图象所在的象限、y随x的值的变化情况.
【归纳结论】这种求解析式的方法叫做待定系数法求解析式.
2.下图是反比例函数y=的图象,根据图象,回答下列问题:
(1)k的取值范围是k0还是k0?说明理由;。
(2)如果点a(-3,y1),b(-2,y2)是该函数图象上的两点,试比较y1,y2的大小.分析:
(1)由图象可知,反比例函数y=kx的图象的两支曲线分别位于第一、三象限内,在每个象限内,函数值y随自变量x的增大而减小,因此,k0.
(2)因为点a(-3,y1),b(-2,y2)是该函数图象上的两点且-30,-20.所以点a、b都位于第三象限,又因为-3-2,由反比例函数的图像的性质可知:y1y2.
【教学说明】通过观察图象,使学生掌握利用函数图象比较函数值大小的方法.
初二数学因式分解教案篇三
因式分解定义,提取公因式、应用公式法、分组分解法、二次三项式的因式(十字相乘法、求根)、因式分解一般步骤。
理解因式分解的概念,掌握提取公因式法、公式法、分组分解法等因式分解方法,掌握利用二次方程求根公式分解二次二项式的方法,能把简单多项式分解因式。
考查因式分解能力,在中考试题中,因式分解出现的频率很高。重点考查的分式提取公因式、应用公式法、分组分解法及它们的综合运用。习题类型以填空题为多,也有选择题和解答题。
多项式的因式分解,就是把一个多项式化为几个整式的积。分解因式要进行到每一个因式都不能再分解为止。分解因式的常用方法有:
如多项式。
其中m叫做这个多项式各项的公因式,m既可以是一个单项式,也可以是一个多项式。
(2)运用公式法,即用。
写出结果。
(3)十字相乘法。
(4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行。
分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号。
(5)求根公式法:如果有两个根x1,x2,那么。
1、教学实例:学案示例。
2、课堂练习:学案作业。
3、课堂:
4、板书:
5、课堂作业:学案作业。
6、教学反思:
初二数学因式分解教案篇四
教学目标:
1、掌握平均数、中位数、众数的概念,会求一组数据的平均数、中位数、众数。
2、在加权平均数中,知道权的差异对平均数的影响,并能用加权平均数解释现实生活中一些简单的现象。
3、了解平均数、中位数、众数的差别,初步体会它们在不同情境中的应用。
4、能利和计算器求一组数据的算术平均数。
教学重点:
体会平均数、中位数、众数在具体情境中的意义和应用。
教学难点:
对于平均数、中位数、众数在不同情境中的应用。
教学过程:
一、知识回顾与思考。
1、平均数、中位数、众数的概念及举例。
一般地对于n个数x1……xn把(x1+x2+…xn)叫做这n个数的.算术平均数,简称平均数。
如某公司要招工,测试内容为数学、语文、外语三门文化课的综合成绩,满分都为100分,且这三门课分别按25%、25%、50%的比例计入总成绩,这样计算出的成绩为数学,语文、外语成绩的加权平均数,25%、25%、50%分别是数学、语文、外语三项测试成绩的权。
中位数就是把一组数据按大小顺序排列,处在最中间位置的数(或最中间两个数据的平均数)叫这组数据的中位数。
众数就是一组数据中出现次数最多的那个数据。
如3,2,3,5,3,4中3是众数。
2、平均数、中位数和众数的特征:
(1)平均数、中位数、众数都是表示一组数据“平均水平”的平均数。
(2)平均数能充分利用数据提供的信息,在生活中较为常用,但它容易受极端数字的影响,且计算较繁。
(3)中位数的优点是计算简单,受极端数字影响较小,但不能充分利用所有数字的信息。
(4)众数的可靠性较差,它不受极端数据的影响,求法简便,当一组数据中个别数据变动较大时,适宜选择众数来表示这组数据的“集中趋势”。
3、算术平均数和加权平均数有什么区别和联系:
算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数。
4、利用计算器求一组数据的平均数。
利用科学计算器求平均数的方法计算平均数。
二、例题讲解:
三、课堂练习:
复习题a组。
四、小结:
1、掌握平均数、中位数与众数的概念及计算。
2、理解算术平均数与加权平均数的联系与区别。
五、作业:
复习题b组、c组(选做)。
初二数学因式分解教案篇五
“整式的乘法”是整式的加减的后续学习从幂的运算到各种整式的乘法,整章教材都突出了学生的自主探索过程,依据原有的知识基础,或运用乘法的各种运算规律,或借助直观而又形象的图形面积,得到各种运算的基本法则、两个主要的乘法公式及因式分解的基本方法学生自己对知识内容的探索、认识与体验,完全有利于学生形成合理的知识结构,提高数学思维能力.利用公式法进行因式分解时,注意把握多项式的特点,对比乘法公式乘积结果的形式,选择正确的分解方法。
因式分解是一种常用的代数式的恒等变形,因式分解是多项式乘法公式的逆向变形,它是将一个多项式变形为多项式与多项式的乘积。
2、教学目标。
(1)会推导乘法公式。
(2)在应用乘法公式进行计算的基础上,感受乘法公式的作用和价值。
(3)会用提公因式法、公式法进行因式分解。
(5)在因式分解中,经历观察、探索和做出推断的过程,提高分析问题和解决问题的能力。
3、重点、难点和关键。
重点:乘法公式的意义、分式的由来和正确运用;用提公因式法和公式法进行因式分解。
难点:正确运用乘法公式;正确分解因式。
关键:正确理解乘法公式和因式分解的意义。
3.让学生掌握基本的数学事实与数学活动经验,减轻不必要的记忆负担.。
2.1平方差公式1课时。
2.2完全平方公式2课时。
2.3用提公因式法进行因式分解1课时。
初二数学因式分解教案篇六
1、知识与能力:
1)进一步巩固相似三角形的知识.
2)能够运用三角形相似的知识,解决不能直接测量物体的长度和高度(如测量金字塔高度问题、测量河宽问题)等的一些实际问题.
2.过程与方法:
经历从实际问题到建立数学模型的过程,发展学生的抽象概括能力。
3.情感、态度与价值观:
1)通过利用相似形知识解决生活实际问题,使学生体验数学来源于生活,服务于生活。
2)通过对问题的探究,培养学生认真踏实的学习态度和科学严谨的学习方法,通过获得成功的经验和克服困难的经历,增进数学学习的信心。
(三)教学重点、难点和关键。
重点:利用相似三角形的知识解决实际问题。
难点:运用相似三角形的判定定理构造相似三角形解决实际问题。
关键:将实际问题转化为数学模型,利用所学的知识来进行解答。
初二数学因式分解教案篇七
王老师的《因式分解》这节课,他上的这节课每个环节层层递进,落实有效,教学流程自然流畅,有独创性。教学设计张弛有度,实施过程中有水到渠成的衔接美。教师教态大方,亲和力强,对学生启发点拨到位,驾驭课堂的能力强,整节课,学生在愉悦、宽松和谐的学习氛围中,学得轻松,学得愉快。收到良好的教学效果。其中印象最深的环节有:
1.新课引入十分好,但没把握好进一步解读课题的机会。
2.教师结构设计的很好,教学过程中相当自然。
3.课堂小结很好,把因式分解(平方差公式)的特点进行了全面的概括,但略显课堂时间较紧。
4.练习设计由易到难,层层递进,若教师再讲的少一点,教学效果可能较佳。
5.作为一名实习教师,在原有的基础上有很多进步,课上得相当不错。
6.教师的'语言亲和力强,学生和教师配合默契,课堂气氛高涨,但略显教师讲课过多。
7.陈老师能根据我班级学生特点,设计教学内容,教学效果体现得更佳。
8.教师在教学过程中缺少让学生“感悟”的过程。
9.教师教学语言规范,教态自然,对学生有亲和力,教室互相到位,对学生的学习有一定的帮助。
10.能为学生提供大量数学活动的机会,让学生成为课堂学习的主人。
通过这次评课,让我在教材教法、课堂教学策略等方面受益匪浅,并希望课堂上一些新理念、策略充实以后教学实践中。
初二数学因式分解教案篇八
1.经历平行四边形判别条件的探索过程,发现平行四边形的常用判别条件。
2.掌握平行四边形的判别条件;对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形。
3.逐步掌握说理的基本方法。
1.在探索平行四边形的判别条件的过程中,发展学生的合情推理意识,主动探索的习惯。
2.鼓励学生用多种方法进行说理。
1.培养学生探索创新的能力,开拓学生思路,发展学生的思维能力。
2.培养学生合作学习,增强学生的自我评价意识。
教材通过创设“钉制平行四边形框架”这一情境,便于学生发现和探索平行四边形的常用判别方法。如有条件可要求学生自己准备,由学生自我操作。也可由教师演示。
教学重点:平行四边形的判别方法。
教学难点:利用平行四边形的判别方法进行正确的说理。
初二学生对平面图形的认识能力正在形成,抽象思维还不够,学习几何知识处于现象描述和说理的过渡时期。因此,对这部分内容的学习,要引导学生学会正确的说理,理清楚四边形在什么条件下用判定定理,在什么条件下用性质定理。
一、创设情境,引入新课
师:请同学们拿出课前准备的小木条,帮助小明的爸爸钉制平行四边形的框架。
学生活动:学生按小组进行探索。
初二数学因式分解教案篇九
1、学生的认知基础:学生已学过三角形的内角和定理,以及三角形的边、顶点、内角等概念,并且已初步了解四边形可分成两个三角形来求内角和,这为本节课的学习打下了基础。因而学生在探索多边形内角和时,便会很容易想到“拼”和“量”和把多边形转化成三角形等方法。另外,在以往的学习中,学生的动手实践、自主探索及合作探究能力都得到一定的训练,本节将进一步培养学生这些方面的能力。
2、学生的年龄心理特点:八年级的学生具有很强的感性认知基础,对一些具体的实践活动十分感兴趣。活泼好动,思维敏捷,表现欲强,但思考问题不全面。
二、教学目标。
1、知识与技能目标:
(1)理解多边形及正多边形的定义。
(2)掌握多边形内角和公式。
2、过程与方法目标:
(1)掌握类比归纳、转化的学习方法;。
(2)培养学生说理和简单推理的意识及能力。
3、情感、态度与价值观目标:
让学生经历探索多边形内角和的过程,进一步发展学生的合情推理意识、主动探究的学习习惯;通过实际情景的引入,让学生进一步体会数学与现实生活的紧密联系。
三、教学重、难点。
教学重点:(1)多边形内角和公式。
(2)计算多边形的内角和及依据内角和确定多边形边数。
教学难点:多边形内角和公式的推导。
四、方法和手段:
方法:综合运用自主探究、合作交流、问题解决及研究式学习等方法。
手段:本节课采用多媒体与学科教学整和,以增大课堂信息量,加强直观性及趣味性,有利于学生观察、探究能力的提高。
五、教具、学具。
多媒体课件、三角板。
六、教学过程。
教师活动学生活动。
教学说明。
(一)创设情境。
1、在现实生活中,蕴含着丰富的几何图形。
2、观察图片找学过的几何图形?
(二)多边形的概念。
1、那么什么样的图形是三角形呢?怎样的图形叫做四边形呢?
3、多边形的相关概念:多边形的对角线、边、顶点、内角、内角和等。
教师边画图边说明。
4、凸多边形和凹多边形的概念。
(三)探究活动:公式的推导。
1、提出问题。
(1)、我们学过的三角形的内角和是多少呢?
(2)、那么四边形的内角和又是多少呢?你是怎么得到的?
(3)、那么五边形、常见的六边形。
的螺帽的内角和有没有计算方法呢?
今天我们就来探索多边形的内角和(板书课题)。
2、动手操作实践,自己探索。
归纳为以下几种方法:
方法1、过四边形的一个顶点连对角线,把四边形分割成两个三角形。
方法2、过四边形内任意一点与四边形的各顶点连结,把四边形分成三角形。
方法3、在四边形的任一边上取一点,与不相邻的各顶点连结,把四边形分成四个三角形。
方法4、在四边形外任取一点,把这点与各顶点连结。
3、观察、寻找规律。
五、六、七边形内角和之间有何规律?
3、猜想。
那么对于n边形猜想一下内角和计算公式是什么?
4、验证。
就我们已求出的特殊多边形的内角和,通过公式再求一次是否相符?
5、小结归纳。
(四)课堂练习。
1、求12边形的内角和度数。
2、如果n边形的内角和为1080°,求这个多边形的边数。
3、从一个多边形一个顶点的所有对角线,将这个多边形分成7个三角形,这个多边形是__________边形,它的内角和是____________________.
(五)正多边形的概念。
1、正多边形的概念:
(1)、一个多边形的每一个内角都相等,它的边一定相等吗?
(2)、一个多边形的边相等,它的内角一定相等吗?
(3)正多边形的概念:在平面内,内角都相等,边也都相等的多边形叫做正多边形。
2、巩固练习。
(1)正三角形、正四边形、正五边形、正六边形的内角分别是多少度?
(2)正多边形在自然界中也常见,如蜜蜂的蜂房就是一个正六边形的形状,
(五)课堂小结。
今天你学到了什么知识?要求用自己的话说出来?
(六)课外作业:
教科书第110页习题1、2、3。
让学生说说自己的想法。
学生通过观察发现:
三角形、四边形、五边形。
由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
在平面内,由不在同一直线上的四条线段首尾顺次相接所组成的图形叫做四边形。
三角形的内角和为180°。
四边形的内角和为360°。
学生口述得到四边形内角和为360°的方法。
1、正方形、矩形的内角和为4×90°。
一般的四边形呢?
学生思考、讨论得到解法。
完成表格。
学生分组根据自己所找到的求四边形的内角和度数的方法,分别求出五边形、六边形、七边形的内角和,并归纳得出:
n边形的内角和的计算公式:。
(n-2)·180°。
让学生独立完成。
不一定,如矩形。
不一定,如菱形。
等边三角形、正方形。
1、多边形内角和公式。
2、探索多边形内角和公式的方法。
从现实生活中引入,让学生感受生活中处处有数学。(通过课件展示图片,让学生直观感受。)。
学生利用三角形、四边形的定义进行知识的迁移,获得多边形的概念。
学生自己动手画图,有助于帮助理解概念。
从学生感兴趣的问题出发,设置悬念,引入课题。
要给学生一定的思考、交流的时间,鼓励学生大胆的发言,寻找多种方法求得五边形内角和的度数。(利用在课件中设置触发器的方法,可以灵活的演示学生的分割方法。)。
鼓励学生大胆猜想、大胆发现。
通过类比、归纳,完成从特殊到一般的认识,体现数学认识的一般过程。
培养学生解决问题的能力,巩固对n边形的内角和公式的掌握:。
让学生理解一个多边形的边相等,但角并不一定相等;。
角相等,但边也并不。
一定相等。
巩固学生对n边形的内角和的公式的掌握,培养学生的解题能力:。
巩固推导公式的方法和多边形公式的掌握。
七、教学反思。
本节课从实际问题入手,在引课时出示了多幅日常生活用品和建筑的图片,加强了数学与实际生活的联系,让学生感到数学离自己很近,激发了学生的求知欲。创设了良好的教学氛围。其次注重让学生在学习活动中领悟数学思想方法。数学的思想方法比有限的数学知识更为重要。学生在探索多边形内角和的过程中先把五边形转化成三角形.进而求出内角和,这体现了由未知转化为已知的思想。特别是在课堂教学中适时的利用问题加以引导,使学生领会数学思想方法,真正理解和掌握数学的知识、技能,增强空间观念及数学思考能力培养,并获得数学活动经验。同时,恰当的使用课件扩大了课堂容量,使课堂教学的深度和广度都有所提高。课件的使用提高了课堂效率,为学生的探索讨论赢得了时间。同时也加大了练习量,有助于学生知识可巩固和提高。
整节课学生的情绪饱满,思维活跃,在教师适当的引导下,学生能够合作交流和自主探究,成功的利用四种方法探索出了多边形的内角和公式,较好的完成了本节课的教学目标。
初二数学因式分解教案篇十
1.了解分式的基本性质,掌握分式的约分和通分法则。掌握分式的四则运算。
2.会用待定系数法求反比例函数的解析式,能利用函数性质分析和解决一些简单的实际问题。
3.体验勾股定理的探索过程,会运用勾股定理解决简单问题。会运用勾股定理的逆定理判定直角三角形。
4.探索并掌握平行四边形、矩形、菱形、正方形、等腰梯形的有关性质和常用判定方法,并运用这些知识进行有关的证明和计算。
5.进一步理解平均数、中位数和众数等统计量的统计意义,会计算极差和方差,理解它们的统计意义,会用它们表示数据的波动情况。
过程与方法
进一步培养学生的合情推理能力和发展学生逻辑思维能力和推理论证的表达能力;解决一些实际问题,体会化归思想和函数的变化与对应的思想;养成用数据说话的习惯和实事求是的科学态度;培养学生的探究能力、数学归纳能力,在活动中培养学生的合作交流能力;逐步形成独立思考,主动探索的习惯。
情感、态度与价值观
丰富学生从事数学活动的经验和体验,通过对问题的共同探讨,培养学生的协作精神,通过对知识方法的总结,培养反思的习惯,和理性思维。培养学生面对教学活动中的困难,能通过合作交流解决遇到的困难。
初二数学因式分解教案篇十一
会应用平方差公式进行因式分解,发展学生推理能力.
2.过程与方法。
经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性.
3.情感、态度与价值观。
培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值.
重、难点与关键。
1.重点:利用平方差公式分解因式.
2.难点:领会因式分解的解题步骤和分解因式的彻底性.
3.关键:应用逆向思维的方向,演绎出平方差公式,对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来.
教学方法。
采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维.
教学过程。
一、观察探讨,体验新知。
【问题牵引】。
请同学们计算下列各式.
(1)(a+5)(a-5);(2)(4m+3n)(4m-3n).
【学生活动】动笔计算出上面的两道题,并踊跃上台板演.
(1)(a+5)(a-5)=a2-52=a2-25;。
(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.
【教师活动】引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律.
1.分解因式:a2-25;2.分解因式16m2-9n.
【学生活动】从逆向思维入手,很快得到下面答案:
(1)a2-25=a2-52=(a+5)(a-5).
(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).
【教师活动】引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解.
平方差公式:a2-b2=(a+b)(a-b).
评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式).
二、范例学习,应用所学。
【例1】把下列各式分解因式:(投影显示或板书)。
(1)x2-9y2;(2)16x4-y4;。
(3)12a2x2-27b2y2;(4)(x+2y)2-(x-3y)2;。
(5)m2(16x-y)+n2(y-16x).
【思路点拨】在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解.
【教师活动】启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演.
【学生活动】分四人小组,合作探究.
解:(1)x2-9y2=(x+3y)(x-3y);。
(5)m2(16x-y)+n2(y-16x)。
=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).
初二数学因式分解教案篇十二
经历探索一次函数的应用问题,发展抽象思维.。
培养变量与对应的思想,形成良好的函数观点,体会一次函数的应用价值.。
1.重点:一次函数的应用.。
2.难点:一次函数的应用.。
3.关键:从数形结合分析思路入手,提升应用思维.。
采用“讲练结合”的教学方法,让学生逐步地熟悉一次函数的应用.。
y=。
拓展:若a城有肥料300吨,b城有肥料200吨,其他条件不变,又应怎样调运?
课本p119练习.。
由学生自我评价本节课的表现.。
课本p120习题14.2第9,10,11题.。
初二数学因式分解教案篇十三
总课时:7课时使用人:
备课时间:第八周上课时间:第十周。
第4课时:5、2平面直角坐标系(2)。
教学目标。
知识与技能。
1.在给定的直角坐标系下,会根据坐标描出点的位置;。
2.通过找点、连线、观察,确定图形的大致形状的问题,能进一步掌握平面直角坐标系的基本内容。
过程与方法。
2.通过由点确定坐标到根据坐标描点的转化过程,进一步培养学生的转化意识。
情感态度与价值观。
通过生动有趣的教学活动,发展学生的合情推理能力和丰富的情感、态度,提高学生学习数学的兴趣。
教学重点:在已知的直角坐标系下找点、连线、观察,确定图形的大致形状。
教学难点:在已知的直角坐标系下找点、连线、观察,确定图形的大致形状。
教学过程。
第一环节感受生活中的情境,导入新课(10分钟,学生自己绘图找点)。
在上节课中我们学习了平面直角坐标系的定义,以及横轴、纵轴、点的坐标的定义,练习了在平面直角坐标系中由点找坐标,还探讨了横坐标或纵坐标相同的点的连线与坐标轴的关系,坐标轴上点的坐标有什么特点。
练习:指出下列各点以及所在象限或坐标轴:
a(-1,-2.5),b(3,-4),c(,5),d(3,6),e(-2.3,0),f(0,),g(0,0)(抽取学生作答)。
由点找坐标是已知点在直角坐标系中的位置,根据这点在方格纸上对应的x轴、y轴上的数字写出它的坐标,反过来,已知坐标,让你在直角坐标系中找点,你能找到吗?这就是本节课的内容。
第二环节分类讨论,探索新知.(15分钟,小组讨论,全班交流)。
1.请同学们拿出准备好的方格纸,自己建立平面直角坐标系,然后按照我给出的坐标,在直角坐标系中描点,并依次用线段连接起来。
(-9,3),(-9,0),(-3,0),(-3,3)。
(学生操作完毕后)。
2.(出示投影)还是在这个平面直角坐标系中,描出下列各组内的点用线段依次连接起来。
(3)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);。
(4)(2,5),(0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)。
观察所得的图形,你觉得它像什么?
(出示学生的作品)画出是这样的吗?这幅图画很美,你们觉得它像什么?
这个图形像一栋房子旁边还有一棵大树。
3.做一做。
(出示投影)。
在书上已建立的直角坐标系画,要求每位同学独立完成。
(学生描点、画图)。
(拿出一位做对的学生的作品投影)。
你们观察所得的图形和它是否一样?若一样,你能判断出它像什么呢?
(像猫脸)。
第三环节学有所用.(10分钟,先独立完成,后小组讨论)。
(补充)1.在直角坐标系中描出下列各点,并将各组内的点用线段顺次连接起来。
(1)(0,3),(-4,0),(0,-3),(4,0),(0,3);。
(2)(0,0),(4,-3),(8,0),(4,3),(0,0);。
(3)(2,0)。
观察所得的图形,你觉得它像什么?(像移动的菱形)。
2.在直角坐标系中,设法找到若干个点使得连接各点所得的封闭图形是如下图所示的十字。
先独立完成,然后小组讨论是否正确。
第四环节感悟与收获(5分钟,学生总结,全班交流)。
本节课在复习上节课的基础上,通过找点、连线、观察,确定图形的大致形状,进一步掌握平面直角坐标系的基本内容。
在例题和练习中,我们画出了不少美丽的图形,自己设计一些图形,并把图形放在直角坐标系下,写出点的坐标。
第五环节布置作业。
习题5、4。
a组(优等生)1、2、3。
b组(中等生)1、2。
c组(后三分之一生)1、2。
初二数学因式分解教案篇十四
2.通过代数法解简易方程进一步培养学生的运算能力,发展学生的应用意识;。
3.通过解决问题的实践,激发学生的学习兴趣,培养学生的钻研精神。
教学建议。
一、教学重点、难点。
重点:简易方程的解法;。
难点:根据实际问题中的数量关系正确地列出方程并求解。
二、重点、难点分析。
解简易方程的基本方法是:将方程两边同时加上(或减去)同一个适当的数;将方程两边同时乘以(或除以)同一个适当的数。最终求出问题的解。
判断方程求解过程中两边加上(或减去)以及乘以(或除以)的同一个数是否“适当”,关键是看运算的第一步能否使方程的一边只含有带有未知数的那个数,第二步能否使方程的一边只剩下未知数,即求出结果。
列简易方程解应用题是以列代数式为基础的,关键是在弄清楚题目语句中各种数量的意义及相互关系的基础上,选取适当的未知数,然后把与数量有关的语句用代数式表示出来,最后利用题中的相等关系列出方程并求解。
三、知识结构。
导入方程的概念解简易方程利用简易方程解应用题。
四、教法建议。
(1)在本节的导入部分,须使学生理解的是算术运算只对已知数进行加、减、乘、除,而代数运算的优越性体现在未知数获得与已知数平等的地位,即同样可以和已知数进行加、减、乘、除运算。对于方程、方程的解、解方程的概念让学生了解即可。
(2)解简易方程,要在学生积极参与的基础上,理解何种形式的方程在求解过程中方程两边选择加上(或减去)同一个数,以及何种形式的方程在求解过程中两边选择乘以(或除以)同一个数。另一个重要的问题就是“适当的数”的选择了。通常,整式方程并不需要检验,但为了学生从一开始就养成自我检查的好习惯,可以让学生在草稿纸上检验,同时也是对前面学过的求代数式的值的复习。
(3)教材给出了三道应用题,其中例4是一道有关公式应用的方程问题。列简易方程解应用题,关键在引导学生加深对代数式的理解基础上,认真读懂题意,弄清楚题目中的关键语句所包含的各种数量的意义及相互关系。恰当地设未知数,用代数式表示数学语句,依据相等关系正确的列出方程并求解。
(4)教学过程中,应充分发挥多媒体技术的辅助教学作用,可以参考运用相关课件提高学生的学习兴趣,加深对列简易方程解简单的应用题的整个分析、解决问题过程的理解。此外,通过应用投影仪、幻灯片可以提高课堂效率,有利于对知识点的掌握。
五、列简易方程解应用题。
列简易方程解应用题的一般步骤。
(1)弄清题意和题目中的已知数、未知数,用字母(如x)表示题目中的一个未知数.
(2)找出能够表示应用题全部含义的一个相等关系.
(3)根据这个相等关系列出需要的代数式,从而列出方程.
(4)解这个方程,求出未知数的值.
(5)写出答案(包括单位名称).
概括地说,列简易方程解应用题,一般有“设、列、解、验、答”五个步骤,审题可在草稿纸上进行.其中关键是“列”,即列出符合题意的方程.难点是找等量关系.要想抓住关键、突破难点,一定要开动脑筋,勤于思考、努力提高自己分析问题和解决问题的能力.
初二数学因式分解教案篇十五
原式变形后,利用完全平方公式变形,计算即可得到结果.
此题考查了因式分解的应用,熟练掌握平方差公式及完全平方公式是解本题的关键.
22.已知等式配方后,利用非负数的性质求出a与b的值,即可确定出三角形周长.
此题考查了因式分解的应用,熟练掌握完全平方公式是解本题的关键.
23.原式利用平方差公式分解得到结果,即可做出判断.
此题考查了因式分解的应用,熟练掌握平方差公式是解本题的关键.
24.本题考查了分式的化简求值,解答此题的关键是把分式化到最简,然后代值计算.先将分式的分母分解因式,再约分,然后将已知变形为代入原式即可求解.
初二数学因式分解教案篇十六
因式分解是第九章的难点。学生初学因式分解时往往要与乘法运算混淆。原因主要是概念不清。
在时,因式分解与乘法的区别是通过把等号两边的式子互相转换位置而直观得出。对于因式分解的方法,学生可通过自己的一系列练习实践去体会。故不需要在开头引入的地方多加铺垫,浪费了一定的时间。
在因式分解的几种方法中,提取公因式法师最基本的的方法,学生也很容易掌握。但在一些综合运用的题目中,学生总会易忘记先观察是否有公因式,而直接想着运用公式法分解。这样直接导致有些题目分解错误,有些题目分解不完全。所以在因式分解的步骤这一块还要继续加强。其实公式法分解因式。学生比较会将平方差和完全平方式混淆。这是对公式理解不透彻,彼此的特征区别还未真正掌握好。大体上可以从以下方面进行区分。如果是两项的平方差则在提取公因式后优先考虑平方差公式。如果是三项则优先考虑完全平方式进行因式分解。
在复习课上以上存在的一些问题还要重点突出讲解。帮助学生跟深刻的去认识因式分解。
初二数学因式分解教案篇十七
一元一次方程解简单的应用题的方法和步骤、
课堂教学过程设计
为了回答上述这几个问题,我们来看下面这个例题、
例1 某数的3倍减2等于某数与4的和,求某数、
(首先,用算术方法解,由学生回答,教师板书)
解法1:(4+2)÷(3-1)=3、
答:某数为3、
(其次,用代数方法来解,教师引导,学生口述完成)
解法2:设某数为x,则有3x-2=x+4、
解之,得x=3、
答:某数为3、
师生共同分析:
1、本题中给出的已知量和未知量各是什么?
2、已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)
上述分析过程可列表如下:
解:设原来有x千克面粉,那么运出了15%x千克,由题意,得
x-15%x=42 500,
所以 x=50 000、
答:原来有 50 000千克面粉、
(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)
教师应指出:
(2)例2的解方程过程较为简捷,同学应注意模仿、
依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:
(2)根据题意找出能够表示应用题全部含义的一个相等关系、(这是关键一步);
(4)求出所列方程的解;
(仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨、解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误、并严格规范书写格式)
解:设第一小组有x个学生,依题意,得
3x+9=5x-(5-4),
解这个方程: 2x=10,
所以 x=5、
其苹果数为 3× 5+9=24、
答:第一小组有5名同学,共摘苹果24个、
学生板演后,引导学生探讨此题是否可有其他解法,并列出方程、
(设第一小组共摘了x个苹果,则依题意,得 )
3、某工厂女工人占全厂总人数的 35%,男工比女工多 252人,求全厂总人数、
首先,让学生回答如下问题:
1、本节课学习了哪些内容?
2、列一元一次方程解应用题的方法和步骤是什么?
3、在运用上述方法和步骤时应注意什么?
依据学生的回答情况,教师总结如下:
(2)以上步骤同学应在理解的基础上记忆、
1、买3千克苹果,付出10元,找回3角4分、问每千克苹果多少钱?
2、用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?
初二数学因式分解教案篇十八
可设小明爸爸前年存了x元,那么二年后共得利息为。
2.43%×x×2,利息税为2.43%x×2×20%。
根据等量关系,得2.43%x·2—2.43%x×2×20%=48.6。
2.43%x·2.80%=48.6。
解方程,得x=1250。
大家想一想这15元的利润是怎么来的?
标价的80%(即售价)-成本=15。
若设这种服装每件的成本是x元,那么。
每件服装的标价为:(1+40%)x。
每件服装的实际售价为:(1+40%)x·80%。
每件服装的利润为:(1+40%)x·80%—x。
由等量关系,列出方程:
(1+40%)x·80%—x=15。
解方程,得x=125。
答:每件服装的成本是125元。
【本文地址:http://www.xuefen.com.cn/zuowen/15352915.html】