经过仔细分析,我们可以发现问题的根源在于管理不当。总结是一种整理思绪、梳理知识的方式,我想我们需要养成总结的好习惯。以下是小编为您收集的一些总结范文,希望能为您写总结提供一些思路和参考。
一元二次方程概念说课稿篇一
导数是研究现代科学技术必不可少的工具,是进一步学习数学和其他自然科学的基础,在物理学、经济学等领域都有广泛的应用。对于中学阶段而言,导数是研究函数的有力工具,在求函数的单调性、极值、曲线的切线以及一些优化问题时有着广泛的应用,同时对研究几何、不等式起着重要作用.导数的概念毫无疑问是教学的关键,考虑到学生的可接受性,教材中并没有引进极限概念,而是通过实例引导学生经历由平均变化率到瞬时变化率的过程,直至建立起导数的数学模型。而从平均变化率到瞬时变化率,教材中所选取的实例是曲线上一点处的切线和瞬时速度、瞬时加速度,笔者以为从学生的知识背景出发,与其用切线来引入导数,还不如将之视为导数知识的.几何解释,因此教学处理时采用数值逼近、几何直观感受、解析式抽象三种方式实现由平均变化率到瞬时变化率的过渡。
教学时需关注:一是逻辑主线是以问题为背景,按照“问题情境—建立模型—解释应用与拓展”的程序展开;二是学生极限思想的形成,需设计活动让学生经历从平均变化率到瞬时变化率的过程,先通过求物体在某一时刻的平均速度的极限去得出瞬时速度,再由此抽象出函数在某点的平均变化率的极限就是瞬时变化率的的模型,并将瞬时变化率定义为导数;三是从特殊到一般,通过若干个特殊时刻的瞬时速度过渡到任意时刻的瞬时速度;从物体运动的平均速度的极限是瞬时速度过渡到函数的平均变化率的极限是瞬时变化率。
1、知识与技能目标:
理解并能复述导数的概念,掌握利用求函数在某点的平均变化率的极限实现求导数的基本步骤,初步学会求解简单函数在一点处的切线方程。
2、过程与方法目标:
通过数值逼近计算的方法经历从平均变化率到瞬时变化率的过程,并在归纳抽象的过程中建构导数的概念,尝试几何解释的过程中领悟数学发现的全过程。
3、情感、态度、价值观目标:
通过数学建模的过程感受数学研究方法,并在使用手持技术过程中改善学习方法,即初步形成向技术学数学的基本理念。
教学重点。
数值逼近法生成建构导数概念及导数的计算。
教学难点。
本节课需要用到的知识储备包括平均变化率、直线的斜率、物理中物体运动的瞬时速度、解析几何中的切线等,而所要用到的归纳、概括、类比、抽象思维能力等也已具备,特别地实验班的学生均能熟练操作图形计算器,也多次经历过数学再创造的过程,对“问题情境—建立模型—解释应用与拓展”这样的学习程序并不陌生,这些都是开展本节课学习的基础。
一元二次方程概念说课稿篇二
每一个数学概念都不是孤立存在的,都存在于一个相应的系统中。把某一概念置于它所存在的相应系统中进行比较,引出新概念,不但能达到对概念的深刻理解,还能深化和发展概念。本课教学时,我将一元二次方程与一元一次方程进行类比,引出一元二次方程的概念。在类比的过程中既加深了对一元二次方程概念的理解又分析了这两种方程的联系和区别。
在概念的理解上,教学时我从学生实际出发,选择一些简单的巩固练习来辨认、识别,帮助学生掌握概念的外延和内涵;通过变式深化对概念的理解;通过新旧概念的对比,分析概念的矛盾运动。。
总之,概念课的引入是概念课教学的前提,概念的理解是概念课教学的核心。重视概念教学,运用多种方式、方法调动学生感官、思维的积极性,学好用好概念是学好一切知识的基础和关键。
一元二次方程概念说课稿篇三
2)列方程解决问题的关键是寻找等量关系。
提升:某学校会议室的地面是一个长方形,长比宽多一米,用320块边长为25厘米的正方形瓷砖恰好可将地面铺满。求会议室地面的长和宽。
作业:
建构主义认为,教学方法的核心是强调学习者是一个主动的积极的知识构建者。本节课,从审题,到找等量关系,列方程等一系列活动都从学生实际出发,借助适当的问题情景或实例促使学生反思,引起学生的认知冲突,从而让学生最终通过主动的思考建构起新的认知结构。以上是我对本节课的理解与构思,不到之处请多多指正。
一元二次方程概念说课稿篇四
教材采用北师大版(数学)必修1,函数作为初等数学的核心内容,贯穿于整个初等数学体系之中。本章节9个课时,函数这一章在高中数学中,起着承上启下的作用,它是对初中函数概念的承接与深化。在初中,只停留在具体的几个简单类型的函数上,把函数看成变量之间的依赖关系,而高中阶段不仅把函数看成变量之间的依赖关系,更是从“变量说”到“对应说”,这是对函数本质特征的进一步认识,也是学生认识上的一次飞跃。这一章内容渗透了函数的思想,集合的思想以及数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深刻的影响。
二、教学目标。
理解函数的概念,会用函数的定义判断函数,会求一些最基本的函数的定义域、值域。
通过对实际问题分析、抽象与概括,培养学生抽象、概括、归纳知识以及逻辑思维、建模等方面的能力。
通过对函数概念形成的探究过程,培养学生发现问题,探索问题,不断超越的创新品质。
三、重难点分析确定。
一、教学基本思路及过程。
本节课《函数的概念》是函数这一章的起始课。概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。本课(借助小黑板)从集合间的对应来描绘函数概念,起到了上承集合,下引函数的作用,也为进一步学习函数这一章的其它内容提供了方法和依据。
二、学情分析。
一方面学生在初中已经学习了变量观点下的函数定义,并具体研究了几类最简单的函数,对函数已经有了一定的感性认识;另一方面在本书第一章学生已经学习了集合的概念,这为学习函数的现代定义打下了基础。
函数在初中虽已讲过,不过较为肤浅,本课主要是从两个集合间对应来描绘函数概念,是一个抽象过程,要求学生的抽象、分析、概括的能力比较高,学生学起来有一定的难度,加上学生数学基础较差,理解能力,运算能力等参差不齐等。
三、教法、学法。
1、本节课采用的方法有:
直观教学法、启发教学法、课堂讨论法。
2、采用这些方法的理论依据:
我一方面精心设计问题情景,引导学生主动探索,另一方面,依据本节为概念学习的特点,以问题的提出、问题的解决为主线,设置问题,倡导学生主动参与,通过不断探究、发现,在师生互动、生生互动中,让学习过程成为学生心灵愉悦的主动认知过程,充分体现“教师为主导,学生为主体”的教学原则。
一元二次方程概念说课稿篇五
学生对一元二次方程概念的理解基本结束了。我认为数学教学要以提高学生的数学素质为指导思想,以学生积极参与教学活动为目标,以探索概念的过程和展开思维分析为主线,在课堂教学中,教师充分调动学生的一切因素,让学生在和谐、愉悦的氛围中获取知识、掌握方法。
探索新课改下的'数学课堂教学模式,优化数学课堂教学结构,还是一个长期而艰苦的工作。我坚信只要我们不断地创新,大胆地探索,就一定能取得好的教学效果。
一元二次方程概念说课稿篇六
理解任意角的概念;理解终边相同的角的意义;了解弧度的意义,并能进行弧度与角度的互化.
理解任意角三角函数(正弦、余弦、正切)的定义;初步了解有向线段的概念,会利用单位圆中的三角函数线表示任意角的正弦、余弦、正切.
终边相同的角的意义和任意角三角函数(正弦、余弦、正切)的定义.
一、问题.
1、角的概念是什么?角按旋转方向分为哪几类?
2、在平面直角坐标系内角分为哪几类?与终边相同的角怎么表示?
3、什么是弧度和弧度制?弧度和角度怎么换算?弧度和实数有什么样的关系?
4、弧度制下圆的弧长公式和扇形的面积公式是什么?
5、任意角的三角函数的定义是什么?在各象限的符号怎么确定?
6、你能在单位圆中画出正弦、余弦和正切线吗?
7、同角三角函数有哪些基本关系式?
二、练习.
1.给出下列命题:
(1)小于的角是锐角;
(2)若是第一象限的角,则必为第一象限的角;
(3)第三象限的角必大于第二象限的角;
(4)第二象限的角是钝角;
(5)相等的角必是终边相同的角;终边相同的角不一定相等;
(6)角2与角的终边不可能相同;
2.设p点是角终边上一点,且满足则的值是。
4.若则角的终边在象限。
5.在直角坐标系中,若角与角的终边互为反向延长线,则角与角之间的关系是。
6.若是第三象限的角,则-,的终边落在何处?
例1.如图,分别是角的终边.
(1)求终边落在阴影部分(含边界)的所有角的集合;
(2)求终边落在阴影部分、且在上所有角的集合;
(3)求始边在om位置,终边在on位置的所有角的集合.
例2.
(1)已知角的终边在直线上,求的值;
(2)已知角的终边上有一点a,求的值。
例3.若,则在第象限.
1、若锐角的终边上一点的坐标为,则角的弧度数为.
2、若,又是第二,第三象限角,则的取值范围是.
3、一个半径为的扇形,如果它的周长等于弧所在半圆的弧长,那么该扇形的圆心角度数是弧度或角度,该扇形的面积是.
4、已知点p在第三象限,则角终边在第象限.
5、设角的终边过点p,则的值为.
6、已知角的终边上一点p且,求和的值.
1、经过3小时35分钟,分针转过的角的弧度是.时针转过的角的弧度数是.
2、若点p在第一象限,则在内的取值范围是.
3、若点p从(1,0)出发,沿单位圆逆时针方向运动弧长到达q点,则q点坐标为.
4、如果为小于360的正角,且角的7倍数的角的终边与这个角的终边重合,求角的值.
一元二次方程概念说课稿篇七
各位专家、各位老师:
大家好!
今天我说课的题目是《函数的概念》,本课题是人教a版必修1中1.2的内容,计划安排两个课时,本课时的内容为:函数的概念、三要素及简单函数的定义域及值域的求法。下面我将以“学什么、怎么学、学了有何用”为思路,从教材、教法、学法、教学评价、教学过程设计、板书设计等几个方面对本节课的教学加以说明。
一、教学目标。
1、课程标准。
课节内容的课标要求是:
(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。
(2)在实际情景中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数。
(3)通过具体实例,了解简单的分段函数,并能简单应用。
(4)通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义。
(5)学会运用函数图像理解和研究函数的性质。
2、课标解读。
关于函数内容的整体定位和基本要求解读:
(2)强调对函数本质的认识和理解,因此要求在高中数学学习中多次接触、螺旋上升;
(3)关注背景、应用、增加了函数模型及其应用;
(4)削弱和淡化了一些内容,如函数的定义域、值域、反函数、复合函数等;
(5)注重思想和联系——增加了函数与方程、用二分法求方程的近似根。
(6)合理地使用信息技术,旨在帮助学生更好地认识和理解函数及其性质。
【依据意图】。
(1)教材如此要求的根本目的是希望帮助学生更好地从整体上认识和理解函数的本质,而真正理解函数概念是不容易的。因此,不要在过于细枝末节的非本质问题上作过多的训练,有了定义域和对应关系,值域自然就定了。此外,“课标”建议先讲函数再讲映射,也是为了帮助学生把注意力集中在函数的本质理解。
(2)希望通过方程根与函数零点的内在联系,加强对函数概念、函数思想及函数这一主线在高中数学中的地位作用的认识和理解。并通过用二分法求方程近似根将函数思想以及方程的根与函数零点之间的联系具体化。
(3)二分法是求方程近似根的常用方法,更为一般、简单,能很好地体现函数思想,“大纲”只是用“三个二”解决根的分布问题。
(4)现代信息技术不能替代艰苦的学习和人脑精密的思考,信息技术只是作为达到目的的一种手段,一种快速计算的工具。
3、教材分析。
(1)地位作用。
函数内容是高中数学学习的一条主线,它贯穿整个高中数学学习中,其重要性体现在以下几个方面:
3、这一节所学习的函数概念既是对初中所学函数概念的一次升华和再认识、对集合语言的一次重要应用;又是以后继续学习函数的性质、数列等等知识的必备理论基础,在函数学习中是承上启下的关键章节。
(2)内容与课时划分。
本课题是高中数学人教a版必修1中1.2节,计划教学2个课时,第一课时内容包括函数的概念、函数的三要素、简单函数的定义域及值域的求法;第二课时内容为:区间表示、较复杂函数的定义域及值域的求法、分段函数、函数图象等。本节《函数的概念》是函数这一章的起始课。概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。
4、学情分析。
(1)学生在初中已经在初中学习过函数的概念。
(2)本班级学生个体差异较明显。
基于以上分析,我把本节课的教学目标和教学重难点制定如下:
5、教学目标。
【依据意图】:教学目标的设计,要简洁明了,具有较强的可操作性,容易检测目标的达成度,同时也要体现出新课标下对素质教育的要求。基于以上分析作为依据,课时目标分解如下:
【课时分解目标】。
1、能够列举生活中具有函数关系的实例;
2、能用集合与对应的语言描述函数的定义,能对具体函数指出定义域、对应法则、值域;
3、会求一些简单函数(带根号,分式)的定义域和值域;
4、能够从函数的三要素的角度去判定两个函数是否是同一个函数。
二、教学重难点。
重点:让学生体会函数是描述变量之间的相互依赖关系的重要数学模型,正确理解形成函数的概念。
难点:引导学生从具体实例抽象出函数概念。
[意图依据]:本课时是概念课,重在概念的理解和形成,但教师应把重点放在让学生形成概念的过程中,联系旧知、突破难点、生长新知。为此通过教学目标和难重点的展示,让学生明确本节课的任务及精髓,带着目标去学习,才能达到事半功倍的效果。
三、教法。
问题式教学法(实例情境、启发引导、合作交流、归纳抽象)。
由于本课题是从集合与对应的角度揭示函数的本质,无论难度还是跨度都有质的飞跃。根据学生的心理特征和认知规律,我通过以问题为主线,以学生为主体,以教师为主导的教学理念。采用一系列的设问、引导、启发、发现,让学生归纳、概括出函数概念的本质,并灵活应用多媒体、黑板呈现、展示、交流。
[意图依据]:函数的`概念的教学要注重以下几个方面:(1)把集合作为一种语言;(2)对函数本质的理解不能一步到位,要注重螺旋上升;(3)重视信息技术的使用。为此,教师要在课堂上搭建一个平台,通过展示实例、学生举例、典例分析、小结归纳等环节穿插若干问题,引起思考,达成教学目标。
四、学法。
自主探究、合作交流、展示互评。
我们知道越是基础性的概念,其统摄性就越强,学生从中领悟到的数学就越本质;但事物总有两面性,这些概念的理解和掌握往往难度大、时间长,需要更多的经验积累.因此本节课在学法上我重视学生在列举大量实际背景的前提下对所给出实例观察,类比,归纳,分析,探究,合作,提炼,感悟函数概念的“本来面目”,以此培养学生发现问题、研究问题和分析解决问题的能力;同时在预习环节有学生的自主学习、在互动环节有学生的合作交流、在课后拓展环节有学生的探究学习。这样做,增加了学生主动参与的机会,增强了参与意识,教给学生获取知识的途径以及思考问题的方法,使学生真正成为教学的主体。也只有这样做,才能使学生“学”有所“思”,“思”有所“获”,“获”有所“用”。也恰好能够体现我以“学什么、怎么学、学了有何用”来设计本课题的整体思路。
[意图依据]:本课时是以问题为主线的教学过程,着重让学生经过对大量实例的剖析、了解、归纳而形成概念。在这个过程中,教师的作用是引导,经过一系列问题的提出、解决让学生在思考、交流的基础上层层深入的理解函数概念。
五、教学过程设计。
本节内容的教学过程我设计为以下逐层推进六个步骤:
1、课前预习、生成问题:
2、创境设问、引入课题:
3、观察分析、探索新知:
4、思考辨析、深刻理解:
5、提炼总结、分享收获:
6、布置作业、拓展延伸.
一元二次方程概念说课稿篇八
一元二次方程根与系数的关系是在学习了一元二次方程的解法和根的判别式之后引入的。它深化了两根与系数之间的关系,是我们今后继续研究一元二次方程根的情况的主要工具,是方程理论的重要组成部分。一元二次方程的根与系数的关系,在中考中多以填空,选择,解答题的形式出现,考查的频率较高,也常与几何、二次函数等问题结合考查,是考试的热点。
2、提高学生分析、观察、归纳的能力和推理论证的能力。
3、渗透由特殊到一般,再由一般到特殊的认识事物的规律。
4、通过学生探索一元二次方程的根与系数的关系,培养学生观察分析和综合、判断的能力。激发学生发现规律的积极性,鼓励学生勇于探索的精神。
难点的突破方法:由已知两根构造新方程入手,由学生观察并发现一元二次方程根与系数的关系,用求根公式再严格加以证明,证明的过程是一个再熟悉和再理解的过程。
在构思这节课时,感到教材中所提供的方法固然能更加直接的引出根与系数的关系,但忽略了定理最初形成的过程(即:为何要检验两根之和,两根之积?)。因此我根据前面所学内容,从已知两根求作方程入手,引导学生观察并发现根与系数的关系。此时所得出的恰好是二次项系数为1的方程,这种特殊的方程有这种规律,是不是对二次项系数不为1的方程也同样有这种规律呢?于是引出下文,并推及到韦达定理的出现与证明。然后加入对数学家韦达的介绍,及我国古代数学家在根与系数关系上的贡献,激发学生的爱科学,用科学的情感,提高学生对学习的兴趣。最后,再由学生自主小结,谈体会,给整节课画上圆满的句号。
为了体现二期课改中“以学生为主体”的教育理念,在课程的引入和新授中充分地考虑在学生已有知识与新知识间架起一座桥梁,通过创设一定的问题情境,注重由学生自己探索,让学生参与韦达定理的发现、不完全归纳验证以及演绎证明等整个数学思维过程。
学生通过对所提问题的求解,在观察、归纳中发现一元二次方程的根与系数间的关系。从已知两根构造方程引入,积极配合使学生能观察出所给出的两根与所作方程系数的关系。比原先求出两根,验证两根之和,之积的难度提高了,但数学思维品质也相对提高了。实践证明,只要教学语言使用得当,问题情境设计得好,学生是能够从题目中去获得发现的。
采用电教手段,增大教学的容量和直观性,提高教学效率和教学质量。
1、复习提问。
1)2和32)—4和7。
3)3和—84)—5和—2。
2、新课讲解:
猜想:2x2—5x+3=0这个方程的两根之和,两根之积是否满足这个特征?
问题2:对于二次项系数不为1的一元二次方程两根之和,两根之积有怎样的特征?
引出韦达定理,并加以严格论证。
介绍数学家韦达。
3、巩固练习:
1)x2—3x+1=0。
2)x2—2x=2。
3)2x2—3x=0。
4)3x2=0。
判断对错,如果错了,说明理由。
1)2x2—11x+4=0两根之和11,两根之积4。
2)4x2+3x=5两根之和,两根之积。
3)x2+2=0两根之和0,两根之积2。
4)x2+x+1=0两根之和—1,两根之积1。
4、学生自主小结。
5、布置作业。
一元二次方程概念说课稿篇九
教学目标:
1、进一步理解的概念,能从简单的实际事例中,抽象出关系,列出解析式;
2、使学生分清常量与变量,并能确定自变量的取值范围.
3、会求值,并体会自变量与值间的对应关系.
4、使学生掌握解析式为只含有一个自变量的简单的整式、分式、二次根式的的自变量的取值范围的求法.
5、通过的教学使学生体会到事物是相互联系的.是有规律地运动变化着的.
教学重点:了解的意义,会求自变量的取值范围及求值.
教学难点:概念的抽象性.
教学过程:
(一)引入新课:
上一节课我们讲了的概念:一般地,设在一个变化过程中有两个变量x、y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的.
生活中有很多实例反映了关系,你能举出一个,并指出式中的自变量与吗?
1、学校计划组织一次春游,学生每人交30元,求总金额y(元)与学生数n(个)的关系.
2、为迎接新年,班委会计划购买100元的小礼物送给同学,求所能购买的总数n(个)与单价(a)元的关系.
解:1、y=30n。
y是,n是自变量。
2、,n是,a是自变量.
(二)讲授新课。
刚才所举例子中的,都是利用数学式子即解析式表示的.这种用数学式子表示时,要考虑自变量的取值必须使解析式有意义.如第一题中的学生数n必须是正整数.
例1、求下列中自变量x的取值范围.。
(1)(2)。
(3)(4)。
(5)(6)。
分析:在(1)、(2)中,x取任意实数,与都有意义.
(3)小题的是一个分式,分式成立的条件是分母不为0.这道题的分母是,因此要求.
同理(4)小题的也是分式,分式成立的条件是分母不为0,这道题的分母是,因此要求且.
同理,第(6)小题也是二次根式,是被开方数,。
解:(1)全体实数。
(2)全体实数。
(3)。
(4)且。
(5)。
(6)。
小结:从上面的例题中可以看出的解析式是整数时,自变量可取全体实数;的解析式是分式时,自变量的取值应使分母不为零;的解析式是二次根式时,自变量的取值应使被开方数大于、等于零.
注意:有些同学没有真正理解解析式是分式时,自变量的取值应使分母不为零,片面地认为,凡是分母,只要即可.教师可将解题步骤设计得细致一些.先提问本题的分母是什么?然后再要求分式的分母不为零.求出使成立的自变量的取值范围.二次根式的问题也与次类似.
但象第(4)小题,有些同学会犯这样的错误,将答案写成或.在解一元二次方程时,方程的两根用“或者”联接,在这里就直接拿过来用.限于初中学生的接受能力,教师可联系日常生活讲清“且”与“或”.说明这里与是并且的关系.即2与-1这两个值x都不能取.
一元二次方程概念说课稿篇十
学生在七年级和八年级已经学习了一元一次方程、二元一次方程,以及一次函数的相关知识及应用,在九年级学习了一元二次方程的相关解法,初步体会了一元二次方程在解决实际问题中的.具体应用,可以说一元二次方程是以前学过的方程知识的延续和深化,它在现实生活以及数学中有着广泛的应用,也是学习其他数学知识(如二次函数等)的基础.
作者:童孝彬作者单位:南京市共青团路中学,江苏,南京,210000刊名:考试周刊英文刊名:kaoshizhoukan年,卷(期):“”(6)分类号:g63关键词:
一元二次方程概念说课稿篇十一
函数作为初等数学的核心内容,贯穿于整个初等数学体系之中。函数这一章在高中数学中,起着承上启下的作用,它是对初中函数概念的承接与深化。在初中,只停留在具体的几个简单类型的函数上,把函数看成变量之间的依赖关系,而高中阶段不仅把函数看成变量之间的依赖关系,更是从“变量说”到“对应说”,这是对函数本质特征的进一步认识,也是学生认识上的一次飞跃。这一章内容渗透了函数的思想,集合的思想以及数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深刻的影响。
本节《函数的概念》是函数这一章的起始课。概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。本课从集合间的对应来描绘函数概念,起到了上承集合,下引函数的作用。也为进一步学习函数这一章的其它内容提供了方法和依据。
二、重难点分析。
根据对上述对教材的分析及新课程标准的要求,确定函数的概念既是本节课的重点,也应该是本章的难点。
三、学情分析。
1、有利因素:一方面学生在初中已经学习了变量观点下的函数定义,并具体研究了几类最简单的函数,对函数已经有了一定的感性认识;另一方面在本书第一章学生已经学习了集合的概念,这为学习函数的现代定义打下了基础。
2、不利因素:函数在初中虽已讲过,不过较为肤浅,本课主要是从两个集合间对应来描绘函数概念,是一个抽象过程,要求学生的抽象、分析、概括的能力比较高,学生学起来有一定的难度。
四、目标分析。
1、理解函数的概念,会用函数的定义判断函数,会求一些最基本的函数的定义域、值域。
2、通过对实际问题分析、抽象与概括,培养学生抽象、概括、归纳知识以及逻辑思维、建模等方面的能力。
3、通过对函数概念形成的探究过程,培养学生发现问题,探索问题,不断超越的创新品质。
五、教法学法。
本节课的教学以学生为主体、教师是数学课堂活动的组织者、引导者和参与者,我一方面精心设计问题情景,引导学生主动探索。另一方面,依据本节为概念学习的特点,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与,通过不断探究、发现,在师生互动、生生互动中,让学习过程成为学生心灵愉悦的主动认知过程。
学法方面,学生通过对新旧两种函数定义的对比,在集合论的观点下初步建构出函数的概念。在理解函数概念的基础上,建构出函数的定义域、值域的概念,并初步掌握它们的求法。
六、教学过程。
(一)创设情景,引入新课。
情景1:提供一张表格,把上次运动会得分前10的情况填入表格,我报名次,学生提供分数。
名次(得分)。
情景3:某市一天24小时内的气温变化图:(图略)。
提问(1):这三个例子中都涉及到了几个变化的量?(两个)。
提问(2):当其中一个变量取值确定后,另一个变量将如何?(它的值也随之唯一确定)。
提问(3):这样的关系在初中称之为什么?(函数)引出课题。
[设计意图]在创设本课开头情境1、2的时候,我并没有运用书中的前两个例子。第一个例子我改成提供给学生一张运动会成绩统计单。是为了创设和学生或者生活相近的情境,从而引起学生的兴趣,调节课堂气氛,引人入胜,第二个例子我改成一道简单的速度与时间问题,是因为学生对重力加速度的问题还不是很熟悉。同时这两个例子并没有改变课本用三个实例分别代表三种表示函数方法的意图。这样学生可以从熟悉的情景引入,提高学生的参与程度。符合学生的认知特点。
(二)探索新知,形成概念。
1、引导分析,探求特征。
思考:如何用集合的语言来阐述上述三个问题的共同特征?
[设计意图]并不急着让学生回答此问,为引导学生改变思路,换个角度思考问题,进入本节课的重点。这里也是教师作为教学的引导者的体现,及时对学生进行指引。
提问(4):观察上述三问题,它们分别涉及到了哪些集合?(每个问题都涉及到了两个集合,具体略)。
[设计意图]引导学生观察,培养观察问题,分析问题的能力。
提问(5):两个集合的元素之间具有怎样的关系?(对应)。
及时给出单值对应的定义,并尝试用输入值,输出值的概念来表达这种对应。
提问(6):现在你能从集合角度说说这三个问题的共同点吗?
[设计意图]学生相互讨论,并回答,引出函数的概念。训练学生的归纳能力。
上述一系列问题,始终在学生知识的“最近发展区”,倡导学生主动参与,通过不断探究、发现,在师生互动,生生互动中,在学生心情愉悦的氛围中,突破本节课的重点。
3、探求定义,提出注意。
提问(7):你觉得这个定义中应注意哪些问题?
[设计意图]剖析概念,使学生抓住概念的本质,便于理解记忆。
4、例题剖析,强化概念。
例1、判断下列对应是否为函数:
[设计意图]通过例1的教学,使学生体会单值对应关系在刻画函数概念中的核心作用。
例2、(1);(2)y=x-1;(3);[设计意图]首先对求函数的定义域进行方法引导,偶次方根必需注意的地方,其次,通过(2)(3)两道题,强调只有对应法则与定义域相同的两个函数,才是相同的函数。而与函数用什么字母表示无关,进一步理解函数符号的本质内涵。
例3、试求下列函数的定义域与值域:
[设计意图]让学体会理解函数的三要素。
5、巩固练习,运用概念。
书本练习p24:1,2,3,4。
6、课堂小结,提升思想。
引导学生进行回顾,使学生对本节课有一个整体把握,将对学生形成的知识系统产生积极的影响。
七、教学评价。
1、我通过对一系列问题情景的设计,让学生在问题解决的过程中体验成功的乐趣,实现对本课重难点的突破。
2、为使课堂形式更加丰富,也可将某些问题改成判断题。
4。本节课的起始,可以借助于多媒体技术,为学生创设更理想的教学情景。
一元二次方程概念说课稿篇十二
对于一元二次方程,学生在前面已经学习过一元一次方程、二元一次方程和分式方程的知识,也是以后学习二次函数的基础。是初中教材中一个重要的内容,通过这节课的教学我有如下几点体会:
问:那它们和一元一次方程有什么相同点和不同点?接着启发:如果给它们命名,将怎么命名?这样很自然就引入课题。再比如,为巩固一元二次方程的概念设置6个方程,从中选出一元二次方程。
再比如过渡到讲一元二次方程的一般形式时,将上题中最后一个小题追问:你是怎么判断的?这样的使一元二次方程美观吗?从数学的整洁美的角度让学生明白需要把方程整理为左边按未知数的次数从高到低排列,且右边为零的形式。对整理后的四个方程总结:任何关于x的一元二次方程都可以化成一般形式:ax2+bx+c=0,问a能取任何数吗?为什么不能取零?b、c可以为零吗?进而渗透了从特殊到一般的数学思想。
第二、本节课知识的呈现作了重大调整,不是以讲解为主方式也不是以单一的知识为线条,而是在突出数学知识的同时,将数学知识和结论溶于数学活动之中,这样学生学习数学知识的过程就成了进行数学实验的过程,成了“做学问”的过程。在这样的探究学习过程中,学生得到的数学知识是通过自己实验、观察、讨论、归纳得到的。比如讲一元二次方程的一般形式时不是我们硬塞给学生的,而是从巩固概念环节的6个方程中的.最后一元二次方程作为衔接入口,现在要给它们洗漱整理后统一着装,要求使方程的左边按未知数的次数从高到低排列,且右边为零的形式,这样的连接比较自然。在这个整理活动之中学生亲自体验、观察、归纳,讨论出一元二次方程的一般形式ax2+bx+c=0。再比如过度到一元二次方程解的概念时,利用了前面练习的最后一个小题的方程,告诉学生老师的年龄就是这个方程中x的取值,这样既引出了解的概念,也激发了学生解决问题的兴趣。
当然本节课还有许多不足之处和困惑:
一、情景创设时的4个例子中,最后一个与前面三个没有任何联系,当时没有认真考虑设置与前面类似的背景。说明备课时还需认真,必须为学生的学服务,来不得半点马虎。
二、引出一元二次方程的一般形式时,说是为了方程的整洁美,我感觉不妥,应该怎么解释,还需要同行与专家的指点。
三、一元二次方程的一般形式中的a为什么不能等于0,我觉得教学中缺少学生的自我领悟,也就是缺少一个合理的学生活动的过程。
四、小结时比较死板,没起到画龙点睛的作用。
一元二次方程概念说课稿篇十三
教学内容:
六年制小学数学第十二册课本第55页例1.例2.作业本第31(29)。
教学目标:
1.使学生理解比例的意义。
2.使学生能应用比例尺的知识求平面图的比例尺,以及根据比例尺求图上距离和实际距离。
3.培养学生分析问题、解决问题的能力和创新能力。
教学重点:
理解比例尺的意义。
教学难点:
根据比例尺求图上距离和实际距离。
教具准备:
多媒体课件一套。
教学过程:
一、问题的情景:
1.出示邮票。问:你能同样大小的把它画在图纸上吗?
让同学们画一画,再拿出邮票的长,比一比,怎么样?
归纳:(同样长)得:图上的长和实际的长的比是1:1。
2.教室的长是9米,你能同样长的画在图纸上吗?更大一些呢?
4.导入新课:人们在绘制地图和平面图时,往往因为纸的大小有限,不可能按实际的大小画在图纸上,经常需要把实际距离缩小一定的倍数以后再画成图。象手表等机器零件比较小,又得把实际长度扩大一定的倍数以后,才能画到图纸上去。这就.需要涉及到一种新的知识。也就是今天我们一起来研究比例尺的问题。
板书:比例尺。
二、问题解决:
5.一个教室长是9米,如果我们要画这个教室的平面图,为了看图和携带方便,就需要把实际距离缩小一定的倍数后画在平面图上,缩小多少倍由你自己决定,你打算设计:用几厘米表示9米。请四人小组讨论并设计。
6.小组回报设计方案,教师选择以下四种方案。
(1).用9厘米表示9米。
(2).用4.5厘米表示9米。
(3).用3厘米表示9米。
(4).用1厘米表示9米。
7.说说以上方案是图上距离比实际距离缩小了多少倍?
算一算,每幅图图上距离和实际距离的比。
(1).9厘米9米=9900=1100。
(2).4.5厘米9米=4.5900=1200。
(3).3厘米9米=3900=1300。
(4).1厘米9米=1900。
8.这四个比的前项代表什么?(图上距离),后项代表什么?(实际距离),我们把这样的`比,叫比例尺。
齐读:比例尺是图上距离与实际距离的比,化简后得到最简整数比。
比例尺怎样求:(看上述四个比例式得出):
图上距离实际距离=比例尺或图上距离。
实际距离。
9.讨论汇报:上面四幅图,比例尺是多少图最大?
比例尺是多少图再小?为什么?
10.练习:
(1).甲、乙两座城市相距120千米,在地图上量得两城市的距离是4厘米。求这幅地图的比例尺。
(2).学校里修建运动场,在设计图上用25厘米长线段来表示操场的实际长度150米。求图上距离和实际距离的比。
(3).一张中国图,图上4厘米表示实际距离1040千米,求这幅地图的比例尺?
(4).一张紧密图纸中,图上1厘米表示实际1毫米,求这幅精密图纸的比例尺?
(观察精密零件如果要画在图纸上,怎么办?(放大)。那这幅精密图纸的比例尺会求吗?
上述四题分层练习,后讲评。
11.比较(3)、(4)两题的比例尺有什么不同?
教师小结:一般把缩小图的比例尺写成前项是1的比,而把放大图的比例尺写成后项是1的长。
12.比例尺有多少种表示方法?让生说一说。
(常见的有:比的形式分数的形式线段形式)。
三、问题的应用:
根据比例尺的关系式,求实际距离。
(学生独立解答,同时抽一生板演)。
解:设上海到北京的实际距离为x厘米,
x=105000000。
105000000厘米=1050千米。
答:上海到北京的实际距离大约是1050千米。
(2).分析讲述:
根据比例尺的计算公式,已知图上距离和比例尺求实际距离,用方程解。
(先设x,再根据比例尺的计算公式列出方程。)。
(3).图上距离和实际距离的单位要统一,一般都统一为低级单位厘米。
(4)怎样设x,.教师指出:设未知数时,单位要与已知单位统一,后再化聚到问题单位。
(5)尝试练习第57页试一试。
一元二次方程概念说课稿篇十四
出一元二次方程,让学生充分感受知识的产生和发展过程,使学生始终处于积极的思维状态之中,使新概念的得出觉得意外,让学生跳一跳就可以摘到桃子。
二、合理选材,优化教学,在教学中,忠实于教材,要研究的基础上使用教材。教学方法合理化,不拘于形式,通过一系列的活动来展开教学,发展了学生的思维能力,增强了学生思考的习惯,增强了学生运用数学知识解决实际问题的能力。
四、为了真正做到有效的合作学习,我在活动中大胆地让学生自主完成。先让学生把问题提出来,然后让学生带着问题去讨论,这样学生在讨论时就有目的,就会事半功倍。也让不同层次的学生得到不同的发展。也符合新课程的教学理念。
不足之处:引入方面有待加强,不够激发学生的学习兴趣;板书还有待加强,应给学生做出示范;给学生思考的时间还不够。
一元二次方程概念说课稿篇十五
本节课在学习一元二次方程的基础上,进一步学习列一元二次方程解应用题,使学习体验“知识来自实践,又作用于实践”的辩证唯物主义观点。
1、根据学生的当前思维发展水平和教学任务,把掌握列一元二次方程解应用题的一般步骤作为本节课的知识目标,通过对学生列一元二次方程解应用题,学会寻找问题中的等量关系的课堂教学,使学生在基础知识和基本技能,数学能力等方面应获得的发展,充分体验数学来源于生活,从生活的无究奥秘,感受生活的丰富多彩,培养学生的理解问题、解决问题的.能力。
2、正确的把本堂课学生要学习的列一元二次方程解应用作为重点,把比例、平均增长率与各年的增长率的之间这些模糊的概念作为本节课的难点,针对这些重点和难点,教师从学生的现实状况出发重新组织教材,设置一系列的典型例题,围绕列一元二次方程解应用题,学会寻找问题中的等量关系进行分析与讲解。使学生得到数学思维得到有效的训练。
3、本节课从学生自学-探求新识-课堂小结三个方面进行有效的组织课堂教学内容,正确反映教学目标的要求,重点突出,把主要精力放在探求新识的回顾解方程的一般步骤-学前准备-模仿与实践-归纳及练一练-合作与交统关键性问题的解决上;注重层次、结构,张弛有序,秩序渐进。精心设计练习,有计划地设置练习中的思维障碍,使练习具有合适的梯度,提高训练的效率。恰当运用反馈调节机制,根据课堂实际适时调整教学进程,为学生提供反思学习过程的机会,引导学生对照学习目标检查学习效果,有针对性地解决学生遇到的学习困难。
4、从教学效果来看、使每一个学生都能在已有发展的基础上,在“双基”、数学能力和理性精神等方面得到一定的发展。
一元二次方程概念说课稿篇十六
张老师这节课从学案的编写到实施,在形式和内容上都体现了新课程改革的特征,符合新课标的基本精神,展示了新课程理念,采用了新课堂模式。针对这节课我着重从以下几个方面谈谈个人的意见。
教学方法是实现教学目标,体现教学内容的手段,教学方法运用是否得当,主要看能否充分发挥教师的主导作用和学生的主体地位,能否最大限度地提高课堂教学效率。本堂课教师在处理好数学知识结构与学生认知结构的关系的基础上,按由易到难的顺序安排教学内容,注重思想训练与思维能力的培养。课堂上学生紧紧围绕着学案结合老师的指导,展开自主的学习。在引导学生得出用配方法来解一元二次方程方法步骤后,接着引导学生加强训练,对出现的问题立即进行矫正并反思总结,不但能提高学生运算能力,而且对培养学生养成良好的学习习惯起到很大的作用。
教学内容规定着教什么和学什么的问题,恰当地选择和处理教学内容是实现教学目标的重要保证。这节课从本节课的教学内容始终围绕目标、反映目标,能分清主次,准确地确定让学生明白如何利用配方法来解一元二次方程,以及利用配方法来解一元二次方程方法步骤这一重点、难点、关键点,处理好新旧知识的结合点,抓住知识的生长点。讲授具有启发性、层次性、详略得当;本堂课师生互动,共同探索,结合多媒体较好地处理了这个重点。同时,注意发挥练习题的作用,加强对学生解题方法和过程的指导,使传授知识和培养能力容为一体。通过对问题的处理,学生在不知不觉中得到了用配方法解一元二次方程的方法,真可谓潜移默化、水到渠成。
本节课始终以如何用配方法解一元二次方程为主线加强对学生知识、技能、方法、能力等的培养,目标的达成,达到了比较理想的程度。在课堂结构上堂体现了自主、合作、检测的主体框架,严谨顺畅,理念新颖,课堂营造的`学习氛围比较轻松活泼;内容上,新旧知识的前后联系,多种解法系统而完整,学到了新知识,还让学生体验到了成功的快乐。教学中灵活使用多媒体资源,提高了教学效果也是本节课的一个亮点。
本节课针对学科特点,结合本课内容,制定了明确的教学目标,而且在这堂课中顺利的完成了目标,使学生学会用配方法解一元二次方程方法,做到理解其算理,掌握其算法;并进一步培养学生观察比较、分析、综合的能力,进一步提高学生的计算能力,培养思维的灵活性。同时还培养学生参与数学学活动的积极性,体验在学习活动中探索和创造的乐趣,感受数学的严谨性、数学结论的确定性,养成认真仔细的良好学习习惯。本节课教学目标明确,教学过程始终围绕这个目标展开,重点内容的教学得到保证,重点知识和技能得到巩固和强化。而教学效果是课堂教学的落脚点。张老师这节课不但在规定的时间内完成了教学任务而且在知识的传授、能力的培养、思想与道德教育等方面都实现了目标要求,在学生的方面,学生听课的注意力非常集中,他们学习积极而主动,能准确地完成课堂练习,能对一堂课归纳出主要内容,独立的进行课堂小结与反思,并对自己的学习情况进行准确的自我评价等。
本节课基本能做到“以学生的发展”为本,使数学教育面向全体学生,不同的人在数学上得到不同的发展,这也是当前数学教学改革的重要课题之一,这节课如果能适当分层照顾全体,注重知识的形成过程,注重思维品质的培养,使每一位学生都有所获都有所得,是每一个学生都得到不同的发展,那么这节课就更加精彩。
【本文地址:http://www.xuefen.com.cn/zuowen/15349263.html】