教案的编写需要综合考虑课程标准、教材要求和教学实际,以保证教学的连贯性和有效性。教案的编写应该注重培养学生的创造思维和解决问题的能力,提高他们的学习效果。以下是一些优秀的教案范例,供大家参考。希望通过这些范例,可以帮助大家更好地理解和掌握教案的编写方法和技巧。
一元一次不等式组教案篇一
尊敬的各位老师:
对于本节课,我将从教什么、怎么教、为什么这么教来阐述本次说课。
新课标指出:数学课程要面向全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上都能得到不同的发展。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。
一、说教材。
教材是连接教师和学生的纽带,在整个教学过程中起着至关重要的作用,所以,先谈谈我对教材的理解。
在本节课之前学生已经掌握了一元一次方程的相关知识和不等式的性质,所以,本节课类比一元一次方程的解法,利用不等式的性质解一元一次不等式。另外,本节课为后续学习解一元一次不等式组奠定基础。
不等式在日常生产生活中的应用很广泛,它与数、式、方程、函数甚至几何图形有着密切的联系,它几乎渗透到初中数学的每一部分。所以,本节课在数学领域中起着非常重要的地位。
二、说学情。
合理把握学情是上好一堂课的基础,本次课所面对的学生群体具有以下特点。
本学段的学生逐渐掌握抽象概念和复杂的概念系统,能作科学定义,抽象逻辑思维逐步占优势。
本阶段的学生类比推理能力都有了一定的发展,并且在生活中已经遇到过很多关于一元一次方程的具体的事例,所以在生活上面有了很多的经验基础。为本节课的顺利开展做好了充分准备。
三、说教学目标。
根据以上对教材的.分析以及对学情的把握,我制定了如下三维目标:
(一)知识与技能。
认识一元一次不等式,会解简单的一元一次不等式,类比一元一次方程的步骤,总结归纳解一元一次不等式的基本步骤。
(二)过程与方法。
通过对比解一元一次方程的步骤,学生自己总结归纳一元一次不等式步骤的过程,提高归纳能力,并学会类比的学习方法。
(三)情感态度价值观。
通过数学建模,提高对数学的学习兴趣。
四、说教学重难点。
本着新课程标准,吃透教材,了解学生特点的基础上我确定了以下重难点:
(一)教学重点。
掌握一元一次不等式的概念,会解一元一次不等式并能够在数轴上表示出来。
(二)教学难点。
一元一次不等式组教案篇二
认识一元一次不等式,会解简单的一元一次不等式;类比一元一次方程的步骤,总结归纳解一元一次不等式的基本步骤。
【过程与方法】。
通过对比解一元一次方程的步骤,学生自己总结归纳一元一次不等式步骤的过程,提高归纳能力,并学会类比的学习方法。
【情感态度与价值观】。
感受数学知识之间的联系,提高对数学学习的兴趣。
二、教学重难点。
【重点】。
掌握一元一次不等式的概念,会解一元一次不等式并能够在数轴上表示出来。
【难点】。
三、教学过程。
(一)引入新课。
(二)探索新知。
学生类比不等式以及一元一次方程的概念,能够总结出:含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。
让学生回忆上节课学习的不等式x-726如何解决的,并提问学生有没有更加简便的方法解不等式?让学生类比解一元一次方程的步骤进行解题。
给出不等式2(1+x)3;。
强调每一个步骤,在第二题最后一步,强调当不等式的两边同时乘以(或除以)同一个负数时,不等号的方向改变。
归纳:解一元一次方程,要根据等式的性质,将方程逐步化为x=a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为xa的形式。
(三)课堂练习。
问题:解不等式,并在数轴上表示数集:5x+154x-1。
师生活动:学生独立思考完成,教师可适当指导,帮助学生理解不等式中的变形步骤。
(四)小结作业。
小结采用发散性问题:你今天有什么收获?
一元一次不等式组教案篇三
二、重点难点分析。
本节教学的重点是掌握解一元一次不等式的步骤.难点是必须切实注意遇到要在不等式两边都乘以(或除以)同一负数时,必须改变不等号的方向.掌握一元一次不等式的解法是进一步学习一元一次方程组的解法以及一元二次不等式的解法的重要基础.
相同点:二者都是只含有一个未知数,未知数的次数都是1,左、右两边都是整式.。
不同点:一元一次不等式表示不等关系,一元一次方程表示相等关系.。
(3)同方程类似,我们把或叫做一元一次不等式的标准形式.。
一元一次不等式组教案篇四
设购买x台电脑,如果到甲商场购买更优惠。
问题2:如何解这个不等式?
去括号,得。
去括号,得:6000+4500x-450044800x。
移项且合并,得:-300x1500。
不等式两边同除以-300,得:x5。
答:购买5台以上电脑时,甲商场更优惠。
一元一次不等式组教案篇五
1、熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题;。
3、体验数学学习的乐趣,感受一元一次不等式组在解决实际问题中的价值。
教学难点。
正确分析实际问题中的不等关系,列出不等式组。
知识重点。
建立不等式组解实际问题的数学模型。
探究实际问题。
出示教科书第145页例2(略)。
问:(1)你是怎样理解“不能完成任务”的数量含义的?
(2)你是怎样理解“提前完成任务”的数量含义的?
(3)解决这个问题,你打算怎样设未知数?列出怎样的不等式?
师生一起讨论解决例2.
归纳小结。
1、教科书146页“归纳”(略).
2、你觉得列一元一次不等式组解应用题与列二元一次方程组解应用题的步骤一样吗?
在讨论或议论的基础上老师揭示:
步法一致(设、列、解、答);本质有区别.(见下表)一元一次不等式组应用题与二元一次方程组应用题解题步骤异同表。
一元一次不等式组教案篇六
2、如果累计购物超过50元但不超过100元,则在乙商场购物花费小。
3、如果累计购物超过100元,又有三种情况:
(1)什么情况下,在甲商场购物花费小?
(2)什么情况下,在乙商场购物花费小?
(3)什么情况下,在两家商场购物花费相同?
握学生的创新潜能,使不同层次的学生都能得到发展。
这些问题能培养学生思维的深刻性和灵活性,优化学生的思维品质。
引导学生用数学眼光去观察周围的生活现象,思考能否用数学知识、方法、观点和思想去。
一元一次不等式组教案篇七
本节课的内容,是人教版七年级下册第九章第二节“实际问题与一元一次不等式”。它是在学习不等式的概念、性质及其解法和运用一元一次方程(或方程组)解决实际问题等知识的基础上,利用不等式解决实际问题。这既是对已学知识的运用和深化,又为今后在解决实际问题中提供另一种有效的解决途径。通过实际问题的探究,让学生学会列一元一次不等式,解决具有不等关系的实际问题。经历由实际问题转化为数学问题的过程,掌握利用一元一次不等式解决问题的基本过程。促进学生的数学思维意识,从而使学生乐于接触社会环境中的数学信息,愿意谈论某些数学话题,能够在数学活动中发挥积极作用。同时向学生渗透由特殊到一般、类比、建模和分类考虑问题的思想方法。不等式与现实生活中联系非常紧密,解决好这类应用题,有助于学生在以后的日常生活中自主灵活应用所学知识解决实际问题。
七2班班现有56名同学,部分学生基础较差,拔尖学生少,尤其个别学生底子太薄,学生学习较为被动,预习工作做得不够认真,同时学生学习数学的积极性不高,基本能力较差,解决问题的能力不强,知识掌握不够扎实,运用不够灵活。从学生学习的心理基础和认知特点来说:学生已经在前一阶段学习的学习中已经具备了实际问题建立一元一次方程和解一元一次方程的一般步骤的基础,能进行数学建模和简单的解释应用。虽然初一学生对消费问题比较热心,但由于年纪太小,缺少生活经验,由于本节问题的背景和表达都比较贴近实际,其中有些数量关系比较隐蔽,可能会产生一定的障碍。
一元一次不等式的应用,是中学数学的重要内容,和一元一次方程应用相似,对培养学生分析问题、解决问题的能力,体会数学的价值都有较大的意义.对实际生活中的不等量关系、数量大小比较等知识,学生在小学阶段已经有所了解.但用不等式表示,并对不等式的.相关性质进行探究,对学生是新的内容。这些问题能培养学生思维的深刻性和灵活性,优化学生的思维品质。分组活动,先独立思考,再组内交流,然后各组汇报讨论结果,可极大调动学生的创造积极性,应把握学生的创新潜能,使不同层次的学生都能得到发展。在实施教学时,要根据课程改革的基本理念和教材特点组织教学.结合具体内容,让学生经历知识的形成与应用过程。
知识目标:能进一步熟练的解一元一次不等式,会从实际问题中抽象出数学模型,会用一元一次不等式解决简单的实际问题。
能力目标:通过观察、实践、讨论等活动,积累利用一元一次不等式解决实际问题的经验,提高分类考虑、讨论问题的能力,感知方程与不等式的内在联系,体会不等式和方程同样都是刻画现实世界数量关系的重要模型。
情感目标:在积极参与数学学习活动的过程中,形成实事求是的态度和独立思考的习惯;学会在解决问题时,与其他同学交流,培养互相合作精神。
关键:突出建模思想,刻画出数量关系,从实际中抽象出数量关系。注意问题中隐含的不等量关系,列代数式得到不等式,转化为纯数学问题求解。
创设情境,研究新知。
(出示一个解不等式的问题,为后面新知作铺垫)。
一元一次不等式组教案篇八
3.理解一元一次不等式组应用题的一般解题步骤
一元一次不等式组的应用
在上课之前,老师请大家来帮一个忙,帮老师来解决一道难题:老师有一个熟人姓王,他有一个哥哥和一个弟弟,哥哥的年龄是20岁,小王的年龄的2倍加上他弟弟年龄的5倍等于97.现在小王要老师猜猜他和他弟弟的年龄各是多少?俗话说三个臭皮匠,可抵一个诸葛亮,现在我们全班同学可抵得上很多诸葛亮,所以老师相信大家一定有办法的.
(一)提出问题,引发讨论
当一个未知数同时满足几个不等关系时,我们就按这些关系分别列几个不等式,这样就得到不等式组,用不等式组解决实际问题时,其公共解是否一定为实际问题的解呢?请举例说明.
(二)导入知识,解释疑难
1.教材内容讲解
2.探究活动
1. 应用不等式组解决实际问题的步骤:1.审清题意;2.设未知数,根据所设未知数列出不等式组;3.解不等式组;4.由不等式组的解确立实际问题的解;5.作答.(与列方程组解应用题进行比较)
2.双基练习
1.已知方程组 有正整数解,则k的取值范围是_________.
2.若不等式组 无解,求a的取值范围.
3.当2(m-3) 时,求关于x的不等式 x-m的解集.
某商场为了促销,开展对顾客赠送礼品活动,准备了若干件礼品送给顾客,在一次活动中,如果每人送5件,则还余8件,如果每人送7件,则最后一人还不足3件.设该商场准备了m件礼品,有x名顾客获赠,请回答下列问题:
(1)用含x的代数式表示m.
(2)求出该次活动中获赠顾客人数及所准备的礼品数
一元一次不等式组教案篇九
科学合理的教学方法能使教学效果事半功倍,达到教与学的和谐完美统一。
基于此,我准备采用的教法讲授法、讨论法。德国教育学家第斯多慧:差的教师只会奉送真理,好的教师则交给学生如何发现真理,老师的教是为了不教,这才是教学的最高境界,所以我采用的学法是练习法、自主合作法。
六、说教学过程。
在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理。各项活动的安排也注重互动、交流,最大限度的调动学生参与课堂的积极性、主动性。
(一)新课导入。
首先是导入环节,我采用复习旧知的导入方法。我会让学生回忆不等式的概念以及一元一次方程的概念,明确指出今天学习的内容是《一元一次不等式》。
这样的设计既可以考查学生对之前知识的掌握情况,还能够为今天学习一元一次方程的概念打下基础。而且开门见山的导入方式能够快速地进入主题。
(二)新知探索。
接下来是新知探索环节,首先我请学生类比不等式以及一元一次方程的概念,给一元一次不等式下定义。
能够总结出:含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。
接下来让学生回忆上节课学习的不等式x-726如何解决的,通过学生回忆总结可以得到:通过“不等式的两边都加7,不等号的方向不变”而得到的。
接下来提问学生有没有更加简便的方法解不等式?让学生类比解一元一次方程的步骤进行解题。可以得到相当于可以用“移项”,来解决。
在这个过程中,强调每一个步骤,在第二题最后一步,强调当不等式的两边同时乘以(或除以)同一个负数时,不等号的方向改变。
从而我们归纳:解一元一次方程,要根据等式的性质,将方程逐步化为x=a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为xa的形式。
《数学课程标准》指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者”。根据这一教学理念,在本环节中,我组织学生进行了自主探究活动,让学生在保持高度学习热情和探究欲望的活动过程中,始终以愉悦的心情,亲身经历和体验知识的形成过程。培养学生的探究能力、分析思维能力,激发他们的创新意识、参与意识。
(三)课堂练习。
之所以这样设计是因为练习是掌握知识、形成技能、发展思维的重要手段,针对本课的教学重点和难点,上述练习,目的是让学生进一步巩固对新知的理解。可以深化教学内容,培养思维的灵活性。
(四)小结作业。
最后一个环节为小结作业环节,关于课堂小结,我打算让学生自己来总结今天的收获。
这样既发挥了学生的主体性,又可以提高学生的总结概括能力,让我在第一时间得到学习反馈,及时加以疏导。
通过这样的方式能够为本节课学习的知识进行进一步的巩固。
七、说板书设计。
我的板书设计遵循简洁明了突出重点的意图,这是我的板书设计:
一元一次不等式组教案篇十
作与交流,涌现出多样化的解题思路。教师及时予以引导、归纳和总结,让学生感知不等式的建模。
完整的解题过程的展现,有利于培养学生有条理地思考和表达的习惯。
问题1:这个问题比较复杂。你该从何入手考虑它呢?
分组活动。先独立思考,再组内交流,然后各组汇报讨论结果。
一元一次不等式组教案篇十一
(一)知识与能力目标:(课件第2张)
1.体会解不等式的步骤,体会比较、转化的作用。
2.学生理解、巩固一元一次不等式的解法.
3.用数轴表示解集,加深对数形结合思想的进一步理解和掌握。
4.在解决实际问题中能够体会将文字语言转化成数学语言,学会用数学语言表示实际的数量关系。
(二)过程与方法目标:
1.介绍一元一次不等式的概念。
2.通过对一元一次方程的解法的复习和对不等式性质的利用,导入对解不等式的讨论。
3.学生体会通过综合利用不等式的概念和基本性质解不等式的方法。
4.学生将文字表达转化为数学语言,从而解决实际问题。
5.练习巩固,将本节和上节内容联系起来。
(三)情感、态度与价值目标:(课件第3张)
1.在教学过程中,学生体会数学中的比较和转化思想。
2.通过类比一元一次方程的解法,从而更好的掌握一元一次不等式的解法,树立辩证统一思想。
3.通过学生的讨论,学生进一步体会集体的作用,培养其集体合作的精神。
4.通过本节的学习,学生体会不等式解集的奇异的数学美。
1.掌握一元一次不等式的解法。
2.掌握解一元一次不等式的`阶梯步骤,并能准确求出解集。
3.能将文字叙述转化为数学语言,从而完成对应用问题的解决。
教材中没有给出解法的一般步骤,所以在教学中要注意让学生经历将所给的不等式转化为简单不等式的过程,并通过学生的讨论交流使学生经历知识的形成和巩固过程。在解不等式的过程中,与上节课联系起来,重视将解集表示在数轴上,从而指导学生体会用数形结合的方法解决问题。在研究中,鼓励学生用多种方法求解,从而锻炼他们活跃的思维。
(一)、复习:
教学环节
教 师 活 动
学 生 活 动
设 计 意 图
一元一次不等式组教案篇十二
一元一次不等式(组)的主要内容是一元一次不等式解法及其简单应用。这是继一元一次方程和二元一次方程组的学习之后,又一次数学建模思想的教学,是培养学生分析问题和解决问题能力的重要内容。本单元的教学设计主要是改变课程过于注重知识传授的倾向,强调形成积极主动的学习态度,关注学生的学习兴趣和经验,实施开放性教学。数学来源于生活,又应用于生活。因此我们在认识不等式的教学过程中大量地运用现实生活情景:如天气预报、猜猜我几岁等实际情境引入与学生共同探索,让学生在探索中发现新的知识,认识不等式,让学生意识到不等关系和相等关系都是现实生活中的重要数量关系,意识到数学就在我们身边,离我们是那么的近,增强学生学习的兴趣与自信心。
而不等式的基本性质和解一元一次不等式,是一些基本的运算技能,也是学生以后学习一元二次方程、函数,以及进一步学习不等式知识的基础。由于函数、方程、不等式度是刻画现实世界中量与量之间变化规律的重要模型,因此,我们在一元一次不等式的应用教学中通过旅游优惠、购物优惠等具体例子渗透这三者之间的内在联系,帮助学生从整体上认识不等式,感受函数、方程、不等式的作用,进一步提高学生分析问题解决问题的能力,增强学生学数学、用数学的意识。
在课前,我做了很多的准备,对我所教的学生会出现什么样的情况,我都做到了心中有数。满以为自己可以打一个漂亮的战役。
经过分析我终于找到了答案,急于求成。在上课时只想到要展示三项技能可忘记了学生的渐进舒展的规律。还没等学生得以舒展时,就进入下一个环节。导致学生没能舒展开。同时复习课上的练习应在于精而不在于多,由于讲求多练,导致学生没有真正把知识练透,削弱了复习的效果。
通过这节课,让我在教学的道路上又成长了许多。使我明白了怎么更能上好一节数学课。
一元一次不等式组教案篇十三
本节课较好的方面:
1、本节课能结合学生的实际情况明确学习目标,注意分层教学的开展;。
2、课程内容前后呼应,前面练习能够为后面的例题作准备。
3、能安排有当堂训练等对学生学习的知识进行检查;。
不足方面:
1、引入部分练习所用时间太长,讲评一元一次不等式的概念太繁琐,导致了后段时间不够,部分内容不能完成。
2、课容量少,害怕学生听不懂、学不会,所以上课时喜欢给学生反复讲,结果课堂上大部分时间由我占据而留给学生自由思考的时间较少。
3、对于后进生,课堂上由于时间的关系,很少关注。
感悟:只有当学生真正获得了课堂上属于自己学习的主权时,他们个性的形成与个体的发展才有了可能。本课在现场操作与反馈中,与教学设想仍有一定的差距,许多地方还停留在表面形态,我将和我的学生在这一探索过程中不断努力前行,总之,我在课堂上还是要尝试着少说,给学生留些自由发展的空间。但在课前,教师必须做足课堂的准备工作。
一元一次不等式组教案篇十四
[学习重点]掌握解一元一次不等式的步骤;会用一元一次不等式解决简单的实际问题.
[学习难点]寻找实际问题中的不等关系,建立数学模型.
[学习过程]。
一、 春耕。
1. 不等式的基本性质有哪些?
2、解下列不等式,并把解集在数轴上表示出来。
(1)3x2x+1; (2)-4x3.
二、夏耘:
这个问题较复杂,从何处入后考虑它呢?
甲商店优惠方案的起点为购物款达___元后;
乙商店优惠方案的起点为购物款过___元后.
我们是否应分情况考虑?可以怎样分情况呢?
(1)如果累计购物不超过50元,则在两店购物花费有区别吗?
(3)如果累计购物超过100元,那么在甲店购物花费小吗?
三、秋收:
1.某校校长暑假将带领该校市级优秀学生乘旅行社的车去a市参加科技夏令营,甲旅行社说:“如果校长买全票一张,则其余学生可享受半价优惠”.乙旅行社说:“包括校长在内全部按全票的6折优惠”,若全票价为240元.
(2)当学生数是多少时,两家旅行社的收费一样?
(3)就学生数x讨论哪家旅行社更优惠.
2.某商店出售茶壶和茶杯,茶壶每只20元,茶杯每只5元,该商店有两种优惠办法:
(1) 买一只茶壶送一只茶杯;
(2) 按总价的92%付款.现有一顾客需购买4只茶壶,茶杯若干只(不少于4只).
请问:顾客买同样多的茶杯时,用哪一种优惠办法购买省钱?
四、冬藏(补充练习):
1.有一批货物,如月初售出,可获利1000元,并可将本利之和再去投资,到月末获1.5%的利息;如月末售出这批货,可获利1200元,但要付50元保管费.问这批货在月初还是月末售出好.
2.某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划用水超出部分每吨收费0.8元.如果单位自建水泵房抽水,每月需交500元管理费,另外每月一吨水再交0.28元,已知每抽一吨水需成本0.07元.问该单位是用自来水公司的水合算,还是自建水泵房抽水合算.
3.错题回顾。
一元一次不等式组教案篇十五
本节内容是第八章的难点也是重点,在章节中有承上启下的作用,是一元一次不等式的简单变形的应用,是一元一次不等式组的基础。因而这节内容我更加费劲心思的思考该如何教学,才能让学生更好地掌握知识,运用知识。
本节课教学设计上较合理,知识点循序渐进,符合初中生的学习心理特点。本节课先让学生明白一元一次不等式的变形,再回顾一元一次方程的解的步骤,进一步理解和掌握一元一次不等式的解的步骤。在理解的基础上,通过例题加深,让学生经历了回顾、动手操作、提出问题、判断、找方法、合作交流等过程。另一方面,能够体现出用新教材的思想,体现了学生的主体地位,体现了新的教学理念。
在学习本节时,要与一元一次方程结合起来,用比较、类比的转化的数学思想方法来学习,弄清其区别与联系。
(1)从概念上来说:两者化简后,都含有一个未知数,未知数的次数是1,系数不等于零;但一元一次不等式表示的是不等关系,一元一次方程表示的是相等关系。
(2)从解法上来看:两者经过变形,都把左边变成含未知数(如x)的一次单项式,右边变成已知数,解法的五个步骤也完全相同;但不等式两边都乘(或除)以同一个负数时,不等号要变号,而方程两边都乘(或除)以同一个负数时,等号不变。
(3)从解的情况来看:
1、为加深对不等式解集的理解,应将不等式的解集在数轴上直观地表示出来,它可以形象认识不等式解集的几何意义和它的无限性.在数轴上表示不等式的解集是数形结合的具体体现。
2、熟练掌握不等式的基本性质,特别是性质3。不等式的性质是正确解不等式的基础。
错误分析引入有效的提问,可以加深对本课知识的理解,又能更好地巩固前面的内容,起到承上启下的作用。提问过程中可以达到师生间的相互交流。教学提问中,比如:解一元一次方程的步骤是什么?学生在理解解一元一次方程步骤的基础上,类比解一元一次不等式的步骤就有了进一步的认识。同时,提出对“等号”与“不等号”的不同,不等式的解与方程的解又有点差别,特别是对不等式的性质3的不同,加深了学生对不等式的解的理解。由于学生的基础比较差,课堂教学提问中,由易到难,深入浅出,尽可能让学生学会、会学、会做。
本节课我从复习旧知识,提问,动手操作,合作交流、形成共识的基础上,让学生理解一元一次不等式的概念及不等式的解法步骤。在课堂活动中经历、感悟知识的生成、发展与变化过程,重在学生参与完成。通过精心设计问题、课堂讨论,中间贯穿鼓励性语言,并让学生自己理清思路、板书过程,锻炼学生语言表达能力和书写能力,激发了学生学习积极性,培养学生的参与意识和合作意识,学生在各个环节中,运用所学的知识解决问题,进而达到知识的理解和掌握,使学生真正参与到知识形成发展过程中来。
本节课较好的方面:
1、本节课能结合学生的实际情况明确学习目标,注意分层教学的开展;
2、课程内容前后呼应,前面练习能够为后面的例题作准备。
3、设计学案对学生学习的知识进行检查。
不足方面:
引入部分练习所用时间太长,讲评一元一次不等式的概念太细致,导致了后段时间紧,部分内容不能完成。
我深感,只有当学生真正获得了课堂上属于自己学习的主权时,他们个性的形成与个体的发展才有了可能。本课在现场操作与反馈中,与教学设想仍有一定的差距,许多地方还停留在表面形态,师生都还未能很习惯地进入角色。这说明,一种新的教学理念要真正成为师生的教育行为,还有很长的路要走。我将和我的学生在这一探索过程中不断努力前行,总之,我们在课堂上还是要尝试着少说,给学生留些自由发展的空间。但在课前,教师必须多做一些事,例如精心设计适合学生的教学环节,多思考一些学生所想的,真正做好学生前进道路上的领路人。
一元一次不等式组教案篇十六
学习了实际问题与一元一次不等式后,我发现在学生学习起来比较困惑,存在以下问题:
1.找不出广泛应用题中的不等关系,要解广泛应用题时相等关系比较明确,而在不等式中不等关系不是那样的明确,所以不少学生不太理解,因而列不出不等式,所以也不会解不等式的应用题。
2.一部分学生虽然能列出不等式,可是在解不等式时一直出现错误,特别是当不等工的两边都乘或除以一个负数时,学生一直记不住不等式的方向要改变,导致计算错误,这可能对不等式的性质没有真正理解吧。
3.不少应用题求出不等式的解集时往往都会根据题意,让求出不等式的整数解,到这时一部分学生往往不能准确的求出整数解,这可能是对不等式解集的取值范围不是太明白。
教后反思:在以后的教学中做注意的是,让学生熟练掌握不等式的性质,并能真正理解,能准确无误的求出不等式的解集。多进行不等式应用题的练习,让学生逐步理解和掌握找不等关系的方法,从而熟练的掌握列不等式解应用题的。要加强一些基础概念的掌握理解,对于整数,正整数以一些大于小于等的数学语言,要让学生准确理解,不能含含糊糊。
一元一次不等式组教案篇十七
本节课教学设计上较合理,知识点循序渐进,符合初中生的学习心理特点。本节课先让学生明白一元一次不等式的变形,再回顾一元一次方程的解的步骤,进一步理解和掌握一元一次不等式的解的步骤。在理解的基础上,通过例题加深,让学生经历了回顾、动手操作、提出问题、判断、找方法、合作交流等过程。另一方面,能够体现出用新教材的思想,体现了学生的主体地位,体现了新的教学理念。
在学习本节时,要与一元一次方程结合起来,用比较、类比的转化的数学思想方法来学习,弄清其区别与联系。
(1)从概念上来说:两者化简后,都含有一个未知数,未知数的次数是1,系数不等于零;但一元一次不等式表示的是不等关系,一元一次方程表示的是相等关系。
(2)从解法上来看:两者经过变形,都把左边变成含未知数(如x)的一次单项式,右边变成已知数,解法的五个步骤也完全相同;但不等式两边都乘(或除)以同一个负数时,不等号要变号,而方程两边都乘(或除)以同一个负数时,等号不变。
(3)从解的情况来看:
1、为加深对不等式解集的理解,应将不等式的解集在数轴上直观地表示出来,它可以形象认识不等式解集的几何意义和它的无限性.在数轴上表示不等式的解集是数形结合的具体体现。
2、熟练掌握不等式的基本性质,特别是性质3。不等式的性质是正确解不等式的基础。
一元一次不等式组教案篇十八
本节课通过多媒体呈现习题,节省了大量的时间,充分利用了宝贵的课堂45分钟。通过学生自我训练、小组互帮和教师释疑,成功地解决了在新授过程中存在的部分遗留问题,达到了巩固一元一次不等式和一元一次不等式组的相关知识,尽管培养学生乐于探索的学习品质不是一朝一夕的事,但本节课在这方面也发挥了积极的作用;对知识的综合、迁移和应用等能力也起到了潜移默化的功效。但在教学过程中我觉得还有如下遗憾:
在课件中尽管有一个知识网络图,但学生在学习过程中对本章知识并没有能够形成知识体系,没有能够构建完整的知识网络图。主要原因应该是:
1.知识网络图不是由学生自我总结得出的。
2.没有和学生共同分析知识结构图中各部分内容之间的关联。
3.网络图中做了链接,学生点击后进入链接内容,知识网络很快消失。
在今后的教学中,一定要让学生自我总结,自我设计知识结构图,教师引导规范由学生板书在黑板上,使之和课件中的结构基本一致,然后呈现课件中的知识结构图,再由学生点击进入下一阶段。
【本文地址:http://www.xuefen.com.cn/zuowen/15310679.html】