教案是教师教学过程的记录和反思,能够帮助教师不断提高教学质量。教案需要根据不同的教学内容和教学方法进行灵活调整和安排。以下是小编为大家整理的教案范例,供大家参考借鉴。
实际问题与方程数学教案设计篇一
学生在解方程的基础上进一步学习用方程解决实际问题,通过我的教学实践和教学反思,我觉得“重视关键句分析训练,让学生感悟方程的思想。”
解决实际问题首先要引导学生分析题目的条件和问题,找出题目中的关键句,根据关键句找出题目中的直接的相等关系,这样可以便于学生列出方程,解答问题。由于我知道我们现在的.数学课堂教学对等量关系式的训练不够重视,于是我课前谈话中用了很多时间对等量关系式的写法进行了训练。先从倍数关系,再到相差关系,然后两种关系合并,要求学生分别写出等量关系式,为本节课的教学打下良好的基础。为了突出根据关键句写等量关系式,我出示例题后,直接问:“三句话中你觉得哪一句最重要,为什么?”让学生根据“的东北虎只数比的3倍还多100只,写出三种等量关系,有三种关系式就对应着三种解法,哪一种关系式最容易想到。让学生感受到要提高正确率,我们可以从最容易的入手,学生已经掌握了“求一个数比另一个数的几倍多几(或少几)”的实际问题,我们就要引导学生,充分利用已有的知识经验解决新的问题。学生是学习的主体,出示问题后让学生尝试解决问题,教师通过巡视,充分了解学生的困难以及想法,然后才能很好的组织交流。为了使学生认识到方程的思想,我故意让学生先交流用倒推策略解决问题,当交流完列式后让学生说出每一步所表示的意识时,学生感到困难,再次问学生用倒推策略解决时,还可能出现什么错误,这样从两个方面让学生认识到用倒推策略解决的不足,才能更好的让学生主动愿意来学习用方程来解。方法的优劣是比较出来的,当然也是因人而异的。方程为什么要写设语,方程是怎样列出来的,把未知转化为已知条件,才能更好的利用我们最容易想到的等量关系式列出方程才能大大提高正确率。解完例题再次比较总结,列方程是怎样想的,而倒推策略是怎样想的。然后再总结列方程解决问题的一般步骤,只有让学生充分感受到方程的作用和价值,学生才会自愿用列方程来解决新的问题。
实际问题与方程数学教案设计篇二
教学目标:
1、经过探索与交流解决问题的过程,感受解决问题的一些策略,学习画线段图分析数量关系,学会解决与倍有关的两步计算实际问题及相应的变式问题。
2、感受数学与日常生活的密切联系,进一步增强对数学兴趣和信心,初步形成独立思考和探索问题的意识、习惯。
教学重点:学习画线段图分析数量关系,感受解决问题的一些策略,学会解决与倍有关的两步计算实际问题。
教学难点:画线图表示和分析数量问题,解决与倍有关的两步计算实际问题的变式题。
教学步骤。
教师活动过程。
学生活动过程。
一、谈话。
导入。
同学们:你们知道班上谁平时最讲究卫生,衣着最整洁吗?(不提漂亮,避免学生盲目攀比),确实,衣着是我们生活中的一件重要事情。那么,××同学你知道吗,你的衣服是谁给你买的呢?你知道它们的价格吗?今天这节课我们就来研究一个有关衣服的问题。(板书:实际问题)。
从学生的日常生活中引出数学问题,既自然又能吸引学生的注意力,为新课的教学奠定了良好的基础。
教学内容。
教师活动过程。
学生活动过程。
二、探究新知。
1、教学例题。
(1)课件出示妈妈带芳芳买衣服的情景。
衣服标价28元,营业员阿姨说:“上衣的价钱是裤子的.3倍。
请一名学生板演,其余在书上画。要求一套衣服要多少钱,也就是求裤子和上衣的价钱一共是多少元,那么该怎样表示这个问题呢?可以这样表示(师生边说边板演)。
(3)现在线段图画完了,你能指着线段图说说每一部分的意思吗?
(1)学生根据教学情境,说说了解到的有关信息,加深对题意的理解。
(2)学生根据题意,同桌进行讨论,弄清上衣和一套衣服的价钱该怎么表示,并将线段图补充完整。
(3)结合线段图说说每一部分表示的意思。
教学内容。
教师活动过程。
学生活动过程。
2、教学试一试。
3、比较。
(4)这个问题需要几步计算解决?你会解答吗?写在自己的随堂本上。(若有困难,可以与同桌讨论后再做。)。
(5)谁来说说你是怎样解答的?先算什么,再算什么?
(6)有不同的算法吗?若有,则让学生结合线段图说说”1+3“和”28×4“表示的意思,若没有则不教学第二种解法。
(2)先看线段图,问题改了,线段图要不要改?怎样改呢?你能说出要改的是哪部分吗,师画线段图。
(3)在随堂本上独立解答。
(4)交流:你是怎么做的呢?怎么想的?(注意引导学生有序地表达自己的思考过程)。
(5)有不同的解法吗?(没有别的解法则不讲另外的解法)。
上面这两道题在解答方法上有什么相同的和不同的地方?师补充出完整课题。
(4)学生独立解答或讨论后解答,全班交流。
(5)学生交流自己的解答过程,并说说先算什么,再算什么。
(6)学生交流不同的解法。
(1)思考怎样解答芳芳的问题。
(2)用线段图表示题意。
(3)独立解答。
(4)有序地说说自己的想法和解答的过程。
(5)交流不同的解法。
学生根据自己的理解说出相同点和不同点。
教学内容。
教师活动过程。
学生活动过程。
三、应用拓展。
四、小结全课布置作业。
1、想想做做第1题。
出示图,说说要求的问题,独立解答后再交流。
根据已知的信息,你能求出什么问题?
2、想想做做第2题。
说图意后,独立解答。
交流时,说说怎么想的(注意表达的有序性)。
3、想想做做第3题。
出示图,从中你得到哪些信息?要求我们做什么?你打算怎么办?独自填表,全班集体订正。
4、补合适的条件。
湖中黑天鹅有24只,,
白天鹅和黑天鹅共有多少只?
5、根据情境图,编一道今天学习的两步计算的实际问题(素材:雅典奥运会上,罗马尼亚获得金牌8枚,中国获得金牌32枚)。
(1)通过今天这节课,你有哪些收获?
(2)作业想想做做第4题。
1、先说出要求的问题,再独立解答、交流。
2、说图意后,独立解答交流。
3、交流题中的信息,填表后,集体订正。
4、同桌一人补合适的条件,另一人再说出算式。
学生交流感受,
完成课堂作业。
教学设计说明。
1、经历探索和交流解决问题的过程,感受解决问题的一些策略,学习用线段图对信息进行再加工,帮助分析、理解数量关系,寻找解题方法。
2、强调与他人合作交流,重视思维与表达的有序性。
3、鼓励解题方法多样化,但不强求一题多解。
4、感受数学与日常生活的密切联系,初步形成独立思考和探究问题的意识、习惯,增强应用数学的意识。
实际问题与方程数学教案设计篇三
《课标》指出:学生的数学学习应当是一个生动活泼、生动和富有个性的过程,要让学生经历数学知识的形成过程。基于这一理念,朱老师在本节课中注重了让学生动手操作、小组讨论、全班交流。学生在操作中明白算理;小组讨论中,有机会表达自己的想法,也学会去聆听别人的意见并作出适当的评价和补充。学生在交流中相互启发,在不同观点、创造性思维火花的相互碰撞中,发现问题、探究问题、解决问题。
通过教学这节课的设计意图达到了预期的效果,大多数学生已经学会了画“与倍有关的两步计算的实际问题”的线段图,并且知道了画线段图来帮助解题有以下几点好处:
1、有利于学生数学问题意识的培养。
线段图第一次在教学中出现,在认知上是由直观具体的“图”向较为抽象的“线段”的'过渡,而这又是帮助理解数量关系,解决问题的一种有效手段。因此,在设计教学时,我将重点放在了画线段图的方法指导上:让学生根据以往的知识基础,理清数量关系,讨论得出线段图的画法,明确一条线段表示一个数量,两条线段之间是有联系的,而这个联系可以从信息里得到;在对“问号该标在哪儿”的讨论中,明确了问题不同,问号所在的位置就会不同,解决的方法就会不同。
2、有利于学生分析数量关系,掌握解题技巧。
在这节课的学习中,学生在问题的引领下和在对线段图画法的讨论中,得不断的联系已知信息,去体会、分析信息中数量之间的关系,因此,对于数量之间关系的理解是自然而然的获得的,所以解决问题使学生感觉很轻松,讲起解法头头是道。我相信,在以后的学习中,在解决问题时他们会用这种方法去分析数量之间的关系、探究解决问题的方法的。
3、有利于学生运用多种方法解决问题。
这个优点是不言而喻的,在此就不多叙了。
实际问题与方程数学教案设计篇四
本节课的重难点在于设未知数和找等量关系,通过这两道题的练习,为第三道题的变式练习做准备。
3.养殖场有白兔和黑兔,白兔的只数是黑兔的4倍。
(1)白兔和黑兔一共230只,白兔和黑兔各有多少只?
(2)白兔比黑兔多138只,白兔和黑兔各有多少只?
请同学们先独立完成第一问,然后我们进行交流。
第二问请大家认真思考,观察与第一问的区别,独立完成后,进行交流。
四、课堂小结。
通过本节课的学习:
实际问题与方程数学教案设计篇五
苏教版《义务教育课程标准实验教科书数学》二年级(下册)第87~88页。
教学目标。
1。使学生能从开放的情境中合理提取数学信息,能够从条件或问题想起确定解题思路,能正确地分步列式解答相关的两步计算实际问题。
2。使学生在解决问题的过程中,培养初步的分析、综合和推理能力。
3。使学生在解决问题的过程中,积极与同伴进行交流,体会成功的快乐。
教学过程。
一、创设问题情境,自主探究解决方法。
1。课件演示小猴摘桃的情境。
毛毛猴说:“我们一共摘了42个桃。”
提问:如果你是小猴,你准备怎样安排自己的食物?
学生可能提出两种方案:(1)每天吃的个数同样多。(2)每天吃的个数不同,如:第一天吃9个,第二天吃12个。
提问:根据这些信息,你能提出哪些数学问题呢?
估计学生会提出:吃了多少个桃?还剩下多少个桃?……。
谈话:我们先来解决其中一个问题:还剩下多少个桃?你能独立解决吗?
[设计意图:变静态展示问题为动态生成问题,培养学生根据已有信息提出问题的能力。]。
2.探究解决方法。
要求学生先独立思考解决,再进行小组交流。
学生可能有下面两种想法:(1)从条件想起。根据每天吃9个桃,吃了3天可以求出长尾猴吃了多少个桃,再用一共摘了42个桃减去吃的桃,得到还剩多少个桃。(2)从问题想起。要求还剩多少个桃,需要知道摘了多少个桃和吃了多少个桃,已知摘了多少个桃,所以要先求出吃了多少个桃。
谈话:你能根据上面的讨论,自己列式解答这个问题吗?
学生尝试列式,教师板书:
(1)吃了多少个桃?9×3=27(个)。
(2)还剩多少个桃?42—27=15(个)。
提问:9×3求得的是什么?42—27为什么会得到剩下的呢?
3.引导反思,形成思路。
提问:为什么要先算已经吃了多少个桃?
4.迁移解题思路。
出示“试一试”。
毛毛猴说:“我一共摘了42个桃。”长尾猴说:“第一天吃(9)个,第二天吃(12)个(用学生课始时提出的数据)。”大卡提出问题:“还剩下多少个?”
提问:要解决这个问题,应先求什么?
学生独立解决问题,并在小组里交流自己的想法与计算方法。
教师巡视,并及时发现下面两种解法,指名板演:
(1)9+12=21(个);42—21=21(个)。
(2)42—9=33(个);33—12=21(个)。
组织交流时,重点引导学生表述第一种方法的思考过程,并提问:这样解答与例题的解答方法有什么相同点?(都是要先求已经吃了多少个)。
交流第二种方法。提问:这种解法先求什么?与第一种解法有什么不同?
二、分层练习,逐步巩固。
1.做“想想做做”第1题。
学生叙述题意后,提问:要先求什么?为什么?
学生独立解题,并组织反馈。
2.做“想想做做”第2题。
学生自主解决,并汇报解决问题的过程。
让不同解法的学生分别说一说自己是怎样想的(着重引导学生理解每一种解法是先求什么,再求什么的)。
3.做“想想做做”第3题。
学生独立列式解答,并与同伴交流(每一种解法的思考过程)。
4.做“想想做做”第4题。
学生独立解答后,组织全班交流。
5.拓展练习。
毛毛猴摘了3天桃,一共摘了31个;长尾猴也摘了3天桃,每天摘9个。
(1)毛毛猴与长尾猴一共摘了多少个桃?
(2)毛毛猴比长尾猴多摘了多少个桃?
学生独立解答后,提问:这两道题有什么相同的地方?
三、整理反思,形成思路。
提问:这节课你有什么收获?解答两步计算的实际问题,我们可以怎样思考呢?举例说一说。
实际问题与方程数学教案设计篇六
预设5:
解:设海洋面积为x亿平方千米。那么陆地面积可以表示为实际问题与方程教学设计亿平方千米。
地球表面积-海洋面积=陆地面积。
预设:第一种方法最好,解方程的过程最简单。
师:同学们你们简直太聪明了,想出来这么多解决这道题目的方法,不过我们要在这么多的方法之中选择最优的做法,一般遇到这类求两个未知量的题目,我们要设一倍量为x,再利用题目中的等量关系来解决问题。
师:接下来请同学们思考,列方程解决实际问题一般需要哪几个步骤呢?
(3)总结方法。
1、设(找出未知数,用字母x表示)。
2、找(找出题目中的等量关系)。
3、列(根据等量关系列出方程)。
4、解(运用等式的性质解方程)。
5、验(将解出的结果代入方程检验)。
6、答(完整地写好答话)。
三、巩固练习。
1、果园里苹果树和梨树一共300棵,梨树是苹果树的5倍,苹果树和梨树各有多少棵。下列说法正确的是()。
a、解:设梨树为x棵,则苹果树为5x棵。
b、解:设苹果树为x棵,则梨树为5x棵。
通过这道题目的练习,使学生更深一步掌握设两个未知量的方法。
2、找出下列各题中的等量关系。
实际问题与方程数学教案设计篇七
教学内容:
义务教育课程标准实验教科书(苏教版)数学第五册第43页例题和“试一试”,第43-44页“想想做做”第1-4题。
教学目标:
1、经历探索和交流解决问题的过程,感受解决问题的一些策略,学习画线段图分析数量关系,学会解决与倍有关的两步计算实际问题及相应的变式问题。
2、感受数学与日常生活的密切联系,进一步增强对数学学习的兴趣和信心,初步形成独立思考和探究问题的意识和习惯。
教学准备:准备上衣、裤子的图片(裤子图片上标有28元的标签)。
教学过程:
一、创设生活情境,导入新课。
谈话:星期天,郭老师去商场为孩子买衣服,了解到了以下信息,(依次贴出图片)。
裤子:28元。
上衣:价钱是裤子的3倍。
根据这些信息,你能提出哪些数学问题?(或问:你能解决哪些问题?或是你想知道什么?)(学生独立思考,同桌交流)。
根据学生汇报,教师板书:
1、一件上衣多少钱?
2、买一套衣服多少钱?
3、一件上衣比一条裤子贵多少钱?(或:一条裤子比一件上衣便宜多少钱?)。
二、探索新知,感知方法。
师生讨论“画数学”的方法:
一条裤子28元可以用一条线段来表示:————,线段可长可短,根据实际情况来画。上衣的价钱不知道,鼓励学生尝试画。通过讨论要明确上衣的价钱是3个28元那么长的线段。
师生共同完成线段图:裤子————。
上衣————————————。
1、“一件上衣多少钱?”
提问:这个问题的问号该标在哪儿?怎样标?你会解决吗?
(学生独立完成)指名板书:28×3=84(元)。
师:你能给同学们说说你是怎样想的吗?
2、“买一套衣服多少钱?”
提问:谁来讲讲“一套衣服”指的.是什么?那么“买一套衣服多少钱?”这个问题的问号该标在哪儿?为什么?(学生讨论,并标出问号)。
师:你会解决这个问题吗?(学生独立完成后,教师组织交流。)。
方法一:28×3=84(元)……上衣的价钱。
84+28=112(元)……一套衣服的价钱。
综合算式是:28×3+28。
方法二:3+1=4……上衣和裤子一共是4个28元。
28×4=112(元)……一套衣服的价钱。
综合算式是:28×(3+1)。
3、“一件上衣比一条裤子贵多少钱?”
学生尝试画线段图,标出表示问题的部分,并独立解答。
方法一:28×3=84(元)……上衣的价钱。
84-28=56(元)……上衣比裤子多的钱数。
综合算式是:28×3-28。
方法二:3-1=2……上衣比裤子多2个28元。
28×2=56(元)……上衣比裤子多的钱数。
综合算式是:28×(3-1)。
4、比较:第2个问题和第3个问题在解的方法上有什么相同的地方和不同的地方吗?
三、组织练习,巩固深化。
1、“想想做做”第1题和第2题。
分别出示带子图,要求:先说说带子图所表示的意思以及问题各表示什么意思,然后独立解答,最后在小组里交流。汇报时要说说先求什么,再求什么。
2、“想想做做”第3题。
提问:从题目中你获得了哪些信息?还有哪些信息我们不知道?你会解决吗?
提问:看着这张表你还能提出哪些数学问题?你会解决吗?(四人小组合作,互相提问并解答)3、独立作业:“想想做做”第4题和第6题。
四、质疑问难,全课小结。
通过这节课的学习,你有哪些收获?你是怎样获得的?还有什么不懂的吗?
实际问题与方程数学教案设计篇八
教学内容:
义务教育课程标准实验教科书(苏教版)数学第五册第43页例题和“试一试”,第43-44页“想想做做”第1-4题。
教学目标:
1、经历探索和交流解决问题的过程,感受解决问题的一些策略,学习画线段图分析数量关系,学会解决与倍有关的两步计算实际问题及相应的变式问题。
2、感受数学与日常生活的密切联系,进一步增强对数学学习的兴趣和信心,初步形成独立思考和探究问题的意识和习惯。
教学准备:准备上衣、裤子的图片(裤子图片上标有28元的标签)。
教学过程:
一、创设生活情境,导入新课。
谈话:星期天,郭老师去商场为孩子买衣服,了解到了以下信息,(依次贴出图片):
裤子:28元。
上衣:价钱是裤子的3倍。
根据这些信息,你能提出哪些数学问题?(或问:你能解决哪些问题?或是你想知道什么?)(学生独立思考,同桌交流)。
根据学生汇报,教师板书:
1、一件上衣多少钱?
2、买一套衣服多少钱?
3、一件上衣比一条裤子贵多少钱?(或:一条裤子比一件上衣便宜多少钱?)。
……。
二、探索新知,感知方法。
师生讨论“画数学”的方法:
一条裤子28元可以用一条线段来表示:
实际问题与方程数学教案设计篇九
本节课是以成本下降为问题探究,讨论平均变化率的问题,这类问题在现实世界中有很多的原型,例如经济增长率、人口增长率等等,联系生活实际很密切,这类问题也是一元二次方程在生活中最典型的应用。本节课主要是讨论两轮(即两个时间段)的平均变化率,它可以用一元二次方程作为数学模型。
学情分析。
1、由于我们的学生对列方程解应用题有畏惧的心理,感觉很困难,根据探究1学生的掌握情况来看,决定把探究2作为一课时,来专门学习。
2、学生对列方程解应用题的步骤已经很熟悉,而且有了第一课时连续传播问题的做铺垫,适合用自主探究,合作交流的学习方法。
3、连续增长问题的中的数量关系、规律的发现是本节课的难点,所以我把问题分解了让学生逐个突破,由于九年级学生具有一定的解题归纳能力,所以采用从一般到特殊的`探究方式。
教学目标。
知识与技能:
1、能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界某些问题的一个有效的数学模型。
2、能根据具体问题的实际意义,检验结果是否合理。
过程与方法:
1、经历将实际问题抽象为数学问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述。
2、通过成本降低、能源增长等实际问题,学会将实际应用问题转化为数学问题,发展实践应用意识。
情感与态度:通过用一元一次方程解决身边的问题,体会数学知识的应用价值,提高学生学习数学的兴趣。
教学重点和难点。
重点:利用增长率问题中的数量关系,列出方程解决问题。
难点:理清增长率问题中的数量关系。
实际问题与方程数学教案设计篇十
1、课件演示小猴摘桃的情境。
毛毛猴说:“我们一共摘了42个桃。”
提问:如果你是小猴,你准备怎样安排自己的食物?
学生可能提出两种方案:(1)每天吃的个数同样多。(2)每天吃的个数不同,如:第一天吃9个,第二天吃12个。
提问:根据这些信息,你能提出哪些数学问题呢?
估计学生会提出:吃了多少个桃?还剩下多少个桃?……。
谈话:我们先来解决其中一个问题:还剩下多少个桃?你能独立解决吗?
[设计意图:变静态展示问题为动态生成问题,培养学生根据已有信息提出问题的能力。]。
2.探究解决方法。
要求学生先独立思考解决,再进行小组交流。
学生可能有下面两种想法:(1)从条件想起。根据每天吃9个桃,吃了3天可以求出长尾猴吃了多少个桃,再用一共摘了42个桃减去吃的桃,得到还剩多少个桃。(2)从问题想起。要求还剩多少个桃,需要知道摘了多少个桃和吃了多少个桃,已知摘了多少个桃,所以要先求出吃了多少个桃。
谈话:你能根据上面的讨论,自己列式解答这个问题吗?
学生尝试列式,教师板书:
(1)吃了多少个桃?9×3=27(个)。
(2)还剩多少个桃?42—27=15(个)。
提问:9×3求得的是什么?42—27为什么会得到剩下的呢?
3.引导反思,形成思路。
提问:为什么要先算已经吃了多少个桃?
4.迁移解题思路。
出示“试一试”。
毛毛猴说:“我一共摘了42个桃。”长尾猴说:“第一天吃(9)个,第二天吃(12)个(用学生课始时提出的数据)。”大卡提出问题:“还剩下多少个?”
提问:要解决这个问题,应先求什么?
学生独立解决问题,并在小组里交流自己的想法与计算方法。
实际问题与方程数学教案设计篇十一
教学内容:
教科书p13例9、p14练一练、p16练习三第1~3题。
教学目标:
1.使学生在解决实际问题的过程中,理解并掌握形如ax+bx=c的方程的解法,会列上述方程解决两步计算的实际问题。
2.掌握根据题意找出数量间相等关系的方法,养成根据等量关系列方程的习惯。
教学重点:
掌握列方程解应用题的基本方法,在理解题意分析数量关系的基础上正确找出应用题中数量间的相等关系。
教学难点:
能正确找出应用题中数量间的相等关系。
教学过程:
一、谈话导入。
今天研究一个与颐和园有关的数学问题。
二、学习新知。
1.p13例9。
(1)指名读题,分析数量关系。
用线段图表示出题目中数量之间的关系吗?
学生尝试画图,集体交流。
根据线段图得到:水面面积+陆地面积=颐和园的占地面积。
启发:这大题目中有两个未知数,我们设谁为x呢?
(2)列方程并解方程。
指名学生列出方程,鼓励学生独立求解。
如果用x表示陆地面积,那么可以怎样表示水面面积呢?
追问:这道题可以怎样检验?
检验:a、72.5+72.53=290(公顷)b、217.572.5=3。
(3)观察我们今天学习的'方程,与前面的有什么不同?
小结:像这样含有两个未知数的问题我们也可以列方程来解答。
(4)学生独立完成p14练一练第1题。
三、巩固练习。
1.p14练一练第2题。
教师引导学生找出数量关系式。
陆地面积2.4-陆地面积=2.1。
2.解方程。
2x+3x=60。
3.6x-2.8x=12。
100x-x=198。
3.根据线段图列出方程。
4.解决实际问题:(列方程解)。
(2)一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?
在做这道题时你认为应注意什么呢?
四、全课小结。
在解答这一类应用题时应注意什么?
五、课堂作业。
p16练习三第2-3题。
实际问题与方程数学教案设计篇十二
一、教学目标:
1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。
2、通过观察,归纳的概念。
3、积累活动经验。
二、重点和难点。
归纳的概念。
感受方程作为刻画现实世界有效模型的意义。
三、教学过程。
1、课前训练一。
(1)如果||=9,则=;如果2=9,则=。
(2)在数轴上距离原点4个单位长度的数为。
(3)下列关于相反数的说法不正确的是()。
a、两个相反数只有符号不同,并且它们到原点的距离相等。
b、互为相反数的两个数的绝对值相等。
c、0的相反数是0。
d、互为相反数的两个数的和为0(字母表示为、互为相反数则)。
e、有理数的相反数一定比0小。
(4)乘积为1的两个数互为倒数,如:
(5)如果,则()。
a、,互为倒数b、,互为相反数c、,都是0d、,至少有一个为0。
(6)小明种了一棵高度为40厘米的树苗,栽种后每周树苗长高约为12厘米,问大约经过几周后树苗长高到1米?设大约经过周后树苗长高到1米,依题意得方程()。
a、b、c、d、00。
2、由课本p149卡通图画引入新课。
3、分组讨论p149两个练习。
4、p150:某长方形的足球场的周长为310米,长与宽的差为25米,求这个足球场的长与宽各是多少米?设这个足球场的宽为米,那么长为(+25)米,依题意可列得方程为:()。
课本的宽为3厘米,长比宽多4厘米,则课本的面积为平方厘米。
解:设每个练习本要元,则每个笔记本要元,依题意可列得方程:
6、归纳方程、的概念。
7、随堂练习po151。
8、达标测试。
(1)下列式子中,属于方程的是()。
a、b、c、d、
(2)下列方程中,属于的是()。
a、b、c、d、
解:设甲队胜了场,则平了场,依题意可列得方程:
解得=。
答:甲队胜了场,平了场。
(4)根据条件“一个数比它的一半大2”可列得方程为。
(5)根据条件“某数的与2的差等于最大的一位数”可列得方程为。
p151习题5.1。
实际问题与方程数学教案设计篇十三
(一)基础知识目标:
1.理解方程的概念,掌握如何判断方程。
2.理解用字母表示数的好处。
(二)能力目标。
体会字母表示数的好处,画示意图有利于分析问题,找相等关系是列方程的重要一步,从算式到方程(从算术到代数)是数学的一大进步。
(三)情感目标。
增强用数学的意识,激发学习数学的热情。
二、教学重点。
知道什么是方程、一元一次方程,找相等关系列方程。
三、教学难点。
如何找相等关系列方程。
四、教学过程。
(一)创设情景,引入新课。
由学生已有的知识出发,结合章前图提出的问题,激发学生进一步探究的欲望。
为了回答上述这几个问题,我们来看下面这个例题.。
(二)提出问题。
你会用算术方法解决这个实际问题么?不妨试一下。
如果设王家庄到翠湖的路程为x千米,你能列出方程吗?
根据题意画出示意图。
由图可以用含x的式子表示关于路程的数量,
王家庄距青山千米,王家庄距秀水千米,
由时间表可以得出关于路程的'数量,
从王家庄到青山行车小时,王家庄到秀水小时,
汽车匀速行驶,各路段车速相等,于是列出方程:
各表示的意义是什么?
以后我们将学习如何解出x,从而得到结果。
例1某数的3倍减2等于某数与4的和,求某数.。
例2环行跑道一周长400米,沿跑道跑多少周,可以跑3000米?
五、课堂小结。
用算术方法解题时,列出的算式表示用算术方法解题的计算过程,其中只能用到已知数,而方程是根据问题中的等量关系列出的等式,其中有已知数,又有未知数,有了方程后人们解决很多问题就方便了,通过今后的学习,你会逐步认识,从算式到方程是数学的进步。
六、作业布置。
习题3.1第1,2两题。
实际问题与方程数学教案设计篇十四
本节课的重难点都是从实际于问题中寻找相等关系,从而列方程解决实际问题,为了更好地突出重点、突破点,在教学过程中着力体现以下几方面的特点:
1、突出问题的应用意识。首先用一个学生感兴趣的突出问题引入课题,然后运用算术方法给出答案,在各环节的安排上都设计成一个个问题,引导学生能围绕问题开展思考、讨论,进行学习。
2、体现学生的主体意识。始终把学生放在主体地位,让学生通过对列算式与列方程的比较,分别归纳出它们的特点,从感受到从算术方法到代数方法是数学的进步。通过学生之间的合作与交流,得了出问题的不同解答方法,让学生对这节课的学习内容、方法、注意点等进行归纳。
3、体现学生思维的层次性。首先引导学生尝试用算术方法解决问题,然后逐步引导学生列出含未知数的式子,寻找相等关系列出方程。在寻找相等关系,设未知数及练习和作业的布置等环节中,都注意了学生思维的层次性。
4、渗透建模的思想。把实际问题中的数量关系用方程的形式表示出来,就是建立一种数学模型,有意识地按设未知数、列方程等步骤组织学生学习,就是培养学生由实际问题抽象出数学模型的能力。
从当堂练习和作业情况来看,收到了很好的教学效果,绝大部分学生都能根据实际问题准确地建立数学模型,但也有少数几个学生存在一定的问题,不能很好地列出方程。
【拓展阅读】。
实际问题与方程数学教案设计篇十五
1.教材背景。
作为曲线内容学习的开始,“曲线与方程”这一小节思想性较强,约需三课时,第一课时介绍曲线与方程的概念;第二课时讲曲线方程的求法;第三课时侧重对所求方程的检验.
本课为第二课时。
主要内容有:解析几何与坐标法;求曲线方程的方法(直译法)、步骤及例题探求.
2.本课地位和作用。
承前启后,数形结合。
曲线和方程,既是直线与方程的自然延伸,又是圆锥曲线学习的必备,是后面平面曲线学习的理论基础,是解几中承上启下的关键章节.
“曲线”与“方程”是点的轨迹的两种表现形式.“曲线”是轨迹的几何形式,“方程”是轨迹的代数形式;求曲线方程是用方程研究曲线的先导,是解析几何所要解决的两大类问题的首要问题.体现了坐标法的本质——代数化处理几何问题,是数形结合的典范.
后继性、可探究性。
求曲线方程实质上就是求曲线上任意一点(x,y)横纵坐标间的等量关系,但曲线轨迹常无法事先预知类型,通过多媒体演示可以生动展现运动变化特点,但如何获得曲线的方程呢?通过创设情景,激发学生兴趣,充分发挥其主体地位的作用,学习过程具有较强的探究性.
同时,本课内容又为后面的轨迹探求提供方法的准备,并且以后还会继续完善轨迹方程的求解方法.
数学建模与示范性作用。
曲线的方程是解析几何的核心.求曲线方程的过程类似于数学建模的过程,它贯穿于解析几何的始终,通过本课例题与变式,要总结规律,掌握方法,为后面圆锥曲线等的轨迹探求提供示范.
数学的文化价值。
解析几何的发明是变量数学的第一个里程碑,也是近代数学崛起的两大标志之一,是较为完整和典型的重大数学创新史例.解析几何创始人特别是笛卡儿的事迹和精神——对科学真理和方法的追求、质疑的科学精神等都是富有启发性和激励性的教育材料.可以根据学生实际情况,条件允许时指导学生课后收集相关资料,通过分析、整理,写出研究报告.
3.学情分析。
我所授课班级的学生数学基础比较好,思维活跃,在刚刚学习了“曲线的方程和方程的曲线”后,学生对这种必须同时具备纯粹性和完备性的概念有了初步的认识,对用代数方法研究几何问题的科学性、准确性和优越性等已有了初步了解,对具体(平面)图形与方程间能否对应、怎样对应的学习已经有了自然的求知欲望.
二、目标分析。
1.教学目标。
知识技能目标。
理解坐标法的作用及意义.
掌握求曲线方程的一般方法和步骤,能根据所给条件,选择适当坐标系求曲线方程.
过程性目标。
通过学生积极参与,亲身经历曲线方程的获得过程,体验坐标法在处理几何问题中的优越性,渗透数形结合的数学思想.
通过自主探索、合作交流,学生历经从“特殊——一般——特殊”的认知模式,完善认知结构.
通过层层深入,培养学生发散思维的能力,深化对求曲线方程本质的理解.
情感、态度与价值观目标。
通过合作学习,学生间、师生间的相互交流,感受探索的乐趣与成功的'喜悦,体会数学的理性与严谨,逐步养成质疑的科学精神.
展现人文数学精神,体现数学文化价值及其在在社会进步、人类文明发展中的重要作用.
2.教学重点和难点。
难点:几何条件的代数化。
依据:求曲线方程是解几研究的两大类问题之一,既是重点也是难点,是高考解答题取材的源泉.主要包括两种类型求曲线的方程:一是已知曲线形状时常用待定系数法;二是动点轨迹方程探求,本课的重点主要是探索动点的曲线方程.
曲线与方程是贯穿平面解几的知识,是解析几何的核心.求曲线方程是几何问题得以代数研究的先决,求曲线方程的过程类似数学建模的过程,是课堂上必须突破的难点.
三、教学方法及教材处理。
1.教学方法:探究发现教学法.
遵循以学生为主体,教师为主导,发展为主旨的现代教育原则,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,通过学生主动探索、积极参与、共同交流与协作,在教师的引导和合作下,学生“跳一跳”就能摘得果实,于问题的分析和解决中实现知识的建构和发展,通过不断探究、发现,让学习过程成为心灵愉悦的主动认知过程,使师生的生命活力在课堂上得到充分的发挥.
2.学法指导。
学生学法:互相讨论、探索发现。
由于学生在尝试问题解决的过程中常会在新旧知识联系、策略选择、思想方法运用等方面遇到一定的困难,需要教师指导.作为学生活动的组织者、引导者、参与者,教师要帮助学生重温与问题解决有关的旧知,给予学生思考的时间和表达的机会,共同对(解题)过程进行反思等,在师生(生生)互动中,给予学生启发和鼓励,在心理上、认知上予以帮助.
这样,在学法上确立的教法,能帮助学生更好地获得完整的认知结构,使学生思维、能力等得到和谐发展.
实际问题与方程数学教案设计篇十六
2.通过自学探究掌握裁边分割问题。
(阅读课本p47页,思考下列问题)。
1.阅读探究3并进行填空;
2.完成p48的思考并掌握裁边分割问题的特点;
设上、下边衬的宽均为9xcm,左、右边衬的宽均为7xcm,则:
由中下层学生口答书中填空,老师再给予补充。
思考:如果换一种设法,是否可以更简单?
设正中央的长方形长为9acm,宽为7acm,依题意得。
9a·7a=(可让上层学生在自学时,先上来板演)。
效果检测时,由同座的同学给予点评与纠正。
9.如图,要设计一幅宽20m,长30m的图案,两横两竖宽度之比为3∶2,若使彩条面积是图案面积的四分之一,应怎样设计彩条的宽带?(讨论用多种方法列方程比较)。
注意点:要善于利用图形的平移把问题简单化!
(只要求设元、列方程)。
实际问题与方程数学教案设计篇十七
(第1课时)。
【学习目标】。
1.知道用方程组解决实际问题的一般步骤.
2.会找出简单的实际问题中的数量关系,列出方程组,得出问题的解答.
【重点难点】。
重点:会用列方程组的方法解决实际问题.
难点:会找出简单的实际问题中的数量关系.
(第2课时)。
【学习目标】。
1.体会一题多解,学习从多种角度考虑问题.
2.读懂并找出简单的实际问题中的数量关系,列出方程组,得出问题的解答.
【重点难点】。
重点:会从多种角度考虑用列方程组的方法解决实际问题.
难点:会找出简单的实际问题中的数量关系.
【学前准备】。
1.小麦、玉米两种作物的单位面积产量的比是1:1.5,你能说明它的含义吗?(可以举例说明)。
2.“甲、乙两种作物的总产量的比是3:4”是什么意思?
3.总产量与哪些量有关?
(第3课时)。
【学习目标】。
1.体会方程组是解决含有多个未知数问题的重要工具.
2.读懂并能找出实际问题中的各种形式表达的数量关系,列出方程组,得出问题的解答.
【重点难点】。
重点:用列方程组的方法解决实际问题.
难点:会找出简单的实际问题中的数量关系.
实际问题与方程数学教案设计篇十八
1.能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型.
2.能根据具体问题的实际意义,检验结果是否合理.
【教学重点】列一元二次方程解有关传播问题、平均变化率问题的应用题。
【教学难点】发现传播问题、平均变化率问题中的等量关系。
【学习过程】。
一、知识回顾。
1、解一元二次方程都是有哪些方法?
2、列一元一次方程解应用题都是有哪些步骤?
二、新知探究。
分析:设每轮传染中平均一个人传染了x个人,
第二轮传染中,这些人中的每个人又传染了_______人,第二轮后共有_______人患了流感。
实际问题与方程数学教案设计篇十九
教学内容:
教科书第1页的例1、例2和试一试,完成练一练和练习一的第1~2题。
教学目标:
理解方程的含义,初步体会等式与方程的联系与区别,体会方程就是一类特殊的等式。
教学重点:
教学难点:
会列方程表示数量关系。
教学过程:
一、教学例1。
1.出示例1的天平图,让学生观察。
提问:图中画的是什么?从图中能知道些什么?想到什么?
2.引导。
(1)让不熟悉天平不认识天平的学生认识天平,了解天平的作用。
(2)如果学生能主动列出等式,告诉学生:像“50+50=100”这样的式子是等式,并让学生说说这个等式表示的意思;如果学生不能列出等式,则可提出“你会用等式表示天平两边物体的质量关系吗?”
二、教学例2。
1.出示例2的天平图,引导学生分别用式子表示天平两边物体的质量关系。
2.引导:告诉学生这些式子中的“x”都是未知数;观察这些式子,说一说写出的式子中哪些是等式,这些等式都有什么共同的特点。
3.讨论和交流:写出的式子中,有几个是等式,有几个不是,而写出的等式都含有未知数,在此基础上,揭示方程的概念。
三、完成练一练。
1.下面的式子哪些是等式?哪些是方程?
2.将每个算式中用图形表示的未知数改写成字母。
四、巩固练习。
1.完成练习一第1题。
先仔细观察题中的式子,在小组里说说哪些是等式,哪些是方程,再全班交流。要告诉学生,方程中的未知数可以用x表示,也可以用y表示,还可以用其他字母表示,以免学生误以为方程是含有未知数x的等式。
2.完成练习一第2题。
五、小结。
六、作业。
完成补充习题。
板书设计:
x+50=100。
x+x=100。
像x+50=150、2x=200这样含有未知数的等式叫做方程。
【本文地址:http://www.xuefen.com.cn/zuowen/15269889.html】