总结是对自己经验的提炼,让我们从中获取更多的智慧和教训。结合自身的经验和体会,把握总结的重点和关键,突出重要信息。看看这些学生的作品吧,他们在创造力和想象力方面做得非常出色。
比的基本性质教学设计篇一
使学生能够联系商不变的性质和分数的基本性质,概括并理解比的基本性质,能够正确地运用比的基本性质,把比化成最简单的整数比;通过数学培养学生的抽象概括能力和迁移类推的能力。渗透转化的数学思想,并使学生认识到事物之间都是存在内在的联系的。
教学重点和难点。
教学过程。
一、师:在前面的学习中我们学习了比的意义,谁来说出什么是比?
师:比与我们学过的那些知识有联系?有什么联系?
师:看来大家对前面学过的知识掌握得比较好。
(导入新课)。
师:大家想一想这个猜想有没有研究的价值?
师:所有的猜想都需要一个验证的过程才能最终被我们接受,现在就请同学们利用以前学过的知识来验证这一猜想。请举例验证。
师:是吗?同学们想不想听一听这位同学的高见?
师:这位同学问的非常好,对呀,到底是为什么呢?谁来回答?
师:大家同意吗?
师:能举例说明吗?比如180:120化成最简整数比是什么?
师:怎么化简的?根据是什么?
教师根据学生的讲述板书:
180÷120=(180÷60):(120÷60)=3:2。
2.师:大家都会了吗?那老师考一考大家行吧?出示(1)48:40。
(2):出示教材中的一组分数和分数、小数和小数、分数和小数、分数和整数、整数和小数的对比练习,请大家独立化简,指名板演。
师:上面几位同学做得对吗?为什么这样做?能说一说理由吗?根据是什么?
师:看来大家对这部分知识掌握的的确非常好了。
四、这节课我们重点研究了什么?你有什么收获?运用比的基本性质应注意什么?
五、人教版小学数学六年级上册第47--48页练习.十一第1、3。
板书设计。
比的前项与后项同时乘或除以同一个数(0除外),比值不变。
180÷120=(180÷60):(120÷60)=3:2→最简整数比。
同时除以这两个数的最大公因数。
比的基本性质教学设计篇二
教学目标:
1、让学生认识比例的内项和外项;发现并使理解和掌握比的基本性质。
2、通过自主学习,让学生学会根据比例的基本性质正确判断两个比能否组成比例。
3、培养学生的抽象概括能力。使学生体验数学学习成功的快乐。
教学重点和难点:
教学准备:多媒体课件。
教学过程:
一、复习旧知。
1.师:同学们,上节课我们学习了比例,什么叫做比例?生:表示两个比相等的式子叫作比例。2.师:如何判断两个比能否组成比例?生:化简比、求比值。
3∶6=1∶2。
所以6∶10=9∶15生2:因为20∶5=4∶1。
28∶7=4∶1。
所以20∶5=28∶7.
(学生边说教师边用课件展示解题过程,目的在于引导学生规范解题格式。)4.师:除了化简比,求比值,还有没有其他更简单的方法呢?这就是今天我们要学习的内容。
(1)观察这几组比例,它们有什么共同点?
在比例6:3=4:2中,组成比例的四个数“。
6、
3、
4、2”叫作这个比例的项。两端的两项“6和2”叫作比例的外项。中间的两项“3和4”叫作比例的內项。
(3)提问:你能说出其它三个比例的內项和外项各是多少吗?和你的同桌说一说。
认真观察所写出的比例,你有什么发现?(1)6和2(或3和4)可以同时是比例的外项,也可以同时是比例的內项。
(2)6×2=3×4,两个外项的积等于两个內项的积。4.验证是不是所有的比例都有这样的规律呢?请同学们任意写出一个比例,验证规律。
(1)与同桌每人写出一个比例,交换验证。
(2)如果把等号两端的分子、分母交叉相乘,结果会怎样呢?(3)为什么交叉相乘的积相等?明确:等号两端的分子、分母交叉相乘,就是把两个內项和两个外项分别相乘,所以它们的积是相等的。8.教学“试一试”
(1)假设每组两个比能组成比例,说出组成比例的内外项分别是什么。
三、巩固练习。
1.完成“练一练”第1题。(1)从表中你知道哪些信息?(2)从表中选择两组数据,写出一个乘积相等的式子。
追问:为什么每两个数相乘的积相等?(因为每两个数分别表示速度和时间,它们相乘的积表示路程,甲乙两地路程一定,所以乘积都相等。)(3)根据“80×6=120×4”写出比例,。
学生独立完成,教师巡视。
2、练习七第2题。
(1)下面四个数。
5、
说明:任意给出4个数判断能否组成比例,可以找出最大和最小项相乘,再把其他两数相乘。
(3)判断2.4.6.8这四个数。若不能组成,你能换掉一个数,使之组成比例吗?
3.任意从1-10中,写出4个数,判断能否组成比例?
与同桌合作完成。一个写,另一个判断。4.我是小法官,对错我来判。
(1)6和4是比例的什么?联系比例的基本性质,括号里可以填什么?指名填空,并说理由。(2)学生独立完成第2小题。
四、全课总结。
今天我们学习了什么内容?你有什么收获?
比的基本性质教学设计篇三
本节课的教学内容是比的基本性质和化简比。教材例3先用表格呈现了4瓶液体的质量和体积,要求学生求出各瓶液体质量和体积的比值,然后把比值相等的3个比写成等式,通过提示“联系分数的基本性质想一想,比会有什么性质”,让学生联想到分数基本性质类比出比的基本性质。由于有分数的基本性质和除法商不变规律的经验,学生理解.得出比的性质不会太难。在此基础上,教材进一步引导学生比较“这三个相等的比,哪一个更简单一些”。
学情分析。
在以前的学习中,学生学习了分数基本性质.商不变的性质以及比与除法.分数之间的关系,但是对本节课具有直接的真正迁移作用的仅有分数的基本性质以及比与除法。分数之间的关系。从语言学的角度说,分数.比的基本性质在句式上是一致的,容易被学生理解;从过程来说,分数的化简和比的化简具有较高的相似度,学生容易掌握。
教学目标。
1.学生理解和掌握比的基本性质,并会运用这个性质把比化简成最简单的整数比。
2.经历在实际情境中化简比,体会化简比的必要性。
3.学生通过观察.类比来建构比的基本性质和探索化简比的方法;在化简的过程中,加深对比与除法.分数之间关系的理解。
教学重点和难点。
重点:学生掌握比的基本性质,并正确地化简比。
教学过程。
一、情景激趣,提出问题。
1、出示例3的表格。
2、分析表格中的数学信息和数学问题,并解决这些数学问题。
3、分析、讨论表格中的数据,并尝试把表格中的比分类。
小结:我们可以把比值相等的比分为一类。
二、小组合作,探究新知。
2、讨论二:可以写出多少个比值是4/5的比呢?
三、尝试运用,解决问题。
先尝试独立完成“练一练”,再在小组内交流方法。
四、全课总结。
师:通过这节课的学习,你有什么收获?
比的基本性质是学生在已经掌握了商不变的性质和分数基本性质的基础上来学习的,六年级的学生有一定的推理概括能力,他们完全可以根据比与分数、比与除法的关系,推导出比的基本性质,所以这节课我充分调动的思维。
一)、我先组织学生复习了分数的基本性质和商不变的性质后,及时提出问题——比是不是也有什么性质呢?如果有的话,你认为它是怎么样呢?当有的学生根据分数与比的关系、比与除法的关系就自然而然的猜想出比的基本性质——比的前项和后项同时乘或除以一个相同的数(0除外),比值不变。这叫做比的基本性质。在举例验证的过程中我引导学生在小组合作交流中分析、整理、推导验证的具体的语言的表达能力。
当讲完了比的基本性质后出了三道较有代表性的化简比的练习,让学生在做练习的过程中归纳和整理出化简比的方法。化简比的教学我采用尝试法,由学生尝试化简,遇到问题小组共同探讨,找到化简方法,通过板演,方法还真不少,除了常规方法,还可以求比值,有人干脆把后项直接化成1.。不管采用那一种方法,只需符合规律,都给予充分的肯定,尊重了学生的情感、态度价值观,使学生从中体会到成功的喜悦,提高自己的学习兴趣。
三)、不足之处:
1.在练习中引导学生比较求比值和化简比的区别,是本节课的难点,在小组讨论总结的基础上,做了课件展示。展示时速度有点快,应放慢一些,更好地突出难点的解决策略。通过对比,加深学生对两种不同要求,在结果表达上的不同,解题过程,解题方法上的区别。
2.由于时间关系学生的讨论时间不够充分。
比的基本性质教学设计篇四
教学目标:
1、了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例,能根据乘法等式写出正确的比例。
2、通过观察、猜测、举例验证、归纳等数学活动,经历探究比例基本性质的过程,渗透有序思考,感受变与不变的思想,体验比例基本性质的应用价值。
3、引导学生自主参与知识探究过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生的思维。
教学难点:根据乘法等式写出正确的比例。
教学准备:多媒体课件。
整体设计说明:
本班的孩子基础较差,很多孩子没有养成好的学习习惯,好的思考方法,所以课堂上的重点放在了发现并概括出比例的基本性质上。在比例的基本性质应用时,重点突出孩子的思考过程,强调孩子有根据地思考,养成独立思考的习惯。
教学过程。
一、旧知铺垫导入。
2、比和比例有什么区别?
设计意图:注重从学生已有的知识出发,为新课做好铺垫。
二、自主探究。
过渡:同学们,比有各部位的名称,把比组成比例后我们有了新的名称,请自学课本第34页。生阅读后,请同学说出黑板上比例各部分的名称。
设计意图:组成比例的四个数的名称的认识对孩子们来说是比较简单的,所以让孩子们自学,培养孩子的自主学习能力,养成读数学书的习惯。
三、反馈练习。
指出下面比例的外项和内项。(投影出示)。
先小组之内说一说,然后在指名回答。重点说分数形式的比例外项和内项。
设计意图:这一环节重点学习组成一个比例的两个比哪两个数是外项,哪两个数是内项。重点突出分数形式下怎么去找比例的内项和外项。
(1)投影出示几组比例,让学生观察看看能有什么发现?细心的同学很快会发现这几组比例数字相同,但是书写位置不同。然后老师在质疑,为什么这些比例里的四个数书写位置不同却能组成比例呢?请小组合作找个这个秘密。
(2)学生找出原因后,教师引导学生用一句话总结出来。并指出这叫做比例的基本性质,板书课题。
(3)继续提出:是不是所有的比例都具有这样的性质,举例验证,最后得出结论。
(4)比例写出分数形式后,也就是等号两端的分子分母交叉相乘,乘得的积也一定相等。
设计意图:这一环节我根据学生好奇的心理,用质疑的方式来激发学生的学习兴趣,让学生主动去探索新知,这样也能让学生体会到总结归纳的过程,并渗透科学态度的教育。
五、巩固练习。
1、应用比例的基本性质,判断下面哪组中的两个比能否组成比例(投影出示练习)。
2、应用比例的意义或者基本性质,判断下面哪组中的两个比可以组成比例。
(学生独立完成后,用展示台展示)。
3、根据比例的基本性质,在()里填上适当的数。(投影出示)。
六、全课总结:这节课你有什么收获。
设计意图:关注学生知识与技能的掌握情况,并且留给孩子质疑问难的空间。
七、拓展练习:把下面的等式改写成比例。
3×40=8×15。
比的基本性质教学设计篇五
教材第50、第51页的内容及练习十一的第4~8题。
1、根据除法中商不变的规律和分数的基本性质,利用知识的迁移,使学生领悟并理解比的基本性质。
2、通过学生的自主探讨,掌握化简比的方法并会化简比。
3、初步渗透事物是普遍联系的辩证唯物主义观点。
重点:理解比的基本性质,推导化简比的方法,正确化简比。
难点:正确化简比。
练习题投影片。
一导入。
1、比与分数、除法的关系。
如果学生有困难,可以先完成下表。填表后再说一说比与分数、除法有怎样的关系。
老师:请大家回忆一下,分数有什么性质?商不变有什么规律?它们的内容分别是什么?
(指名学生发言)。
二教学实施。
1、猜想。
老师:比和分数、除法的关系相当密切,那么,在比中有没有类似的性质呢?如果有,请同学们猜想一下,可能会是怎样的。
汇报时,让学生说说猜想的根据,老师也可引导学生在“分数的基本性质”上进行替换。
引导学生用语言表述,比的前项相当于分数的分子,后项相当于分母,分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。因此,比的前项和后项同时乘或除以相同的数(0除外),比值不变。或者比的前项相当于除法中的被除数,后项相当于除数,被除数和除数同时乘或除以相同的数(0除外),商不变。因此,比的前项和后项同时乘或除以相同的数(0除外),比值不变。
2、验证。
以小组为单位,讨论、验证一下刚才的猜想是否正确。
学生汇报。
3、小结。
经过同学们的验证,我们知道这个猜想是正确的,并且经过补充使它更完整了,在比中确实存在这种性质。
4、化简比。
老师:应用比的基本性质,我们可以把比化成最简单的整数比。
出示例1(1)。
老师整理情境中的信息:“神舟”五号搭载了两面联合国旗,一面长15cm,宽10cm,另一面长180cm,宽120cm,问题是求这两面联合国旗长和宽的最简单的整数比分别是多少。
学生反复读几遍。
提问:你怎样理解“最简单的整数比”这个概念?
学生讨论,指名回答,达成共识,最简单的整数比必须是一个比,它的前项和后项都是整数,而且前项和后项应该是互质数。
15∶10=(15÷5)∶(10÷5)=3∶2。
180∶120=(180÷60)∶(120÷60)=3∶2。
出示例1(2)。
学生尝试把下面各比化成最简单的整数比。
老师强调:不管选择哪种方法,最后的结果都应该是一个最简单的整数比,而不是一个数。
5、反馈练习。
(1)完成教材第51页的“做一做”,集体订正。
(2)完成教材第53页练习十一的第4题。
提问:题目要求你怎么理解?什么叫后项是100的比?后项是100,前项要怎么办?
(3)完成教材第53页练习十一的第5题。
(4)完成教材第53页练习十一的第6~8题。
让学生说明理由,注意思维的逻辑性和语言的条理性。
三课堂作业新设计。
1、把下面各比化成最简单的整数比。
四思维训练参考答案。
课堂作业新设计。
1、6∶73∶13∶85∶67∶54∶14∶510∶1。
2、(1)4∶5(2)3∶2(3)7∶4(4)5∶2。
思维训练。
板书设计。
比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。
化简比:前项和后项只有公因数1的比,叫做最简单的整数比。把比化简成最简。
单的整数比,叫做化简比。
备课参考教材与学情分析。
比的基本性质是在学生学习了比的意义,比与分数、除法的关系,商不变的规律和分数基本性质的基础上进行教学的。教材联系学过的除法中商不变的规律和分数基本性质,通过“想一想”启发学生找出比中有什么相应的性质,然后概括出比的基本性质,应用这个性质可以把比化成最简单的整数比。学生在以前的学习中,已经掌握了商不变的规律和分数的基本性质,六年级的学生有一定的推理概括能力,他们完全可以根据比与分数、除法的关系,推导出比的基本性质,这节课通过让学生猜想—验证—应用,让学生理解比的基本性质,应用性质化简比。
课堂设计说明。
我们知道,比与分数、除法只是形式上的不同,实质上它们是可以互相转化的。教学时,我们先回顾比与分数、除法的关系,复习商不变的规律和分数的基本性质。引导学生想一想:比会不会也有自己的性质,启发他们用举例的方法验证自己的猜想。最后总结出比的基本性质。
根据比的基本性质将比化简,可以使这两个数量之间的关系更加简单、明了,便于学生分析一些事物现象。
比的基本性质教学设计篇六
教学内容:课本第57页的内容及例1,完成“做一做”题和练习十四的第5~9题。
教学目的:使学生理解比的基本性质,掌握化简比的方法。
教学过程:
一、复习。
1.除法中的商不变规律是什么?
3.比与除法有什么关系?
4.比与分数有什么关系?
二、新授。
我们刚才复习了除法中商不变规律和分数的基本性质,又知道比和除法、分数有着密切的联系,比的前项相当于被除数,比的后项相当于除数;比的前项也相当于分数的分子,比的后项相当于分母。
问:
引导学生得出:比的前项和后项同时乘以或者同时除以相同的数(零除外),比值不变。这就是比的基本性质。
问:(因为如果乘以0,比的后项就变成了0,没有意义。且0不能作除数,更不能同时除以0)。
2.教学化简比。
利用比的基本性质,我们可以把比化成最简单的整数比。
出示例1:把下面各比化成最简单的整数比。
(1)。
问:(引导学生得出:这道题前项、后项都是整数,要把它化成最简整数比,就必须根据比的基本性质把前、后项同时除以它们最大公约数7)。
(2)。
导学生说出:要根据比的基本性质,把它的前后项同时乘以它们的分母的最小公倍数18,才能转化成整数比。)。
化成整数比以后,如果不是最简的整数比,还要应用(1)题的方法继续化简。
(3)。
问:(启发学生说出:可根据比的基本性质,把它的前后项同时乘以相同的数,使它们转化成整数比。如果这时还不是最简整数比,要再除以前后项的最大公约数,使它化为最简整数比。)。
或
3.小结:
问:这节课我们学习了什么新知识?它的内容是什么?还学会了什么?
三、巩固练习。
1.完成“做一做”的题目。
让学生说一说化简的方法。
2.练习十四第5、7、8题。
3.练习十四第9题。
提示:化简与求比值的得数有什么不同?(化简的结果是一个比。求比值的结果是商,是一个数)。
四、作业。
1.练习十四第6、10题。
2.一列火车15小时行驶1200千米。
(1)写出行驶的路程和时间的比,并化成最简单的整数比。
(2)求出这个比的比值,再说出这个比值的含义是什么?
比的基本性质教学设计篇七
1.使学生进一步理解比例的意义,懂得比例各部分名称。2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。3.能运用比例的基本性质判断两个比能否组成比例。【教学重点】比例的基本性质。
2.应用比例的意义,判断下面的比能否组成比例。6∶10和9∶15。
4.5∶1.5和10∶5教师结合回答说:刚才,你们是根据比例的意义先求出比值,再作出判断的。老师不是这样想的,可很快就判断好了,想知道其中的秘密吗?那学完今天的知识----比例的基本性质,老师的秘密对你来说就不是秘密了。
【设计意图】注重从学生已有的知识出发,为新课做好铺垫。
二、自主探究。
三、反馈。
1.在四人小组里,将你的发现与同伴交流一下。
2.全班交流.(当学生说到比例的基节本性时,师引导学生探究验证.)3.板书:在比例中,两个外项的积等于两个内项的积。
【设计意图】因为学生对比的知识了解甚多,在这一环节,不是教师出示教材中的例子,而是让学生自己举例研究,使研究材料的随机性大大增强,从而提高结论的可信度。这样也能让学生体会到归纳的过程,并渗透科学态度的教育。
五、巩固练习。
1、应用比例的基本性质,判断下面哪组中的两个比能否组成比例(完成课本第41面的“做一做”)。
2、():4=6:()。
3、根据比例的基本性质,在()里填上适当的数.(1)15∶3=():1(2)2∶0.5=1.2:()。
5.在a:3=8:b中()是内项,a*b=()6.如果2a=7b(a,b不为零),那么a/b=()/()。
【设计意图】练习主要是运用比例的基本性质。要求学生讲明理由,培养学生有根据思考问题的良好习惯,并与用比例的意义来判断两个比能不能组成比例形成对比;在填写比例中未知数时,不仅要求学生说出理由,还要求学生进行检验,这样培养学生良好的检验习惯和灵活解决问题的能力,培养良好的学习习惯,并且充分体现练习的层次性、开放性,让孩子们发现比例的知识的奥妙。
六、通过本节课学习,你有什么收获?还有什么疑问?
【设计意图】关注学生知识与技能的掌握情况,并且留给孩子质疑问难的空间。
七、布置作业:
1、课本第43页的第5题(全班完成)。
2、课本第44页的第14题(学有余力的孩子完成)。
在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。【板书设计意图】这板书是为了突出重点,让孩子能一目了然地看出比例各部分名称以及两个外项和两个内项的积到底是两个数相乘。
比的基本性质教学设计篇八
教学内容:课本第57页的内容及例1,完成“做一做”题和练习十四的第5~9题。
教学目的:使学生理解比的基本性质,掌握化简比的方法。
教学过程 :
一、复习。
1.除法中的商不变规律是什么?
3.比与除法有什么关系?
4.比与分数有什么关系?
二、新授。
我们刚才复习了除法中商不变规律和分数的基本性质,又知道比和除法、分数有着密切的联系,比的前项相当于被除数,比的后项相当于除数;比的前项也相当于分数的分子,比的后项相当于分母。
问:
引导学生得出:比的前项和后项同时乘以或者同时除以相同的数(零除外),比值不变。这就是比的基本性质。
问:(因为如果乘以0,比的后项就变成了0,没有意义。且0不能作除数,更不能同时除以0)。
2.教学化简比。
出示例1:把下面各比化成最简单的整数比。
(1) 。
问:(引导学生得出:这道题前项、后项都是整数,要把它化成最简整数比,就必须根据比的基本性质把前、后项同时除以它们最大公约数7)。
(2)。
导学生说出:要根据比的基本性质,把它的前后项同时乘以它们的分母的最小公倍数18,才能转化成整数比。)。
化成整数比以后,如果不是最简的整数比,还要应用(1)题的方法继续化简。
(3)。
问:(启发学生说出:可根据比的基本性质,把它的前后项同时乘以相同的数,使它们转化成整数比。如果这时还不是最简整数比,要再除以前后项的最大公约数,使它化为最简整数比。)。
或
3.小结:
问:这节课我们学习了什么新知识?它的内容是什么?还学会了什么?
三、巩固练习。
1.完成“做一做”的题目。
让学生说一说化简的方法。
2.练习十四第5、7、8题。
3.练习十四第9题。
提示:化简与求比值的得数有什么不同?(化简的结果是一个比。求比值的结果是商,是一个数)。
四、作业 。
1.练习十四第6、10题。
2.一列火车15小时行驶1200千米。
(1) 写出行驶的路程和时间的比,并化成最简单的整数比。
(2) 求出这个比的比值,再说出这个比值的含义是什么?
比的基本性质教学设计篇九
1.使学生掌握整除、约数和倍数、质数和合数等概念,知道它们之间的联系和区别。掌握能被2、5、3整除的数的特征。会分解质因数。会求最大公约数和最小公倍数。
2.使学生在理解的基础上掌握分数、小数的基本性质。
一、数的整除。
1.整除的意义:
教师:。想一想.“什么叫做整除?”指名回答,
教师进一步强调:。“整除中说的数是什么数?”(整数。)。
“商是什么数?”(整数。)“有没有余数?”(没有余数:)。
教师:“什么叫除尽?”。“两数相除.余数是0。)。
“整除和除尽有什么联系和区别?”指名回答。教师根据学生的回答,整理出下表:
教师:“可以看出整除是除尽的一种特殊情况。”
2.能被2、5、3整除的数的特征。
教师:“我们已经学过能被2、5、3整除的数的特征。同学们还记得吗冲指名说一说。然后提问:
“能被2、5整除的数,在判别方法上有什么共同的地方?”(都根据个位数进行判别。)。
“能被3整除的数。在判别方法上与能被2、5整除的数有什么不同?”(根据各个数值上的数之和进行判别。)。
教师:“什么叫做奇数?什么叫做偶数:”
“根据什么来判断—一个数是奇数还是偶数?”
3.约数和倍数:
教师:“据整除的概念可以得到约数和倍数的概念:什么叫做约数?什么叫做倍数?”指名就一说。(如果a能被b整除。a就叫做b的倍数。b就叫做a的约数。)为了使学生进一步明确约数和倍数是相互依存的,教师可以接着提问:
“能说6是约数.15是倍数吗:应该怎么说?”
教师说明:在研究约数和倍数时.我们所说的数一般只指自然数,不包括0。
教师:“一个数的约数的'个数是怎样的:”(有限的。)。
“其中最小的约数是什么数:最大约数是什么数?”(1.这个数本身。)。
“一个数的倍数的个数是怎样的:”(无限的。)。
“其中最小的倍数是什么数?”(这个数本身。)。
做练习十九的第:题。让学生直接做在书上。教帅可以说明做的方法:在含有约数2的数”下面写“2”,在3的倍数下面写“3”。在能被5整除的数下面写“5”,然后再进行判断。集体订正。
4.质数和合数。
教师指名说一说质数、合数的概念。可有意识地让学习有困难的学生说,其他同学进行补充。
教师:“怎样判断——个数是质数还是合数?”(检查这个数约数的个数.或查质数表。)指名说—说30以内有哪些质数。
让学生进行判断:—个自然数如果不是质数,那么一定是合数。学生判断后,教师说明:1既不是质数.也不是合数。
5.分解质因数。
指名说一说质因数、分解质因数的含义。
做练习十九的第5题。学生独立解答。教师巡视.集体订正。
6。公约数、最大公约数和公倍数、最小公倍数。
(1)复习概念。
教师:“什么叫做公约数?什么叫做最大公约数?”(几个数公有的约数,叫做这几个数的公约数;其中最大的—个叫做这几个数的最大公约数。)“怎样求几个数的最大公约数?”让学生举例说明。
“什么叫做公倍数?什么叫做最小公倍数?怎样求几个数的最小公倍数?”让学生举例说明。
教师:“什么样的数叫做互质数/(公约数只有l的两个数叫做互质数,)。
“质数和互质数有什么区别:”(质数足一个数。只有1和它本身两个约数;互质数是两个数.只有公约数1。)。
“两个不同的质数一定互质吗?”(两个不同的质数—定互质。)。
“互质的两个数一定都是质数吗?”(不一定,如4和9互质,4,9都是合数。)。
(2)课堂练习。
做练习十九的第1题、先让学生独立判断,集体订正时。让学生说—说判断的理由。
做练习十九的第4题。学生独立解答。教师巡视,集体订正。
教师根据前面的教学.整理出教科书第86页的概念联系图。也可以把该图变化成如下形式。
比的基本性质教学设计篇十
教学内容:
课本第57页的内容及例1,完成做一做题和练习十四的第5~9题。
教学目的.:
教学过程:
一、复习。
1.除法中的商不变规律是什么?
3.比与除法有什么关系?
4.比与分数有什么关系?
二、新授。
将本文的word文档下载到电脑,方便收藏和打印。
比的基本性质教学设计篇十一
1.理解比例的基本性质,认识比例的各部分名称。2.能用比例的基本性质正确判断两个比能否组成比例。学习重点理解比例的基本性质。
一、复习(课件出示以下问题,指名学生回答)。
1、什么叫做比例?
2、什么样的两个比才能组成比例?
3、判断下面的比,哪两个比能组成比例?把组成的比例写出来。3:918:303:61.8:0.92:49:27学生独立完成后全班交流订正。
判断两个比能不能组成比例,除了看比值是否相等,还有没有其它的方法?这节课我们就一起来研究研究。
二、自主探索,体验新知。(课件出示自学要求)。
1、自学要求:1)自学书第41页的内容,把重要的地方画上线,不懂的问题用铅笔标在书上。2)提示:可以结合以下问题进行自学:
(1)什么叫比例的项?比例中有几个项?分别叫什么?(2)你能把比例改写成分数形式吗?改写成分数后你还能找到比例的外项和内项吗?试试看.(3)比例的基本性质是什么?你能用字母表示这个性质吗?根据比例的基本性质如何判断两个比能不能组成一个比例.(4)小组中议一议并集体交流。
2、组织学生交流自学成果。1)试一试。
应用比例的基本性质,判断下面的两个比能否组成比例。如果能组成比例,把组成的比例写出来,并指出比例的内项和外项。
3:6和8:50.2:2.5和4:502)课件出示三组比例,让学生填空。
三、巩固练习。
课件出示练习题,学生练习。
四、课堂总结说一说本节课的收获。
比的基本性质教学设计篇十二
知识与技能:理解和掌握分数的基本性质,知道分数基本性质与整数除法中商不变性质的关系。能运用分数的基本性质把一个分数化成分母相同而大小不变的分数;培养学生观察比较、抽象概括及动手实践的能力,进一步发展学生的思维。
:经历探究分数基本性质的过程,感受“变与不变”,“转化”等数学思想方法。情感态度与价值观:激发学生积极主动的情感状态,养成注意倾听的习惯,体验互助合作的乐趣。
:理解和掌握分数的基本性质,会运用分数的基本性质。
ppt课件、每小组准备三个同样大小的圆形纸片、三张完全一样的长方形(正方形)纸、直尺、彩笔等。
一、故事导入激趣引思。
引言:细心的同学一定听出来了,刚刚老师播放的是哪部动画片的主题歌?对,我们今天的学习就从西游记的故事说起。
生发表见解。
二、自主合作探索规律。
1、反馈引导:1/2=2/4=4/8。“三个徒弟分得的饼一样多---等式---仔细瞧瞧这组分数等式的分子分母相同么?但是它们的大小却?再用变化的眼光瞧瞧,(师画正反向两箭头)我们发现分数的分子分母改变了,什么却没有变?师贴板帖分数可真与众不同呵!
2、提出探究任务:那如果我让们动手做或者联系生活实际想,像这样大小相等的分数,只有一组吗?你们能不能找出一些给老师看看?找之前请位同学为我们读一读小组合作学习要求:
(1)每个小组找出一组大小相等的分数,并想办法证明这组分数大小相等。
(2)思考:在写分数的过程中你们发现了什么规律?
组内商量一下然后开始行动!
3、小组研究教师巡视。
4、全班汇报。
5、反思规律看书对照找出关键词要求重读共同读。
6、引证规律:3/4=12/16刚刚动手做我们验证了这组大小相等的分数的正确性并由此发现了分数的基本性质那你能否利用分数与除法的关系以及整数除法中商不变性质,再一次说明分数的基本性质。
三、自学例题运用规律。
生自学。
集体评议:例2练一练1和2,请说说你的根据和想法!重点让学生说说根据什么,分母、分子是如何变化的。
四、多层练习巩固深化。
1、判断对错并说明理由。
思考:分数的分母相同,能有什么作用?
3、圈分数游戏圈出与1/2相等的分数。
4、对对碰与1/2,2/3,3/4生生组组师生互动。
五、课堂小结课堂作业。
结语:你看,运用数学知识玩游戏,也是乐趣无穷。这节课我们就上到这儿,
作业:余下来的时间请完成课本97页练习十八的1-3题,做在书上。
比的基本性质教学设计篇十三
教学目标:
1、让学生理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。
2.根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。
学习目标:
1、理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。
重点难点:
2、让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。
过程设计:
一、激情导入。
1、导入课题。
生读故事。
2、明确目标。
理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系;并会应用分数的基本性质。
3、预期效果。
达到教学目标。
二、民主导学。
任务一。
任务呈现。
动手操作验证性质。
自主学习。
师:拿出准备好的三张正方形纸。按照下面的要求来进行操作。请一同学读学习要求。
1、把三张正方形纸平均对折一次、二次、三次,将纸平均分成2、4、8份,分别把2分之二、4分之二、8分之四涂上颜色,并标出二分之一、四分之二、8分之四。
2、仔细观察三张纸的涂色部份,你们能发现什么?
师:同位分工合作完成。现在开始。
师选择一份作品粘贴在黑板上,请一同学说一说你们有什么发现?
请二至三位同学说一说。
生回答。师:现在你们知道孙悟空为什么笑了吗?请同学回答。
师:猪八戒每次分到的都是一样多的。它还以为啊,开始分得少,后来分得多。不过猪八戒也许也正纳闷呢?这几个分数的分子和分母各不一样,那它们的大小怎么会一样呢?你们想帮猪八戒解决这个问题吗?(想)。
下面请同学们把这个式子从左往右地观察,看一下每个分数的分子分母怎样变化?才得到下一个分数。
生:我发现了二分之一的分子与分母同时乘以2得到了四分之二、四分之二的分子和分母同时乘以2得到了八分之四。
请二名同学重复。
生回答:一个分数的分子分母同时扩大相同的倍数,它们分数的大小不变。
请一至二名同学回答。
师板书:分数的分子分母同时乘相同的数,分数的大小不变。
师:谁来举一个例子。指名三位同学回答,师板书,并问:同时乘以了几?
请一同学回答,
生:我们发现了8分之四的分子与分母同时除以2得了四分之二,四分之二的分子与分母同时除以2得到了二分之一。
生:分数的分子分母同时除以相同的数,分数的大小不变。(二名学生重复)。
师板书:或者除以。
师:你能根据刚才总结的规律举一个例子吗?
让三名学生举出例子,师板书。并问:分子分母同时除以了几?
展示交流。
师指着板书说明:我们说分子分母同时乘或除以相同的数,分数的大小不变,那是不是包括所有的数呢?我们一起来看这样一个分数。板书八分之四同时除以0,问:这个式子成立吗?(打上问号)。
生:不成立,
师:为什么。
生:因为0不能作除数,
师:0不能作除数,所以这个式子是错误的。(画叉)。
师:我再说一个式子,我不除以0了,我乘以0,这个式子成立吗?(板书:8分之四乘以0,打上问号)。
生:不成立,因为在分数当中分母相当于除数,除数不能为0。
生:0除外。
师板书0除外。
生:同时和相同的数。
师:“同时”和“相同的数”(师将重点词语打点),大家想得一样吗?这个就是我们今天这节课要学习的分数的基本性质。(师板书课题)。
师:我相信如果当时猪八戒会这个分数的基本性质,那就不会出现这样的笑话了,那咱们同学们千万不要范它那样的错误了。下面让我们一起把分数的基本性质边读边记。
生齐读二遍。
师:这个分数的基本性质特别有用,我们可以根据分数的基本性质把一个分数化成和它相等的另外一个分数。
任务二。
任务呈现。
课本76页的例2,请一同学读题。
自主学习。
生独立完成,完成后和同位的同学说一说你是怎样想的。
展示交流。
每题请二名同学回答,(集体订正答案)。
检测导结。
1、目标练习。
76页“做一做”
练习十四的1、2、6、7题。
2、结果反馈。
生做完后同桌交流,再指名说说结果。
3、反思总结。
今天这节课你都学会了哪些知识?请大家谈谈学习了分数的基本性质的收获。
三、辅助设计。
教具课件设计。
小黑板正方形纸数块。
板书设计。
练习和作业设计。
1、完成课本76页做一做中的1、2题。
生独立完成,师指名回答。
2、完成练习十四中的1、2、5、6、7题。
师小结:这节课我们学习了分数基本性质,而且我们还学会了根据分数的基本性质把一个分数转化成和它相等的另外一个分数,其实生活当中还有许多的数学知识,如果你留心观察,你就能够发现,我希望大家都能做一个在学习上面的有心人。
【本文地址:http://www.xuefen.com.cn/zuowen/15243135.html】