不规则物体的体积教学设计(通用20篇)

格式:DOC 上传日期:2023-11-26 10:37:07
不规则物体的体积教学设计(通用20篇)
时间:2023-11-26 10:37:07     小编:笔尘

通过学习天文学知识,我们可以更好地了解天体运行规律,预测天象变化,对我们的日常生活有一定的参考价值。结合实际情况进行客观评价。总结是难忘的回忆总能让人心生感慨,也使人更加珍惜眼前的一切。写总结之前,先梳理一下过去一段时间的工作和学习经历,做好准备。以下是小编为大家整理的一些总结范文,希望能够给大家带来一些启发。

不规则物体的体积教学设计篇一

教学目标:1、在立体图形的体积和容积的知识基础上,探索生活中一些不规则物体体积的测量方法,加深对已学知识的理解和深化。

2、获得综合运用所学知识测量不规则物体体积的活动经验和具体方法,培养小组合作精神和问题解决能力。

3、感受数学知识之间的相互联系,体会数学与生活的密切联系,树立运用数学解决实际问题的自信。

教学难点:测量较大和较小物体的体积。

设计理念:本节数学活动重在让学生自己设计、自己发挥、自己动手、自己应用,在活动过程中,教师在学生独立思考和合作交流的基础上进行有针对性的指导,让学生具有较大的自主发展的空间,激发学生的学习兴趣,培养学生自主地发现问题,自主地提出问题,自主地解决问题的能力,感受数学与生活的联系。

教学步骤教师活动学生活动。

一、情景导入,提出问题。

设问:

(1)这些物体哪些会计算体积?怎样计算?

(2)哪些不会计算体积?这些不规则物体的体积能够直接计算出来吗?怎样计算呢?

学生口答体积的计算方法。

独立思考,联想质疑。

在水里是下沉的物体。

2.组织讨论测量的方法。

怎样利用学过的知识来测量不规则的物体体积?怎样来转化?实际操作时,应注意什么?

3.教师提出活动要求:

(1)小组在土豆、橡皮泥、石块、铁块、玻璃球中选择一个,先估计物体的体积,再讨论测量方案,最后动手实验。

(2)活动过程中,小组成员要分工合作。

(3)每项数据都要测量三次,然后取平均值。

(4)把实验的结果填在表格中。

物体名称物体的体积测量。

方法。

估测值第一次第二次第三次平均值。

(5)观测数据时要注意科学准确。

(6)要注意保持教室和桌面的卫生。

(7)容器中的水要适量,既不能太多,也不能太少。

以上有关“活动顺序”和“活动要求”的内容,制作成课件展示在屏幕上。

4.分小组活动。

请每个小组选择1个物体,用转化的方法进行测量。

5.学生活动结束后,汇报活动情况。

请小组成员汇报交流以下情况。

(1)所测量的物体。

(2)具体测量方案。

(3)具体测量结果。

(4)在活动过程中,是否还有无法解决或者带有疑问的问题?比较、分类。

分组讨论。

学生按照要求分工协作,进行实验操作。

分组汇报、交流。

三、解释应用,拓展延伸。

活动二:测量2个铁块的体积,并用天平称出它们的质量,再填写下表。

1.教师提出要求:。

(1)两个不同的铁块,先用天平称质量,再同同样的方法测量体积.

(2)用计算器计算质量与体积的比值。

(3)比较测量和计算的结果,你有什么发现.

2.分小组合作,测量体积、重量,计算比值。

3.组织交流:你有什么发现?

在学生交流的基础上,归纳:同一种材料,质量与体积的比的比值是一定的。(铁块的质量与体积的比的比值是7.8克/立方厘米)。

4.引导生思考:应用这一知识,你能算出另一块铁块的体积吗?

5.生分组计算,有时间的可以进行测量和验证.

学生分工协作,进行第二次实验操作。

交流、讨论、比较、找其中的规律。

实验、验证。

生举例、交流。

3、如果你想继续探索,还有那些问题需要帮助解决?总结、反思。

回顾、小结。

不规则物体的体积教学设计篇二

1、使学生进一步熟练掌握求长方体和正方体容积的计算方法。

3、通过学习,让学生体会数学与生活的紧密联系,培养学生在实践中的应变能力。

教学难点:灵活运用所学知识分析解决实际问题。

教法:利用已有的.经验,通过观察、操作等活动经历探索知识的过程,加强学生对所学知识的理解。

学法:通过观察、操作等活动,尝试用不同方法解决实际问题,体验“转化”的数学思想,探究求不规则物体的体积。

教学准备:橡皮泥、梨、量杯、多媒体课件。

教学过程。

学生读题独立完成,指名板演,集体订正。

1、师:我们已经学会了长方体、正方体的体积,可现实生活中还有许多像橡皮泥、梨、石头等形状不规则的物体。怎样求得它们的体积呢?今天,我们就一起来研究如何求不规则物体的体积。(板书课题)。

2、出示大屏幕。

橡皮泥??梨。

师:我们一起来看题目:要解决什么问题?这些物体有什么特点?

师:大家想怎么解决呢?同桌两人讨论一下,一会儿我找人说。

生:可以把橡皮泥捏成规则的长方体或正方体,量出它的长、宽、高求出体积。

师:把不规则的、可以变形的物品捏成规则的我们学过的立体图形,求出体积。很好,思路很清晰。

那梨呢,把梨也能削成长方体或正方体吗?显然不可能,那怎么办呢?

生:可以用排水法。

师:说一说你的思路。

生:先在杯子里放一些水,记住它的刻度,再把梨放入杯子里,也记下刻度,两次刻度的就是梨的体积。

师:他说的大家听明白了吗?

师:可以利用上面的方法测量乒乓球、冰块的体积吗?为什么?

师:所以我们一定要注意用排水法只能求出沉入水中的物体。

1、出示大屏幕。

珊瑚石的体积是多少?没有量杯,只有长方体容器,能求出珊瑚石的体积吗?

分析:题中告诉我们水的体积了吗?能求出来吗?

知道总体积吗?怎样求?你会解答吗?

2、练习九第8题。

读题,分析:这道题怎么做?

不规则物体的体积教学设计篇三

教学内容:教材第28页的第7~题及思考题。

教学目标:

1、提高学生应用公式解决实际问题的能力,

2、帮助学生进一步感受所学知识的应用价值;进一步培养学。

生的空间想象能力和综合应用数学知识解决实际问题的能力。

教学过程:

预习作业检测。

一根圆柱形钢材的底面直径是4分米,高1分米,每立方。

分米钢重7.8千克,这根钢材一共重多少千克?

合作探究。

完成练习七第7题。

师引导学生审题。

小组讨论、交流。

指名汇报解题思路。

生独立完成。

展示、评价。

完成练习七第8题。

指导学生读题,明白抹水泥部分是哪几个面。

指名说出想的过程。

生独立完成后展示、交流评价。

完成练习七第9题。

指导学生读题,使学生明白这个大棚实际上就是半个圆柱。

小组讨论,交流解题思路。

生独立完成后全班交流评价。

完成思考题。

引导学生读题分析,要想求出圆钢的体积就必须先求出圆柱形储水桶的底面积。

当堂达标检测。

完成补充习题。

课后拓展。

教学反思:

不规则物体的体积教学设计篇四

教学内容:教材第27、28页练习七的第3~6题。

教学目标:

1、通过练习,巩固圆柱的体积公式。

2、引导学生把所学的知识运用到实际生活中,并让学生感受到所学的数学知识的应用的价值。

教学过程:

预习作业检测。

圆柱的体积公式是什么?

一个圆柱形油桶,底面内直径是30厘米,高是60厘米。

(1)它的容积是多少立方分米?

(2)如果1立方分米可装柴油0.85千克,这个柴油桶可装柴油多少千克?(得数保留整千克数)。

合作探究。

完成练习七第3题。

引导学生仔细读题,并在小组讨论“题中的数据为什么要强调是从里面量的”。

让学生说出解题的思路。

汇报、交流、评价。

完成练习七第4题。

帮助学生审题。

指名说出自己想的过程。

生独立完成。

投影展示、交流、评价。

完成练习七第5题。

指导学生分组量出课前准备好的圆柱形茶杯的高和底面直径(从里面量)。

小组派出代表说出解题思路。

同桌共同完成解题过程。

投影展示、交流、评价。

完成练习七第6题。

生独立完成。

交流、评价。

当堂达标检测。

完成补充习题。

不规则物体的体积教学设计篇五

教学内容:教材第37页测量物体的体积。

教学目标:

1.通过学习,使学生所有的物体都有一定的体积,并学会求同一种物体的体积。

2.通过学习,使学生了解不规则物体的计算方法,并提高灵活应用计算方法解决一些实际问题的能力。

教学难点:进一步掌握同一种物体的体积计算方法。

预习作业:

1、回家找一块土豆,并计算它的体积。

2、回家找同一种铁块大小不同的3块,并算一算它的体积。

教学过程:

-、预习效果检测。

1、计算下面物体的体积。

圆柱:底面直径5厘米,高7厘米。

圆柱:底面直径15厘米,高7厘米。

圆柱:底面直径5厘米,高14厘米。

圆柱:底面直径5厘米,高21厘米。

圆锥:底面直径5厘米,高7厘米。

圆锥:底面直径5厘米,高21厘米。

圆锥:底面直径5厘米,高14厘米。

通过计算,你发现了什么?

二、合作探究。

1、出示准备好的圆柱形容器1个,土豆1个,小组合作,用下面的方法测量物体的体积,并填写表格。

实际操作时应注意什么?

2、出示准备好的2块铁块,并用天平称出它们的质量,并填写下表。

比较测量和计算的结果,你有什么发现?

三、教师小结。

同学们,同一种材料,质量与体积比的比值时一定的。应用这一知识,我们就能算出另一块铁块的体积。

四、课堂小结。

通过这节课复习,你进一步明确了哪些知识?

不规则物体的体积教学设计篇六

教学目标:

1、在理解的基础上进一步掌握长方体和正方体的体积算法。

2、能根据实际情况,灵活地运用不同的方法求出不规则物体的体积,体验合作探究的乐趣,培养学生不怕困难,勤于思考的学习态度。

教学重、难点:

教学准备:

梨、苹果,橡皮泥、石块、直尺,长方体透明容器,一小桶水,红水一瓶,量筒等。

教学过程:

一、复习引入。

2、计算体积与容积有什么联系和区别?(计算体积和容积都可以用到计算公式:

v长=adh。

v正=3a。

v=sh。

但计算容积时需要从里面量出长,宽,高。)。

复习的意图:通过问答唤醒学生已有知识,知道容积和体积的测量方法不同,为后续教学作铺垫。

3、引入;对规则物体如长方体或正方体,我们有办法求出它们的体积。但对这些不规则物体如橡皮泥,苹果,梨等能求出它们的体积吗?今天我们就来尝试一下吧。

二、探究新知。

老师:有什么办法求出橡皮泥的体积吗?

学生:同桌讨论交流(将橡皮泥摔成长方体;将橡皮泥丢进水里使水上升;……..)。

老师:在这些方法中,哪一种方法最简单?

学生:可以将橡皮泥捏成长方体或正方体,再通过测量长,宽,高就可以求它的体积。

操作;学生同桌合作探究橡皮泥的体积。可捏成长方体,量出长,宽,高,算出它的体积是()。

可捏成正方体量出棱长,算出它的体积是()。

小结:对于软不规则物体,我们可以通过捏成规则的如长方体(或正方体,但难度要大)可求出它的体积。(变形法)。

那么对于硬的不易变形的不规则物体,有什么办法来求出它的体积呢?

出示一块石头,问:你有什么办法求出它的体积吗?教师提示“乌鸦喝水”一课学生相互交流,汇报:

老师演示,将一块石头放进盛水的量杯里,注意使石头完全沉没于水中,水会上升。

小结:像上面这种方法叫做“排水法”。

3、如果没有量杯,只有长方体玻璃容器,那我们又该怎样来测量不规则物体的体积呢?

做实验,并完成下表填空。

即:芒果的体积=长×宽×(水升后的高-水升前的高);

或芒果的体积=底面积×两次水位高的差。

课件出示:求不规则物体的体积可以将不规则物体沉入有水的长方体容器中,量出长方体水的长,宽,高,算出上升那部分水的体积,就可以求出不规则物体的体积。在测量时注意量出水上升前的高度和上升后的高度。利用“底面积×两次水位高的差”这个公式来计算。

三、巩固练习。

练习九第7题,第13题。

四、全课总结。

并对学生进行“节约用水”教育。

不规则物体的体积教学设计篇七

:1、在立体图形的体积和容积的知识基础上,探索生活中一些不规则物体体积的测量方法,加深对已学知识的理解和深化。

2、获得综合运用所学知识测量不规则物体体积的活动经验和具体方法,培养小组合作精神和问题解决能力。

3、感受数学知识之间的相互联系,体会数学与生活的密切联系,树立运用数学解决实际问题的自信。

:本节数学活动重在让学生自己设计、自己发挥、自己动手、自己应用,在活动过程中,教师在学生独立思考和合作交流的基础上进行有针对性的指导,让学生具有较大的自主发展的空间,激发学生的学习兴趣,培养学生自主地发现问题,自主地提出问题,自主地解决问题的能力,感受数学与生活的联系。

教学步骤教师活动学生活动。

一、情景导入,提出问题。

设问:

(2)哪些不会计算体积?这些不规则物体的体积能够直接计算出来吗?怎样计算呢?

学生口答体积的计算方法。

独立思考,联想质疑。

在水里是下沉的物体。

2.组织讨论测量的方法。

怎样利用学过的知识来测量不规则的物体体积?怎样来转化?实际操作时,应注意什么?

3.教师提出活动要求:

(1)小组在土豆、橡皮泥、石块、铁块、玻璃球中选择一个,先估计物体的体积,再讨论测量方案,最后动手实验。

(2)活动过程中,小组成员要分工合作。

(3)每项数据都要测量三次,然后取平均值。

(4)把实验的结果填在表格中。

方法。

估测值第一次第二次第三次平均值。

(5)观测数据时要注意科学准确。

(6)要注意保持教室和桌面的卫生。

(7)容器中的水要适量,既不能太多,也不能太少。

以上有关“活动顺序”和“活动要求”的内容,制作成课件展示在屏幕上。

4.分小组活动。

请每个小组选择1个物体,用转化的方法进行测量。

5.学生活动结束后,汇报活动情况。

请小组成员汇报交流以下情况。

(1)所测量的物体。

(2)具体测量方案。

(3)具体测量结果。

(4)在活动过程中,是否还有无法解决或者带有疑问的问题?比较、分类。

分组讨论。

学生按照要求分工协作,进行实验操作。

分组汇报、交流。

三、解释应用,拓展延伸。

活动二:测量2个铁块的体积,并用天平称出它们的质量,再填写下表。

1.教师提出要求:。

(1)两个不同的.铁块,先用天平称质量,再同同样的方法测量体积.

(2)用计算器计算质量与体积的比值。

(3)比较测量和计算的结果,你有什么发现.

2.分小组合作,测量体积、重量,计算比值。

3.组织交流:你有什么发现?

在学生交流的基础上,归纳:同一种材料,质量与体积的比的比值是一定的。(铁块的质量与体积的比的比值是7.8克/立方厘米)。

4.引导生思考:应用这一知识,你能算出另一块铁块的体积吗?

5.生分组计算,有时间的可以进行测量和验证.

学生分工协作,进行第二次实验操作。

交流、讨论、比较、找其中的规律。

实验、验证。

生举例、交流。

3、如果你想继续探索,还有那些问题需要帮助解决?总结、反思。

回顾、小结。

不规则物体的体积教学设计篇八

教学内容:

九年义务教育六年制小学数学第十二册p37。

教学目标:

1、在立体图形的体积和容积的知识基础上,探索生活中一些不规则物体体积的测量方法,加深对已学知识的理解和深化。

2、获得综合运用所学知识测量不规则物体体积的活动经验和具体方法,培养小组合作精神和问题解决能力。

3、感受数学知识之间的相互联系,体会数学与生活的密切联系,树立运用数学解决实际问题的自信。

教学重点:

教学难点:

教学步骤。

一、情景导入,提出问题。

提问:

(2)哪些不会计算体积?这些不规则物体的体积能够直接计算出来吗?怎样计算呢?

2、分组实验,探索方案。

(1)引导学生进行归类(按照物体在水里是沉还是浮),说明:在水里上浮的先不研究,本节课研究在水里是下沉的物体。

(2)组织讨论测量的方法。

怎样利用学过的知识来测量不规则的物体体积?怎样来转化?实际操作时,应注意什么?

3、教师提出活动要求:

(1)小组在土豆、橡皮泥、石块、铁块、玻璃球中选择一个,先估计物体的体积,再讨论测量方案,最后动手实验。

(2)活动过程中,小组成员要分工合作。

(3)每项数据都要测量三次,然后取平均值。

(4)把实验的结果填在表格中。

物体名称。

测量。

方法。

估测值。

第一次。

第二次。

第三次。

平均值。

(5)观测数据时要注意科学准确。

(6)要注意保持教室和桌面的卫生。

(7)容器中的水要适量,既不能太多,也不能太少。

以上有关“活动顺序”和“活动要求”的内容,制作成课件展示在屏幕上。

4、分小组活动。

请每个小组选择1个物体,用转化的方法进行测量。

5、学生活动结束后,汇报活动情况。

请小组成员汇报交流以下情况。

(1)所测量的物体。

(2)具体测量方案。

(3)具体测量结果。

(4)在活动过程中,是否还有无法解决或者带有疑问的问题?

二、解释应用,拓展延伸。

活动二:测量2个铁块的体积,并用天平称出它们的质量,再填写下表。

1、教师提出要求:

(1)两个不同的铁块,先用天平称质量,再同同样的方法测量体积。

(2)用计算器计算质量与体积的比值。

(3)比较测量和计算的结果,你有什么发现。

2、分小组合作,测量体积、重量,计算比值。

3、组织交流:你有什么发现?

在学生交流的基础上,归纳:同一种材料,质量与体积的比的比值是一定的。(铁块的质量与体积的比的比值是7。8克/立方厘米)。

4、引导生思考:应用这一知识,你能算出另一块铁块的体积吗?

5、生分组计算,有时间的可以进行测量和验证。

三、

总结。

回顾评价反思。

1、这次数学实践活动我们都测量了哪些物体的体积?

2、你都有哪些收获或体会?

不规则物体的体积教学设计篇九

授课课题体积和体积单位(1)。

教学基本。

内容六年级数学(上册)第二单元教学第19~20页的例6、例7及相应的“试一试”,完成随后的“练一练”和练习五1~4题。

教学。

目的。

和要。

求1、引导学生通过操作活动,初步认识体积和容积的意义。

2、使学生在活动中进一步积累空间与图形的学习经验,发展空间观念和数学思考。

3、使学生进一步激发学生探究立体图形的兴趣。

教学重点。

及难点通过操作活动,初步认识体积和容积的意义。

教学方法。

学法指导。

观察思考并讨论练习。

集体备课个性化修改。

教学。

环节。

设计。

一、激发兴趣、导入新课。

让我们来试试看。

二、动手操作、自主探究。

1、认识体积。

1、学习例6。

(1)教师出示一个空杯,给空杯倒满水。

再出示一个同样的空杯:这两个杯子同样大,装的水也是一样多吗?

教师往空杯中装入一个桃,将满杯的水往装桃的杯中倒,直至倒满。

问:杯子中为什么会剩下一些水呢?

(2)教师出示两个水果,分别装入两个空杯,倒满水。

你觉得倒入几号杯里的水多?为什么?

将两个杯中的水果取出,以验证哪个背的水多。

(3)出示大小不同的三个水果,分别装入三个空杯,倒满水。

思考:

(4)师指出:物体所占空间的大小叫做物体的体积。(板书:体积)。

追问:你能举例比较两个物体的体积吗?

2、认识容积。

2、学习例7。

(1)出示两盒书。

师:你们看,书的体积大,也就是书盒所能容纳的书的体积大。这个书盒就是一个容积。

我们把“容器所能容纳的物体的体积,叫做这个容器的容积”(板书:容积)。

追问:这两个书盒,谁的容积大一些?为什么?

(2)试一试。

下面那个玻璃杯的容积大一些,你能想办法比一比吗?

师:什么是玻璃杯的容积,你能想办法解决这个问题吗?

三、巩固应用。

1、完成练一练第1题。

思考:溢出的水的体积分别相当于哪个物体的体积。

2、完成练一练第2题。

3、完成练习五第1题。

4、完成练习五第2题。

5、完成练习五第3题。

6、完成练习五第4题。

业补充习题。

板书设。

执行。

情况。

与课。

后小。

不规则物体的体积教学设计篇十

教学目标:

情感、态度、价值观:培养学生在实践中的应变能力,感受数学在生活中的应用。

教学内容:课本39页。

教学准备:课件、量杯、石块、橡皮泥。

教学过程:

一、谈话导入。

1、什么是体积?什么是容积?(提问学生)。

2、给你一个箱子,你会求箱子的体积吗?

箱子的体积可以通过测量出长、宽、高计算得到。

二、设疑自探。

看到课题,你想知道什么?

有公式吗?

三、出示自探提示,小组讨论交流(时间8分钟)。

同学们提的问题都很好,都是我们本节课应该学习的知识,老师将大家提出的问题归纳、整理、补充为下面的自探提示。

1、如何求橡皮泥的体积?说一说你的方法。

4、能用上面的方法测量乒乓球、冰块的体积吗?为什么?

四、解疑合探。

学生汇报结果(学困生回答,中等生补充)。

分析:橡皮泥可以改变形状。

方法一:把它捏成长方体,测量出长、宽、高计算出体积。

方法二:把它捏成正方体,测量出棱长计算出体积。

方法:排水法求石块的体积(注意:石块是完全浸没在水中)。

(1)量杯中装有水水的体积为200ml。

(2)把石块放入水中,因为石块占有一定的空间,水面会上升,体积为450ml。

(3)那么,石块的体积=上升部分水的体积。

石块的体积:450—200=250(ml)。

一般带体积单位250ml=250cm3。

答:石块的体积是250cm3。

排水法。

4、能用上面的方法求乒乓球、冰块的体积吗?

不能因为乒乓球到水里面会浮上来,这样就不能测量体积了;冰块会融化在水里,冰块会浮在水面上,体积测量也不准确。

五、运用拓展。

老师给大家设计了一些习题,检测一下大家对本节课知识的掌握与运用情况。

1、长方体容器装有水,长8cm,宽8cm,水面高6cm,把珊瑚石完全放入水中,此时水面高为7cm,求珊瑚石的体积是多少?(有没有其他方法)。

水面上升的高度:7-6=1(cm)。

珊瑚石的体积:8×8×1=64(cm3)。

方法二:

水面上升的高度=放入不规则物体后水的高度-原有水的高度。

=长×宽×水面上升的高度。

六、质疑再探。

对于本节的学习,谁还有什么问题或不明白的地方?大胆的提出来,我们一起解决。

七、小结。

通过本节课的学习,你有哪些收获?说一说与大家一起分享一下。

八、布置作业。

练习九7、8、9。

不规则物体的体积教学设计篇十一

不规则物体的体积是在学生学习了长方体、正方体的体积,容积等有关知识的基础上进行教学的,对于学生灵活运用知识解决问题是一个非常大的挑战。

1、注重指导学生观察、实验,理解排水法的解题思路。在教学中,邸老师通过让学生观察瓶子中的水,思考哪些是喝掉的水,让学生想一想根据之前学习的知识能否解决问题,从而想办法怎样把不规则的物体转换为规则物体,进而解决不规则物体的体积。接着,邸老师通过倒置瓶子,让学生继续观察对比,发现什么不变,什么变化了。学生通过观察发现瓶子没有变化,所以体积也没有变化,空白部分的体积也没有变化。那么到底是什么发生变化了呢?高度变了,形状也变化了。通过这样认真细致地观察,学生会想到把不规则物体的体积转换为规则物体的体积,也就是圆柱的体积进行计算,这也就揭示了排水法的解题思路。

2、注重习题的多样性、层次性。邸老师在新知的学习过程中,通过精心的教学设计,学生的细致思考,得出求不规则物体的体积的解题思路。在练习中,邸老师注重练习的层次性,由简单到复杂,由单一到多样,循序渐进,教学效果较好,练习的时间充分,关注了不同学生的学习。

1、在教学过程中,可以对解决问题的步骤进行提炼总结,回顾与反思,利于学生清晰解题思路,能够依据数学模型解决不规则物体的体积问题。

2、在教学过程中,还需要留给学生充分的思考时间和空间,让学生在思维碰撞中理解所学的知识,能够应用所学知识解决问题。

不规则物体的体积教学设计篇十二

在前面的学习中,学生已经会求长方体和正方体等规则物体的体积,但是生活中有许多物体都是不规则的,怎样求不规则物体的体积呢?这便是本节课要解决的问题。

教材中通过用排水法测量梨的体积,使学生明确,求不规则物体的体积,可以用排水法,不规则物体的体积就是上升那部分水的体积。

为了更好地理解不规则物体体积的计算,我们还开展了排水法的实验活动,我我把全班学生分成了9各小组,每个小组分发一个盛有一定水的长方体透明的塑料容器,一块石头,让学生测量容器里面的长宽高,在测量放入石头后的高,再通过计算求取石头的体积。通过试验,学生真真切切地明白了用排水法求不规则物体体积的原理,并能用自己的话说出原理,从实践中获取知识,在经历中提高自己。体验了学习数学的快乐。激发了学习数学的热情。

不规则物体的体积教学设计篇十三

教学目标:

情感、态度、价值观:培养学生在实践中的应变能力,感受数学在生活中的应用。

教学内容:课本39页。

教学准备:课件、量杯、石块、橡皮泥。

教学过程:

一、谈话导入。

1、什么是体积?什么是容积?(提问学生)。

2、给你一个箱子,你会求箱子的体积吗?

箱子的体积可以通过测量出长、宽、高计算得到。

二、设疑自探。

看到课题,你想知道什么?

有公式吗?

三、出示自探提示,小组讨论交流(时间8分钟)。

同学们提的问题都很好,都是我们本节课应该学习的知识,老师将大家提出的问题归纳、整理、补充为下面的自探提示。

1、如何求橡皮泥的体积?说一说你的方法。

4、能用上面的方法测量乒乓球、冰块的体积吗?为什么?

四、解疑合探。

学生汇报结果(学困生回答,中等生补充)。

分析:橡皮泥可以改变形状。

方法一:把它捏成长方体,测量出长、宽、高计算出体积。

方法二:把它捏成正方体,测量出棱长计算出体积。

方法:排水法求石块的体积(注意:石块是完全浸没在水中)。

(1)量杯中装有水水的体积为200ml。

(2)把石块放入水中,因为石块占有一定的空间,水面会上升,体积为450ml。

(3)那么,石块的体积=上升部分水的体积。

石块的体积:450—200=250(ml)。

一般带体积单位250ml=250cm3。

答:石块的体积是250cm3。

排水法。

4、能用上面的方法求乒乓球、冰块的体积吗?

不能因为乒乓球到水里面会浮上来,这样就不能测量体积了;冰块会融化在水里,冰块会浮在水面上,体积测量也不准确。

五、运用拓展。

老师给大家设计了一些习题,检测一下大家对本节课知识的掌握与运用情况。

1、长方体容器装有水,长8cm,宽8cm,水面高6cm,把珊瑚石完全放入水中,此时水面高为7cm,求珊瑚石的体积是多少?(有没有其他方法)。

水面上升的高度:7-6=1(cm)。

珊瑚石的体积:8×8×1=64(cm3)。

方法二:

水面上升的高度=放入不规则物体后水的高度-原有水的高度。

=长×宽×水面上升的高度。

六、质疑再探。

对于本节的学习,谁还有什么问题或不明白的地方?大胆的提出来,我们一起解决。

七、小结。

通过本节课的学习,你有哪些收获?说一说与大家一起分享一下。

八、布置作业。

练习九7、8、9。

将本文的word文档下载到电脑,方便收藏和打印。

不规则物体的体积教学设计篇十四

不规则的物体在我们的日常生活中随处可见,发现、验证并运用排水法测量物体的体积是本节课教学的重点,并在理解“上升的水的体积就是浸入水中物体的体积”的基础上,感悟“转化”的数学思想,是本节课的难点。

我个人认为这节课的设计能够依托学生的认知基础和已有知识,通过让学生经历独立思考、合作探究、实验操作等数学活动过程,尝试用多种方法解决实际问题,体验“等积变形”的转化思想,探究测量不规则物体体积的方法。培养了学生积极探索,小组合作,勇于创新的精神。通过以解决问题为目的的实践活动,培养孩子实践能力和用数学方法分析、解决现实生活中实际问题的能力。在本节课中我有以下体会:

水上升部分;下降法:v物=v。

下降部分;溢出法:v物=v。

溢出部分。在这一系列的测量活动中,学生不仅是感受到了数学中的转化思想,更是得到了一次检验自身综合实践能力的机会,从而达到认识上、知识上、技能上、思维上、情感上的更高目标。

本节课虽然有以上亮点,但是还是存在着对问题解决过程缺乏评价的不足。

在学生测量不规则物体体积的过程中,求出物体的体积不是问题解决的终结,还应对解决问题的过程和结果进行评价,通过评价,可以进一步揭示数学问题的本质,培养学生分析问题、解决问题的能力。

在探求过程中,往往会出现许多不同的方法和结果,教师要给予学生充分的自由,允许他们发表意见,保护学生的积极性。而本课在这个环节上做的还不够。

不规则物体的体积教学设计篇十五

”她笑着说:“很聪明,你知道测了吗?”

我恍然大悟,课余,我在实验室做起了实验。

1、我拿了50毫升的量筒,水平实验桌上。

2、往量筒里加30毫升的水,方便取放岩石,用线把岩石栓。

3、把栓好的岩石放进去,水面上升到哪个刻度,水上升的体积岩石的体积。

记录如下:(单位:毫升)。

水面高度。

放岩石后水面高度。

30。

33。

3

30。

33。

3

30。

32.7。

2.7。

岩石的平均体积=(3+3+2.7)/3=2.9毫升=2.9立方厘米。这种方法,我很容易地测出了岩石的体积。不光是岩石,只要是不规则的物体(这种物体又不溶解在水中的)的体积,都可以用这种方法测量。

生活中处处有科学,只要多动脑,多动手,解决!

科学小实验作文:冰糖融化了

不规则物体的体积教学设计篇十六

不规则的物体在我们的日常生活中随处可见,发现、验证并运用排水法测量石块的体积是本节课教学的重点,并在理解上升的水的体积就是浸入水中物体的体积的基础上,感悟转化的数学思想,是本节课的难点。

我个人认为这节课的设计能够结合课本,依托学生的认知基础和已有知识,通过让学生经历独立思考、合作探究、实验操作等数学活动过程,尝试用多种方法解决实际问题,体验等积变形的转化思想,探究测量不规则物体体积的方法。培养了学生积极探索,小组合作,勇于创新的精神。通过以解决问题为目的的实践活动,培养孩子实践能力和用数学方法分析、解决现实生活中实际问题的能力。在本节课中我有一下几点体会:

数学问题的解决主体是学生,学生的积极性是否被激发和调动起来了,是学习成败的决定性因素。本节课的开始,我就开门见山地抛出问题你能测量出一张a4纸的体积吗?这个问题使学生感到一种挑战性,虽然a4纸是一个规则的长方体,也知道要去测量它的长、宽、高,但是这么薄,利用现有的测量工具是无法测量出来的。怎么办呢?学生的求知欲、探索欲被激发起来了。

又如当学生会测量规则的a4纸的体积后,教师话锋一转,问:那桌面上这些不规则物体的体积你想测量吗?学生立刻进入到另一种兴奋的状态,因为桌面上摆放着芒果、大螺丝、奇形怪状的石头,这都是学生生活中随处可见的,但要说谁测量过它们的体积,还真没有人体验过,所以孩子们的热情和欲望愈发强烈。

在学生成功测量出不规则物体的体积后,掌握了测量不规则物体体积的方法后,我又提出一个难题,让学生测量灯泡的体积。这下真是一波刚平,一波又起,学生的探究欲望再一次被点燃,灯泡会浮起来,怎么测量呢?围绕着这一问题小组内叽叽喳喳地小声交流起来,几个想出点子的同学迫不及待地介绍开来,我们可以将灯泡和刚才的重物缠在一起,然后放到水里,这样就能测量出灯泡的体积了。话音刚落,几个小伙伴就忙活开了。

这里除了激发起了学生求知探索的欲望外,教师还能给足学生思考、实验、交流的时间,使学生真正并且完整地经历整个过程,有效地培养了学生的思考能力,保证了课堂教学的实效,也真正做到了有情。

学生数学思维能力的高低,直接影响着解决问题水平的高低。其中思维的概括性、问题性、逻辑性是学生思维能力的重要表现。因此,在教学中应该善于抓住每一个环节,下功夫培养学生的思维能力,为问题解决提供强有力的载体。

在测量一张a4纸体积时,我利用问题如何测量a4纸的高呢?引发学生思考,几个学生开始有所超越,想到了我可以再多拿一些同样的a4纸,把它们叠在一起,这样就能测量出a4纸的高了。学生的思维得到了一种飞跃性的发展,懂得利用转化的思想,先测量出100张的体积,然后再求出1张的体积。而这样的思维训练使学生的学习更加有意义。

在学生利用量筒(长方体容器)测量不规则物体体积时,他们能想出用排水法测量不规则物体的体积,但是这里有一个很重要的知识点,那就是明白转化的思想,从而掌握测量方法。本节课,我在学生演示测量过程的时候,借机一问为什么相差部分水的体积就是不规则物体的体积呢?从而帮助学生理解,我们不是直接去测量不规则物体的体积,而是将不规则物体的体积转化为水的体积,进而想出根据测量方法的不同,可以有不同的转化,如上升法:v物=v上升部分;下降法:v物=v下降部分;溢出法:v物=v溢出部分。

学生已有的知识技能水平是问题解决的重要保障。在学生面临新问题时,这种已有的知识、技能就是学习新知识、形成新技能的推动器。因此,教学中必须重视强化学生的基本知识、基本技能,使得学生的学习更扎实、深刻,实现真正的学习目标。

例如在本课的教学中,我将学生的实验测量与列式计算解决问题相结合,当学生悟出测量出100张纸的高后,马上让学生介绍如何求一张a4纸体积的方法,将学生之前学习的长方体体积的知识进行拓展应用。再如测量不规则物体的体积时,我刻意提供一些体积很大的石头,使得学生无法利用量筒测量,只能利用长方体容器来测量,而在测量中,就需要学生利用容积的知识,明白需要测量容器里面的长和宽,而计算中有的学生就灵活地利用长宽高度差=不规则物体的体积,准确测量出不规则物体的体积。

在这一系列的测量活动中,学生不仅是感受到了数学中的转化思想,更是得到了一次检验自身综合实践能力的机会,从而达到认识上、知识上、技能上、思维上、情感上的更高目标。

本节课虽然有以上几点亮点,但是还是存在着对问题解决过程缺乏评价的'不足。

在学生测量不规则物体体积的过程中,求出物体的体积不是问题解决的终结,还应对解决问题的过程和结果进行评价,通过评价,可以进一步揭示数学问题的本质,培养学生分析问题、解决问题的能力。在探求过程中,往往会出现许多不同的方法和结果,教师要给予学生充分的自由,允许他们发表意见,保护学生的积极性。而本课在这个环节上做的还很不够。

不规则物体的体积教学设计篇十七

测量。

方法。

估测值。

第一次。

第二次。

第三次。

平均值。

(5)观测数据时要注意科学准确。

(6)要注意保持教室和桌面的卫生。

(7)容器中的水要适量,既不能太多,也不能太少。

以上有关“活动顺序”和“活动要求”的内容,制作成课件展示在屏幕上。

4、分小组活动。

请每个小组选择1个物体,用转化的方法进行测量。

5、学生活动结束后,汇报活动情况。

请小组成员汇报交流以下情况。

(1)所测量的物体。

(2)具体测量方案。

(3)具体测量结果。

(4)在活动过程中,是否还有无法解决或者带有疑问的问题?

二、解释应用,拓展延伸。

活动二:测量2个铁块的体积,并用天平称出它们的质量,再填写下表。

1、教师提出要求:

(1)两个不同的铁块,先用天平称质量,再同同样的方法测量体积。

(2)用计算器计算质量与体积的比值。

(3)比较测量和计算的结果,你有什么发现。

2、分小组合作,测量体积、重量,计算比值。

3、组织交流:你有什么发现?

在学生交流的基础上,归纳:同一种材料,质量与体积的比的比值是一定的。(铁块的质量与体积的比的比值是7。8克/立方厘米)。

4、引导生思考:应用这一知识,你能算出另一块铁块的体积吗?

5、生分组计算,有时间的可以进行测量和验证。

三、总结回顾评价反思。

1、这次数学实践活动我们都测量了哪些物体的体积?

2、你都有哪些收获或体会?

不规则物体的体积教学设计篇十八

在我们日常生活中,有很多时候需要知道一个物体的体积。生活中有些规则图形,如正方体、长方体、球体。这些物体的体积可以用一些已经得以证明的公式求的。但我们周围的物体大部分都是形状不规则的物体,如土豆、橡皮泥等等。那么这些物体我们应该怎么求体积呢。我决定做个试验来试试。

回到家中,我准备了各种需要的工具:土豆、有刻度的量杯、水等等。我先把了两百毫升的水倒进了量杯中,然后把土豆放了进去,我发现两百毫升的水上升到了四百五十毫升,那么这就说明了土豆占据了水一定的容积,所以水的刻度才会上升。之后我又把现在的水深四百五十毫升和之前的二百毫升水的差距计算出来。所得的这个结果就是土豆占据水的体积。最后换算下单位,这个土豆的.体积就算出来了。我们一般叫这个方法为排水法。所谓排水法就是把形状不规则物体放入水中,水就有可能上升,那么前后的差距,就是这个物体的体积。

另外我还发现了比较两个形状不规则物体体积的方法,同样用的也是排水法。把这两个要比较的物体放入两个容水量相同的容器里,看哪一个容器水面上升的高,哪个同物体的体积就是大的。

不规则物体的体积教学设计篇十九

教学内容:

九年义务教育六年制小学数学第十二册p37。

教学目标:

1、在立体图形的体积和容积的知识基础上,探索生活中一些不规则物体体积的测量方法,加深对已学知识的理解和深化。

2、获得综合运用所学知识测量不规则物体体积的活动经验和具体方法,培养小组合作精神和问题解决能力。

3、感受数学知识之间的相互联系,体会数学与生活的密切联系,树立运用数学解决实际问题的自信。

教学重点:

教学难点:

教学步骤:。

一、情景导入,提出问题。

提问:

(2)哪些不会计算体积?这些不规则物体的体积能够直接计算出来吗?怎样计算呢?

不规则物体的体积教学设计篇二十

一天,我刚上完奥数课,看到妈妈,便兴奋地说:“妈妈,我学会了求长方体和正方体体积的方法了。”妈妈笑着说:“真的?那我要考考你了。”“好,随便你怎么出吧。”体、长方体,这样试试看?”我一听,点了点头,似乎顿时茅塞顿开,便急忙拿起小刀,按照妈妈提示的方法,用小刀切呀切,再用尺子量呀量,再算啊算,直搞得满地是演算纸,一分钟过去了,两分钟过去了,三分钟过去了……也不知过了多久,才终于算出了土豆的大约体积。唉,我想到这种方法太复杂了,计算还不准确,要是有更简便的方法就好了!这时,妈妈又走过来指点迷津:“妈妈给你讲一个物理学家阿基米德的故事……”原来阿基米德利用等积代换算出了金皇冠的真假。我灵机一动,想道:我不是也可以用等积代换来求土豆的体积吗?于是,我拿来一个长方体的.玻璃容器,量出它底面长是6厘米,宽是4厘米,我往容器中倒了10厘米的水,然后把土豆完全浸没在水中,这时,容器中的水上升了。我又量了一下,现在的水是15厘米,也就是说,容器中的水上升了5厘米(15-10),按照等积代换,上升水的体积就是土豆的体积,由此,可以算出土豆的体积是:6×4×5=120(立方厘米)。嗯,这种方法简单多了。当我把体积告诉妈妈时,妈妈对我竖起了大拇指。

晚上我也如愿以偿的吃到了我最喜欢的土豆丝。通过这件事我明白了在生活中,换种方法,换个角度,能有意想不到的结果。

【本文地址:http://www.xuefen.com.cn/zuowen/15239164.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档