二次函数图像教案(专业15篇)

格式:DOC 上传日期:2023-11-26 10:33:24
二次函数图像教案(专业15篇)
时间:2023-11-26 10:33:24     小编:雁落霞

教案的编写需要综合考虑教材、学生和教学环境。教案应该综合运用不同的教学策略,包括启发式教学、问题导向教学和合作学习等。教案的互相借鉴和分享可以促进教师之间的合作与交流。

二次函数图像教案篇一

根据我们学校人人皆知的船模特色项目设计了这样一个情境:

让班级中的上科院小院士来简要介绍学校船模组的情况以及在绘制船模图纸时也常用到抛物线的知识的情况,再出题:船身的龙骨是近似抛物线型,船身的最大长度为48cm,且高度为12cm。求此船龙骨的抛物线的解析式。

让学生在练习中体会二次函数的图象与性质在解题中的作用。

二次函数图像教案篇二

1.质疑问难是学生自主学习的重要表现,优化课堂结构,激活学生的主体意识,必须鼓励学生质疑问难。教师要创造和谐融合的课堂气氛,允许学生随时“插嘴”、提问、争辩,甚至提出与教师不同的看法。

2.二次函数是初中阶段继一次函数、反比例函数之后,学生要学习的最后一类重要的代数函数,它也是描述现实世界变量之间关系的重要的数学模型。

3.学生有疑而问、质疑问难,是用心思考、自主学习、主动探究的可贵表现,理应得到老师的热情鼓励和赞扬。现在对学生的随时“插嘴”,提出的各种疑难问题,应抱欢迎、鼓励的态度给与肯定,并做出正确的解释。

4.初中阶段主要研究二次函数的概念、图像和性质,用二次函数的观点审视一元二次方程,用二次函数的相关知识分析和解决简单的实际问题。

二次函数图像教案篇三

学习目标:

1、能够分析和表示变量间的二次函数关系,并解决用二次函数所表示的问题。

2、用三种方式表示变量间二次函数关系,从不同侧面对函数性质进行研究。

3、通过解决用二次函数所表示的问题,培养学生的运用能力。

学习重点:

能够分析和表示变量之间的二次函数关系,并解决用二次函数所表示的问题。

能够根据二次函数的不同表示方式,从不同的侧面对函数性质进行研究。

学习难点:

能够分析和表示变量之间的二次函数关系,并解决用二次函数所表示的问题。

学习过程:

一、学前准备。

函数的三种表示方式,即表格、表达式、图象法,我们都不陌生,比如在商店的广告牌上这样写着:一种豆子的售价与购买数量之间的关系如下:

x(千克)00。511。522。53。

y(元)0123456。

二、探究活动。

(一)合作探究:

交流完成:

(1)一边长为xcm,则另一边长为cm,所以面积为:用函数表达式表示:=________________________________。

(2)表格表示:

123456789。

10—。

(3)画出图象。

(二)议一议。

(1)在上述问题中,自变量x的取值范围是什么?

(2)当x取何值时,长方形的面积最大?它的最大面积是多少?你是怎样得到的?请你描述一下y随x的变化而变化的情况。

点拨:自变量x的取值范围即是使函数有意义的自变量的取值范围。请大家互相交流。

(1)因为x是边长,所以x应取数,即x0,又另一边长(10—x)也应大于,即10—x0,所以x10,这两个条件应该同时满足,所以x的取值范围是。

(2)当x取何值时,长方形的面积最大,就是求自变量取何值时,函数有最大值,所以要把二次函数y=—x2+10x化成顶点式。当x=—时,函数y有最大值y最大=。当x=时,长方形的面积最大,最大面积是25cm2。

可以通过观察图象得知。也可以代入顶点坐标公式中求得。。

(三)做一做:学生独立思考完成p62,p63的函数表达式,表格,图象问题。

(1)用函数表达式表示:y=________。

(2)用表格表示:

(3)用图象表示:

三、学习体会。

本节课你有哪些收获?你还有哪些疑问?

四、自我测试。

1、把长1。6米的铁丝围成长方形abcd,设宽为x(m),面积为y(m2)。则当最大时,所取的值是()。

a0。5b0。4c0。3d0。6。

2、两个数的和为6,这两个数的积最大可能达到多少?利用图象描述乘积与因数之间的关系。

二次函数图像教案篇四

1.注意渗透局部和全体、有限和无限、近似和精确等矛盾对立统一的观点。

2.注意培养学生观察分析问题的能力。比如,结合所画二次函数y=x2的图象,要求学生思考:

(1)y=x2的图象的图象有什么特点。(答:具有对称性。)。

(2)如何判断y=x2的图象有上面所说的特点?(答:由观察图象看出来;或由列表求值得出来;或由解析式y=x2看出来。)。

二次函数图像教案篇五

二、立足课堂,提高效率:做到教师入题海,学生出题海.教师应多做题、多研究近几年的中考试题,并根据本班学生的实际情况,从众多复习资料中,选择适合本班学生的最佳练习,也可通过对题目的重组。

三、教师在设计教学目标时,要做到胸中有书,目中有人,让每一节课都给学生留有时间,让他们有独立思考、合作探究交流的过程,最大限度的调动学生的参与度,激发他们的学习兴趣,达到最佳的复习效果.

四、激发兴趣,提高质量:兴趣是学习最好的动力,在上复习课时尤为重要.因此,我们在授课的过程中,在关注知识复习的同时,也要关注学生的学习欲望和学习效果,要让学生在学习的过程中体验成功的快感.这样他们才会更有兴趣的学习下去.

二次函数图像教案篇六

教师的任务不仅在于教数学,更主要的是创设情境,激励学生凭借自己的能力去获取数学知识,理解数学的道理,构建数学思想。因此,在教学中,我们应鼓励学生通过独立思考或合作学习研究,“发现”或“再创造”出数学知识。

一、教学背景分析:

1、教材分析:二次函数的知识是看中学数学学习的重要内容之一,它是从生活实际问题中抽象出的数学知识,又是在解决实际问题时广泛应用的数学工具,无论是在生活中还是在运用二次函数知识的方法上,都具有重要意义的教学内容。因此,搞好二次函数的图像和性质的教学,对学生能力的培养有重要的奠基意义。

2、教学内容分析:本节课二次函数的图像的第一课时,主要是研究最简单的二次函数的图像的画法,从而总结出它的性质。这既是对学生进行理性思维的培养,又是进行抽象思维的培养,具有较高的数学教育价值。因此学好本节内容对以后的学习也很重要。我确定本节课的重点是:根据图像观察、分析出二次函数的性质。

3、学生情况分析:本节课的教学对象是职高一年级级学生,在此之前他们对一次函数的图像和性质有一定的基础,但他们的观察能力,概括能力还比较弱,因此我确定本节课的难点是继续渗透数形结合的数学思想方法。

二、教学目标的确定:

我根据数学课程标准中关于“二次函数的图像”的教学要求,结合学生的实际情况,从以下三个方面确定了本节课的教学目标:

知识与技能:

(2)根据图像观察、分析出二次函数的性质。

(3)进一步理解二次函数和抛物线的有关知识。

过程与方法:通过画函数图像,总结性质,渗透由特殊到一般的辨证唯物主义观点。渗透数形结合的数学思想方法,培养观察能力和分析问题的能力。

情感态度:培养学生勇于探索创新及实事求是的科学精神。

三、教学方法与手段:

教学方法主要采用问题导学、小组讨论与反馈练习相结合的方法,通过教。

师设置问题,引导学生独立思考,通过总结二次函数的性质组织学生小组讨论,为较差学生提供得到帮助的机会,通过反馈练习了解学生情况,及时分析和矫正,提高课堂教学效果。

教学手段采用分层教学与学案相结合的方法。通过分层提问,使不同的学生获得不同的收获,通过学案的设计帮助学生检测学习情况,反思学习过程,不断提高学习效果。

四、教学过程的反思:

优点:

1、上课一开始,我就注重对所学过的平面直角坐标系的有关知识、平面内如何确定点的坐标、以及各象限内点的坐标特征和关于y轴对称点的坐标特征的复习。使学生在画二次函数图像时描点找得很快、很准确。在讲解抛物线的概念时,出示了同学们很感兴趣的姚明投篮的照片,激发了学生的学习兴趣。为了得出a不同对抛物线图像和性质的影响,在学生画完三个图像后,教师采用“问题导学”式教学方法,设置问题情境,引导学生自主进行观察、发现、归纳、反思等数学活动,得出二次函数y=ax2的图像和性质,在教学中,由学生自己动手,通过列表、描点、连线绘制出二次函数的图像,培养了学生动手动脑的习惯和综合分析归纳的能力。

2、小组合作学习,发现其中的规律。鼓励学生相互交流自己的想法,并说明理由。如在画出图像后,提问学生“我们可以从图中观察到什么”。渗透了数形结合的思想,培养了学生观察、综合分析的能力,增加了学习的自信心和学习的能力。在合作学习中,也培养了他们善于与人交流,合作,肯于负责任的良好个性品质。

3、教师适时地总结、深化,提高认识水平。教师在不断地总结中渗透数学思想方法,抓住时机培养学生思维的深刻性。如这几个基本函数的学习上一节课经历了从实例抽象概括出函数概念,本节课由函数的解析式画出函数的图像,总结出函数的性质,再利用所学知识解决有关问题。在师生的共同讨论中,深化所学知识,培养学生具备反省思维的能力。

4、课堂教学中充分体现了教师和学生的“双主作用”,其中“问题导学”的教学模式起了重要作用。只有教师创造性的教,学生才能创造性地学,一旦学生的学习活动充满创造性的时候,学习过程便充满美的魅力,成为学生积极进取、自我完善的过程。

不足:对y=-x2的读法,教师读的不规范,没有注意小的细节。在总结二。

次函数性质时,对于开口宽度,我在备课时用a的绝对值来表示的,a为负数时与a为正数时正好相反,一个学生说对了,但不是老师要的答案,我当时没有多想,就说他说的不对。忽略了不同的说法。另外老师提出问题后,给学生去分析、归纳、总结的时间还不够,因此本节课中教师有包办现象。

五、得到的启示:

反思这节课,从课前准备到课堂实施再到课后作业效果和检测,我得到如下启示:

1、对教材的处理要灵活,要考虑到前后知识的联系。

2、学生是变化的,要能及时准确的了解学生情况。

3、要不断探索和完善自己的教学方法和手段,向其他老师学习。

4、不断提高学生学习兴趣,不断提高课堂实效。

5、加强个别辅导。指导学生。

二次函数图像教案篇七

让学生经历根据不同的条件,利用待定系数法求二次函数的函数关系式。

:各种隐含条件的挖掘。

:引导发现法。

(一)诊断补偿,情景引入:

(先让学生复习,然后提问,并做进一步诊断)。

(二)问题导航,探究释疑:

(三)精讲提炼,揭示本质:

分析如图,以ab的垂直平分线为y轴,以过点o的y轴的垂线为x轴,建立了直角坐标系。这时,涵洞所在的抛物线的顶点在原点,对称轴是y轴,开口向下,所以可设它的函数关系式是。此时只需抛物线上的一个点就能求出抛物线的函数关系式。

解由题意,得点b的坐标为(0。8,-2。4),

又因为点b在抛物线上,将它的坐标代入,得所以因此,函数关系式是。

例2、根据下列条件,分别求出对应的二次函数的关系式。

(1)已知二次函数的图象经过点a(0,-1)、b(1,0)、c(-1,2);

(2)已知抛物线的顶点为(1,-3),且与y轴交于点(0,1);

(3)已知抛物线与x轴交于点m(-3,0)(5,0)且与y轴交于点(0,-3);

(4)已知抛物线的顶点为(3,-2),且与x轴两交点间的距离为4。

分析(1)根据二次函数的图象经过三个已知点,可设函数关系式为的形式;(2)根据已知抛物线的顶点坐标,可设函数关系式为,再根据抛物线与y轴的交点可求出a的值;(3)根据抛物线与x轴的两个交点的坐标,可设函数关系式为,再根据抛物线与y轴的交点可求出a的值;(4)根据已知抛物线的顶点坐标(3,-2),可设函数关系式为,同时可知抛物线的对称轴为x=3,再由与x轴两交点间的距离为4,可得抛物线与x轴的两个交点为(1,0)和(5,0),任选一个代入,即可求出a的值。

解这个方程组,得a=2,b=-1。

(2)因为抛物线的顶点为(1,-3),所以设二此函数的关系式为,又由于抛物线与y轴交于点(0,1),可以得到解得。

(3)因为抛物线与x轴交于点m(-3,0)、(5,0),

所以设二此函数的关系式为。

又由于抛物线与y轴交于点(0,3),可以得到解得。

(4)根据前面的分析,本题已转化为与(2)相同的题型请同学们自己完成。

(四)题组训练,拓展迁移:

1、根据下列条件,分别求出对应的二次函数的关系式。

(1)已知二次函数的图象经过点(0,2)、(1,1)、(3,5);

(2)已知抛物线的顶点为(-1,2),且过点(2,1);

(3)已知抛物线与x轴交于点m(-1,0)、(2,0),且经过点(1,2)。

2、二次函数图象的对称轴是x=-1,与y轴交点的纵坐标是–6,且经过点(2,10),求此二次函数的关系式。

(五)交流评价,深化知识:

确定二此函数的关系式的一般方法是待定系数法,在选择把二次函数的关系式设成什么形式时,可根据题目中的条件灵活选择,以简单为原则。二次函数的关系式可设如下三种形式:(1)一般式:,给出三点坐标可利用此式来求。

(2)顶点式:,给出两点,且其中一点为顶点时可利用此式来求。

(3)交点式:,给出三点,其中两点为与x轴的两个交点、时可利用此式来求。

本课课外作业1。已知二次函数的图象经过点a(-1,12)、b(2,-3),

(2)用配方法把(1)所得的函数关系式化成的形式,并求出该抛物线的顶点坐标和对称轴。

二次函数图像教案篇八

1.教学案例、教学设计、教学实录、教学叙事的区别:教学案例与教案:教案(教学设计)是事先设想的教育教学思路,是对准备实施的教育措施的简要说明,反映的是教学预期;而教学案例则是对已发生的教育教学过程的描述,反映的是教学结果。

2.教学案例与教学实录:它们同样是对教育教学情境的描述,但教学实录是有闻必录(事实判断),而教学案例是根据目的和功能选择内容,并且必须有作者的反思(价值判断)。

4.教学案例必须从教学任务分析的目标出发,有意识地选择有关信息,必须事先进行实地作业,因此日常教育叙事日志可以作为写作教学案例的素材积累。

二次函数图像教案篇九

本节内容是人民教育出版社出版的九年级《数学》下第26章第一节第二课时的内容。在此之前,学生已学习了二次函数的概念,对于函数的积累知识有一次函数和反比例函数。本节内容是对二次函数图像及其性质的学习,是后续研究二次函数图像的变换的基础。二次函数在初中函数的教学中有重要地位,它不仅是初中代数内容的引申,也是初中数学教学的重点和难点之一,更为高中学习一元二次不等式和圆锥曲线奠定基础。

本节课中的教学重点利用描点法画出二次函数的图像,建构符合学生认知结构的知识体系,教学难点是运用数形结合的思想描述函数,根据解析式判断函数的开口方向、对称轴、顶点坐标。基于以上对教材的认识,根据数学课程标准,考虑到学生已有的认知结构与心理特征,制定如下的教学目标。

【知识与能力】:

会用描点法画出函数y=ax2的图象。

知道抛物线的有关概念。

会根据公式确定抛物线的顶点坐标、开口方向、对称轴以及抛物线与坐标轴的交点坐标。

【过程与方法】:

1、通过二次函数的教学进一步体会研究函数的一般方法,加深对于数形结合思想的认识。

2.综合运用所学知识、方法去解决数学问题,培养学生提出、分析、解决、归纳问题的数学能力,改善学生的数学思维品质。

【情感与态度目标】:

在数学教学中渗透美的教育,让学生感受二次函数图像的对2。

称之美,激发学生的学习兴趣。认识到数学源于生活,用于生活的辩证观点。

教法选择与教学手段:基于本节课的特点是学习新知及其综合运用,应着重采用复习与总结的教学方法与手段,先从一次函数、反比例函数的图像复习入手,通过提问思考、归纳总结、综合运用等形式对二次函数图像及其性质进行有针对性的、系统性的教学。教学的模式为学生思考,讨论,教师分析,演示、师生共同总结归纳。

利用白板的动态画板功能,画出不同的二次函数图像,进行分析比较和归纳。

学法指导:让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和解决问题的能力。

最后,我来具体谈一谈本节课的教学过程。

(一)为对二次函数图像及其性质的相关知识进行重构做准备。通过回忆复习一次函数和反比例函数图像及其性质等相关知识引入新课。利用描点法画出二次函数的图象,总结规律,会根据公式确定抛物线的顶点坐标、开口方向、对称轴。说出a为何值时y随x增大而增大(增大而减小),引导学生掌握用描点法画出二次函数的图象,能从图象上认识二次函数的性质。运用联想、概括方法对二次函数图像及其性质的相关知识进行梳理,领悟数形结合的思想方法,发展学生的化归迁移的数学思维,培养学生的转化能力。

(二)通过对二次函数图像及其性质的学习,采用学生思考,教师分析,解题小结三个环节构成的练习题讲解模式,巩固二次函数图像及其性质的基本题目的一般解题方法,并进一步研究二次函数图像及其性质的应用。

(三)反思概括,方法总结。

总结本节课的知识点、重点和难点,着重理解二次函数图像及其性质的相关知识和基本解题方法,领悟数形结合的数学思想方法,学会用化归思想,解决实际问题。培养学生由题及法,由法及类的数学总结归纳方法。

(四)作业。

课后通过练习来巩固本节课所复习的知识点、重点和难点,强化教学目标。

各位老师,以上所说只是我预设的一种方案,但课堂上是千变万化的,会随着学生和教师的灵性发挥而随机生成的,预设效果如何,最终还有待于课堂教学实践的检验。本说课一定存在诸多不足,恳请各位老师提出宝贵意见,谢谢!

二次函数图像教案篇十

二次函数是数与代数中的重点,图形变换是空间与几何中的重要内容,当二者结合在一起时学生不易理解,所以设计了本节课的内容。

优点:

1、课件制作有演示图形的变换与呈现的结果,帮助学生更好地理解图形变换的规律和特点,认识问题的本质,突破难点。

2、练习题的选择以模考、练考、往届中考及中考说明为主,强调了所学知识如何在做题中应用,提高学生的解题能力。

3、在复习过程中强调了数学思想方法的应用,如整体代入的思想,数形结合的思想,逆向思维的方式等,提升了学生的数学思维,教学反思《二次函数与图形变换教学反思》。

4、以表格的形式对本节课的知识进行总结和梳理,使学生对本节课的内容有一个整体的回顾,从认识到数学思考对学习的重要作用。

缺点:

1、上课气氛过于沉闷,由于选择的题型较有难度,使不少学生独立思考问题时缺少解题的方法和技巧,耽误了一些时间。

2、学生对于本节课的内容没有充足的时间进行反思和总结,很多规律由老师代替总结。

3、由于时间关系,所涉及的内容较多所以留给学生思考和进行展示的机会太少。

4、讲课的内容可能没有照顾到全体学生,有少部分学生对本节课的知识掌握的不好。

努力的方向:

1、进一步研究考试说明,使初三总复习能够更有效进行。

2、认真钻研各种题型,引导学生总结解题方法以及所运用的数学思想。

3、备好学生,使课堂气氛更活跃一些。

专家点评:

1、用图像研究函数应指明关键地方。

2、图形变换与a、b、c、h、k、x1、x2相关,每种变换与常数有什么关系应明确指出。

平移————a、b、c。

旋转————h、k。

对称————x1、x2。

3、明确函数的解析式应能够画出图像草图进行分析。

4、教案中突现学生为主体。

5、应在平时的讲课过程中培养学生表述问题的能力,引入学生之间的交流、评价,易于提升课堂气氛。

6、课堂练习在巡视的过程中,所发现的问题应及时点评。

将本文的word文档下载到电脑,方便收藏和打印。

二次函数图像教案篇十一

本节课的学习内容是在前面学过一次函数、反比例函数的图像和性质的基础上运用已有的学习经验探索新知识。《二次函数的图像与性质(一)》是二次函数性质研究的第一步,为后面研究较为复杂的函数类型作了必要的铺垫,具有承上启下的`作用。

讲课中首先一起回顾一次函数与反比例函数的图像与性质,然后让学生动手在坐标系中作二次函数y=x2和y=-x2的图象,从感性上结识抛物线.再后又对两个特殊的二次函数的图象和性质进行了归纳和总结,从理性上再次结识抛物线.利用几何画板揭示了两个抛物线之间的联系,使本节课的知识得到了升华。

成功之处:

1.课前的引课很精彩,几句简短的语言使学生感受数学就在我们的身边,并激起学生学习数学的兴趣.

2.对二次函数图象的作图,通过学生作品的展示、思考、讨论、讲评起到指导全体学生的作用.作图后让学生反思自己的作图过程,加深学生对作图的理解,规范作图,同时培养学生严谨治学的精神.

3.二次函数的图象和性质掌握起来有一定的难度,因此我设计一系列问题串,让学生观察图象回答,以突出重点分散难点.同时借助课件的动态展示能帮助学生更形象地理解和掌握二次函数的图象和性质,也为今后探讨其他类函数的性质提供思路.

4.在教学中注重多种学习信息的捕捉,引导学生从图与形,表达式、表格、图像等多角度地去分析理解数学知识,使学生对抛物线有一个丰满的认识。

5.几何画板很好的展示了两个函数之间的关系,动态的演示有助于理解难点,是这节课的亮点。

不足之处:

1.在学生作图教学时,课堂上有一部分学生没有进行完,此处给学生的时间少一些.

2.作图展示时只说明了有问题的部分而没有展示优秀的部分,无法使学生获得成功的喜悦。

3.在探索二次函数的图象和性质的活动中,没有让学生有更多的思考交流和评价的过程,限制了学生思维的发展.

通过这节课,我认为要使课堂真正成为学生展示自我的舞台,还学生课堂的主体地位,教师要把激发学生学习热情和获得学习能力放在教学首位,为学生提供展示自己的舞台,充分利用合作交流的形式,使教师帮助学生不断积累学习经验,完善学习的过程,最终使“要我学”变为“我要学”。

二次函数图像教案篇十二

这节课我首先让学生思考了三个列函数关系式的实际问题,接着在学生探究这三个实际问题的基础上,思考、归纳出二次函数的定义以及探讨对二次函数的判断,最后针对二次函数的定义和能用二次函数表示变量之间关系进行了巩固应用。本节课通过丰富的现实背景,使学生感受二次函数的意义,感受数学的广泛联系和应用价值。通过学生的探究性活动(经历数学化的过程),和学生之间的合作与交流,通过分析实际问题,引出二次函数的概念,使学生感受二次函数与生活的密切联系。在新知的巩固应用环节,我精心设计了不同题型的问题,很好巩固应用了本节的新知,课堂达到了较好的教学效果。通过本节课也让我真正意识到:对于每节课的教学不能仅仅凭经验设计。在每节课的课前,一定要进行精心的预设。在课堂中,同时要结合课堂的实际效果和学生的情况注意灵活处理课堂生成。课堂上在进行分组教学时,提前预设好教学时间,在每节课上,既要放的开,同时又要注意在适当的时机收回,以保证每节教学基本任务完成。

将本文的word文档下载到电脑,方便收藏和打印。

二次函数图像教案篇十三

本节课是《普通高中课程标准实验教科书·数学(1)》(人教b版)第二章第二节第二课(2.2.2)《二次函数的性质与图象》。关于《二次函数的性质与图象》在初中已经学习过,根据我所任教的学生的实际情况,我将《二次函数的性质与图象》设定为一节课(探究图象及其性质)。二次函数是重要的基本初等函数之一,作为常见函数,它不仅是今后学习其他初等函数的基础,同时在生活及生产实际中有着广泛的应用,所以二次函数应重点研究。

二、学生学习况情分析。

二次函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,是学生对函数概念及性质的又一次应用。基于在初中教材的学习中已经给出了二次函数的图象及性质,已经让学生掌握了二次函数的图象及一些性质,只是像单调性、对称性、零点这种性质还没有规范,课本给出的三个例题对于学生来说非常熟悉。本节课需要认真设计问题来激发学生学习新知的兴趣和欲望。

三、设计思想。

1.函数及其图象在高中数学中占有很重要的位置。如何突破这个既重要又抽象的内容,其实质就是将抽象的符号语言与直观的图象语言有机的结合起来,通过具有一定思考价值的问题,激发学生的求知欲望――持久的好奇心。我们知道,函数的表示法有三种:列表法、图象法、解析法,以往的函数的学习大多只关注到图象的作用,这其实只是借助了图象的直观性,只是从一个角度看函数,是片面的。本节课,力图让学生从不同的角度去研究函数,对函数进行一个全方位的研究,并通过对比总结得到研究的方法,让学生去体会这种研究方法,以便能将其迁移到其他函数的研究中去。

2.结合新课程实施的教学理念,在本课的教学中我努力实践以下两点:

(1)在课堂活动中通过同伴合作、自主探究尝试培养学生积极主动、勇于探索的学习方式。

(2)在教学过程中努力做到师生的互动,并且在对话之后重视体会、总结、反思,力图在培养和发展学生数学素养的同时让学生掌握一些学习、研究数学的方法。

(3)通过课堂教学活动向学生渗透数学思想方法。

四、教学目标。

根据任教班级学生的实际情况,本节课我确定的教学目标是:

1、知识与技能:掌握二次函数的图象与性质,能够借助于具体的二次函数应用所学知识解决简单的函数问题,理解和掌握从不同的角度研究函数的性质与图象的方法。

2、过程与方法:通过老师的引导、点拨,让学生在分组合作、积极探索的氛围中,通过回顾归纳,类比分析的方法掌握从函数图象出发研究函数性质和从函数解析式性质去研究函数图象这两种从不同角度研究函数的数学方法,加深对函数概念的理解和研究函数的方法的认识。

3、情感、态度、价值观:让学生在数学活动中感受数学思想方法之美、体会数学思想方法之重要;同时通过本节课的学习,使学生获得研究函数的规律和方法;培养学生主动学习、合作交流的意识。

五、教学重点与难点。

教学重点:使学生掌握二次函数的概念、图象和性质;熟悉从不同的角度研究函数的性质与图象的方法。

教学难点:借助于二次函数的解析式通过配方对函数性质的研究来分析推断二次函数的图象。

六、教学过程:

(一)创设情景、提出问题。

【学情预设:学生可能很疑惑,或者有一些猜测】。

你能独立完成问题2吗?。

要求学生按照自己处理二次函数的方法独立完成。

【设计意图:充分暴露学生的问题,突出本节课的重要性,激发学生学习的动力。】。

(学生稍作思考)。

带着这样的问题我带领学生进入下一个环节——师生互动、探究新知。

(二)师生互动、探究新知。

在这个环节上,我引用课本所给的例题1请同学们以学习小组为单位尝试完成。

要求:按照解析式----性质----推断函数图象的`过程来探讨,

在学生学习小组的一番探讨后,教师选小组代表做总结发言,要求说出利用解析式得到性质的分析过程。

(其他小组作出补充,教师引导从以下几个方面完善):

这时教师可以利用对解析式的分析结合多媒体引导学生得到分析的思路和解决的方法,进而突破教学难点。

根据实际情况教师可以引导学生从二次函数的配方结果来分析:

(1)单调性的分析:在=中当时,取得最小值-2,当时,自变量就越大,越小,就越大,就越大,即就越大,即就越大;就越大;当时,自变量越大,这样单调性及单调区间(分界点)自然可以解决,结合单调性的定义可给出严格的证明;同时也可以帮助我们说明开口的方向是向上的。

(2)对称性的分析:

在=中当和时,如果=时,即,也就是,则时,一定有。

也就是成立。因此可以令成立,这就是说二次函数的两个数于直线和对称。的自变量时,函数值在轴上取两个关于-4对应的点为对称中心的两个点对应总是成立的,这就说明函数的图象关在对解析式分析的同时借助于几何画板课件演示,让学生直观感受:

对称。都有在得出对称性的一般结论这一副产品后,为了强化对这个结论的认识和理解,教师可以安插一个练习题:

二次函数图像教案篇十四

通过小球飞行高度问题展示二次函数与一元二次方程的联系。然后进一步举例说明,从而得出二次函数与一元二次方程的关系。最后通过例题介绍用二次函数的图象求一元二次方程的根的方法。

二教学目标。

1知识与技能。

(1)。经历探索函数与一元二次方程的关系的过程,体会方程与函数之间的联系。总结出二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,表述何时方程有两个不等的实根、两个相等的实数和没有实根。

(2)。会利用图象法求一元二次方程的近似解。

2过程与方法。

经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。

三情感态度价值观。

通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况培养学生自主探索意识,从中体会事物普遍联系的观点,进一步体会数形结合思想。

四教学重点和难点。

重点:方程与函数之间的联系,会利用二次函数的图象求一元二次方程的近似解。

难点:二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。

五教学方法。

讨论探索法。

六教学过程设计。

(一)问题的提出与解决。

h=20t5t2。

考虑以下问题。

(1)球的飞行高度能否达到15m?如能,需要多少飞行时间?

(2)球的飞行高度能否达到20m?如能,需要多少飞行时间?

(3)球的飞行高度能否达到20.5m?为什么?

(4)球从飞出到落地要用多少时间?

分析:由于球的飞行高度h与飞行时间t的关系是二次函数。

h=20t-5t2。

所以可以将问题中h的值代入函数解析式,得到关于t的一元二次方程,如果方程有合乎实际的解,则说明球的飞行高度可以达到问题中h的值:否则,说明球的飞行高度不能达到问题中h的值。

解:(1)解方程15=20t5t2。t24t+3=0。t1=1,t2=3。

当球飞行1s和3s时,它的高度为15m。

(2)解方程20=20t-5t2。t2-4t+4=0。t1=t2=2。

当球飞行2s时,它的高度为20m。

(3)解方程20.5=20t-5t2。t2-4t+4.1=0。

因为(-4)2-44.10。所以方程无解。球的飞行高度达不到20.5m。

(4)解方程0=20t-5t2。t2-4t=0。t1=0,t2=4。

当球飞行0s和4s时,它的高度为0m,即0s时球从地面飞出。4s时球落回地面。

由学生小组讨论,总结出二次函数与一元二次方程的解有什么关系?

例如:已知二次函数y=-x2+4x的值为3。求自变量x的值。

分析可以解一元二次方程-x2+4x=3(即x2-4x+3=0)。反过来,解方程x2-4x+3=0又可以看作已知二次函数y=x2-4+3的值为0,求自变量x的值。

一般地,我们可以利用二次函数y=ax2+bx+c深入讨论一元二次方程ax2+bx+c=0。

(二)问题的讨论。

(2)y=x2-6x+9;。

(3)y=x2-x+0。

的图象如图26.2-2所示。

先画出以上二次函数的图象,由图像学生展开讨论,在老师的引导下回答以上的问题。

可以看出:

(1)抛物线y=x2+x-2与x轴有两个公共点,它们的横坐标是-2,1。当x取公共点的横坐标时,函数的值是0。由此得出方程x2+x-2=0的根是-2,1。

(2)抛物线y=x2-6x+9与x轴有一个公共点,这点的横坐标是3。当x=3时,函数的值是0。由此得出方程x2-6x+9=0有两个相等的实数根3。

(3)抛物线y=x2-x+1与x轴没有公共点,由此可知,方程x2-x+1=0没有实数根。

总结:一般地,如果二次函数y=的图像与x轴相交,那么交点的横坐标就是一元二次方程=0的根。

(三)归纳。

一般地,从二次函数y=ax2+bx+c的图象可知,

(1)如果抛物线y=ax2+bx+c与x轴有公共点,公共点的横坐标是x0,那么当x=x0时,函数的值是0,因此x=x0就是方程ax2+bx+c=0的一个根。

(2)二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点。这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根。

由上面的`结论,我们可以利用二次函数的图象求一元二次方程的根。由于作图或观察可能存在误差,由图象求得的根,一般是近似的。

(四)例题。

例利用函数图象求方程x2-2x-2=0的实数根(精确到0.1)。

解:作y=x2-2x-2的图象(如图),它与x轴的公共点的横坐标大约是-0.7,2.7。

所以方程x2-2x-2=0的实数根为x1-0.7,x22.7。

七小结。

二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点。这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根。

八板书设计。

用函数观点看一元二次方程。

抛物线y=ax2+bx+c与方程ax2+bx+c=0的解之间的关系。

例题。

二次函数图像教案篇十五

可能在教学过程中,有些教师会觉得作图象是上一节课的重点,这一节主要是学生观察、分析图象,从而不让学生画图象或者只是简单的画一两个。这种做法看上去好像更加突出了重点、难点,却没有给学生探索与发现的过程,造成学生对于二次函数性质的理解停留在表面,知识迁移相对薄弱,不利于培养学生自主研究二次函数的能力。

在归纳二次函数性质的时候,也要充分的相信学生,鼓励学生大胆的用自己的语言进行归纳,因为学生自己的发现远远比老师直接讲解要深刻得多。在教学过程中,要注重为学生提供展示自己聪明才智的机会,这样也利于教师发现学生分析问题解决问题的独到见解,以及思维的误区,以便指导今后的教学。课堂上要把激发学生学习热情和获得学习能力放在教学首位,通过运用各种启发、激励的语言,以及组织小组合作学习,帮助学生形成积极主动的求知态度。

在让学生归纳二次函数性质的时候,学生可能会归纳得比较片面或者没有找出关键点,教师一定要注意引导学生从多个角度进行考虑,而且要组织学生展开充分的讨论,把大家的观点集中考虑,这样非常有利于训练学生的归纳能力。

【本文地址:http://www.xuefen.com.cn/zuowen/15238180.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档