数学与猜想读后感(实用17篇)

格式:DOC 上传日期:2023-11-26 07:05:07
数学与猜想读后感(实用17篇)
时间:2023-11-26 07:05:07     小编:笔尘

读后感是记录读书过程中的触动与感悟,帮助读者更深入地理解和掌握书中的思想和知识。要写一篇较为完美的读后感,首先应该坦诚自己的感受,不用拘泥于什么“正确答案”,毕竟每个人的感受都是独一无二的。其次,要尽量展示自己的理解和独到见解,可以从人物、情节、主题等方面进行分析和阐述。同时,应该注意语言的准确和生动,避免泛泛而谈,给读者带来深刻的感受和思考。小编为大家精心挑选了一些有趣的读后感范文,供大家欣赏和学习。

数学与猜想读后感篇一

在一次课上做练习时,有一个平时就很爱动脑筋的学生突然说:“老师,我有一个奇怪的发现,我量了量桌子的长和宽,发现长是宽的1.6倍多一点,又量了量数学课本的长也是宽的1.6倍多一点,再量作业本结果也是一样的。我想,这里一定有数学问题。”

一石激起千层浪,别的学生也动手量起来,不一会儿,有的学生说:“对,是这样。”有的学生反对:“这是偶然,铅笔盒、黑板就不是这样。”

一会儿,教室里的争论声小了下来,学生的`眼睛齐刷刷地望着老师。老师首先对那位学生说:“你善于观察,又勤于思考,很了不起。”接着,老师说:“想想生活中还有哪些长方形和你们的课桌比例差不多?”学生举出了生活中的许多例子。

师:就拿电视屏幕为例吧,如果它很扁或很方,会有什么感觉?

生:很有创意。

生:好像不太方便,看起来有点怪,图像也就变形了。

生:我知道了,按照一定的比例比较美观。

生:他说得对,可铅笔盒只要能放进铅笔就行了,太宽反而不美观、不实用了,我觉得先要实用,才能美观。

师:大家都很棒,我来给大家提供一个线索――“黄金分割”,我们查查资料,好吗?

几天后,一张张资料卡放在教师手中。通过这次经历,学生享受到了猜想的成功,也进一步感受到了数学王国的瑰丽。

数学方法理论的倡导者g波利亚曾说过,在数学领域中,猜想是合理的、值得尊重的,是负责任的态度。他认为,在有些情况下,教猜想比教证明更为重要。我们认为,猜想可分为三个层次。

一、质疑――猜想的开始。

让每个学生在已有的知识经验、能力水平和学习方法的基础上提出问题,并进行积极的猜想,这有助于提高学生的学习兴趣,活跃思维,促进智力的发展与提高。

二、假设――猜想的深入。

问题提出后,学生经过反复思考、联想、顿悟,结合已有的知识和生活经验提出自己的假设。假设,从思维角度讲,就是一种猜想。这样的思维过程,是充分发挥学生创新能力和主体意识的过程。

三、实践――猜想的验证。

只有猜想没有行动,那只能是空想。把猜想与探索实践紧密结合,可以产生猜想的良性循环。

不同的学生会有不同的猜想,但都是学生的主动思维的过程,都包含着创新因素。“猜想”是一项思维活动,包含了理性的思考和直觉的判断。因此学生的猜想可能是经过反复思考的,符合逻辑的,但更可能是稚嫩无据的“异想天开”。不管是哪一种情况,教师都应给予鼓励,精心保护学生积极猜想的精神,并引导他们享受猜想的成功体验,更好地发挥他们的创造力。

数学与猜想读后感篇二

最近我看了《不知道的世界》丛书的其中一本《数学猜想》。

书的作者是李毓佩,我还读过他的《探索形状奥秘》等好几本书。书的主要内容是数学中的一系列迷案,反映了人们在解迷中作出的努力和遭遇的障碍,介绍了各种有代表性的假说、猜想和目前达到的研究水平,并指出了可能的途径。

我很喜欢这本书。这本书让我懂得了许多以前不懂的东西。以前我只知道哥德巴赫猜想这个名字,现在我知道了是怎么个猜想法,目前处在领先地位的是我国数学家陈景润,他证明了哥德巴赫猜想的(1+2),剩下的(1+1)也就等待我来证明了。我还知道了费马猜想、梅根猜想等等。这些猜想都让我觉得很难、伤透脑筋,但又觉得很有趣。

我以后要解哥德巴赫猜想成为全世界都知道的数学家。

数学与猜想读后感篇三

众所周知,世界上所有的实数都可以分为有理数和无理数。然而,在最初的时候并没有发现无理数的存在,所以很多数学家认为所有数都是有限小数,而希帕苏斯首先提出了二的算术平方根概念,发现了世界上有一类数,他们是无限不循环小数,然而遭受了当时科学界的否定。

二、微积分理论。

微积分是世界数学史上璀璨的辉煌,微积分使用微元的概念,解决了很多不能够解决的问题。特别对于复杂的图形,有很厉害的求解作用,但是由于微积分刚提出来的时候,理论非常复杂,没有在当时的数学界广为接受。

三、罗素悖论。

罗素悖论是对于集合理论的悖论,世界上所有的物体都能够通过集合来表达,但是罗素指出,如果一个集合中所有的元素都不是他本来的元素,那么这样的.一个集合是否还能表现为原有的集合,这理论被称为罗素悖论,后来根据数学家修改集合的定义规则,才避免了这样的悖论。

四、费马大定理。

费马大定理有这样一个猜想当整数n2时,关于x,y,z的不定方程x^n+y^n=z^n无正整数解。这样的一个看似简单的地理,后来经过后世许多人的证明,终于确定费马大定理成立,是数学史上的一个伟大猜想。

五、四色定理。

四色定理表明,如果许多国家围绕着一个点拥有很多的边界,那么只要用四种颜色就能够将所有的国家全部区分开来,四色定理是对二维空间的终极解释,也表明了两个直线,只要相交一定有四个区的出现。

六、哥德巴赫猜想。

哥德巴赫猜想,如果把1算做一个质数,那么世界上任何大于二的数都可以由三个质数通过相加的方式得成,后来科学家们经过艰难的计算,终于算出了哥德巴赫猜想。

数学与猜想读后感篇四

《数学与猜想》这是美国g·波利亚写的,由李心灿翻译而来的一本书。书的英文名字叫做《mathematics·and·plausible·reasoning》,也可以译作《数学与合情推理》,译者为了更加通俗一点直接是把本书译作《数学与猜想》,当然合情推理本质就是猜想。这是第一次看这本书,全书不仅涉及到了数学的很多方面,同时还有部分物理数学,古今中外,旁征博引,通俗易懂。

读了这本书,对我来说有两个启示,首先,要树立正确的归纳的态度,其次,要关注学生的合情推理。

先来说说归纳的态度。因为这种非常独特、不同一般的态度可以在教学中渗透给学生,从而潜移默化的影响学生的实际生活以及学习,甚至在未来成长的道路上给学生带来巨大的帮助。在归纳的态度中,有三点比较重要:第一,我们应当随时准备修正我们的任何一个信念;第二,如果有一种理由非使我们改变信念不可,我们就应当改变这一信念;第三,如果没有某种充分的理由,我们不应当轻率地改变一个信念。

数学与猜想读后感篇五

我想刘一胜利的可能性应该很大,第一:他很会打架。第二:他的嘴很臭,会把人熏死的!

果然高中优秀作文原创分享作文人网,刘一胜利了,我问王兆雨他是怎样胜利的.,王兆雨说:我快要被熏死了!

这时,我知道了,还不是被那张大臭嘴熏的嘛!我猜想的好准哟!我太有才了!!呵呵!

数学与猜想读后感篇六

《数学与猜想》这是美国g・波利亚写的,由李心灿翻译而来的一本书。书的英文名字叫做《mathematics・and・plausible・reasoning》,也可以译作《数学与合情推理》,译者为了更加通俗一点直接是把本书译作《数学与猜想》,当然合情推理本质就是猜想。这是第一次看这本书,全书不仅涉及到了数学的很多方面,同时还有部分物理数学,古今中外,旁征博引,通俗易懂。

读了这本书,对我来说有两个启示,首先,要树立正确的归纳的态度,其次,要关注学生的合情推理。

先来说说归纳的态度。因为这种非常独特、不同一般的态度可以在教学中渗透给学生,从而潜移默化的影响学生的实际生活以及学习,甚至在未来成长的道路上给学生带来巨大的帮助。在归纳的态度中,有三点比较重要:第一,我们应当随时准备修正我们的任何一个信念;第二,如果有一种理由非使我们改变信念不可,我们就应当改变这一信念;第三,如果没有某种充分的理由,我们不应当轻率地改变一个信念。

数学与猜想读后感篇七

读完《数学与猜想》后,我明白猜想是可贵的,它既是一种创造性的思维方式,也是一种良好的心理品质。因此,应积极主张达成两者之间的合作和统一。

猜想是人们的一种重要思维活动,它是在已有知识和事实的基础上,对未知的事物及其规律做出某种假定或提出预测的看法。牛顿看到苹果落地,猜想出万有引力;门捷列夫根据化学元素数量的不断增多,认为元素的质量和化学性质之间一定存在着某种联系,猜想出元素周期律;魏格纳在观察地图时,猜想出大陆漂移说……日内瓦大学做过一个调查,发现众多科学家都是受到突然的启示,从猜想中得到帮助。从这个角度讲,也可以说,科学史是一部“猜想史”。

猜想不必真。因为直觉思维并不排斥逻辑思维,猜想出的结论是否正确,需要通过实践的验证或逻辑的论证才能确定。科学史证明,每一个伟大的科学猜想,都是经过一个曲折、反复、长期的试验、实践或考察的研究过程才成为科学。古希腊科学家亚里士多德关于自由落体理论的猜想统治了两千多年,但最终被意大利科学家伽利略否定。而英国人f・格思里提出的“四色猜想”,至今对于四色猜想是否解答了,数学家们的意见还是莫衷一是。

猜想是科学。科学猜想并非是凭空臆构、胡思乱想。猜想是为了对一定的经验事实引出理解,是以知识为基础的。猜想能激发学习兴趣,有利于提高教学效率正如我们所知,猜想具有跳跃性,它不需要有充足的理由,对事物的认识可以忽略细节,可以跨越常规思维的若干小步进程,径直地得出结论。应该说,这符合学生生活中的思维习惯。如果教师恰当地加以引导猜想,能激发学生浓厚的学习兴趣,调动学生原有的知识和经验去探索新知识。猜想有利于培养学生在学习中的的创新能力和开拓精神,中国在世界数学领域中有很多了不起的地方,如数学家陈景润在数论方面独领风骚,为国争了光。但有人说:“陈景润研究哥德巴-赫猜想是厉害,而生于十七世纪的哥德巴-赫(1690~1764)则更厉害。”因此,在教学中,教师要经常善于引导学生大胆提出猜想或假说,一定会收到意想不到的效果。

大自然往往把一些深刻的东西隐藏起来,只让人们见到表面或局部的现象,有时甚至只给一点暗示,只能从中得到部分的不完全的信息。善于猜测的人,仅凭借于部分的消息,加上经验、学识和想像,居然可以找出问题正确或近于正确的答案,使人不能不承认,这是一种才华的表现。大自然是一部巨大的谜书,这些谜是永远猜不完的',猜出得越多,涌现的新谜也就越多。科学家的任务是要发现自然之谜(相当于制谜)和猜出自然之谜,第一,用类比法培养学生的猜想能力。这是把某一或几个方面彼此一致的新旧事物放在一起相比较,让学生由旧事物的已知属性去猜测新事物也具有相同或类似属性的一种方法。在数学领域中,用这种方法常可由对象条件的相似去猜想结论的相似,由问题形式的相似去猜想求解方法的相似。如将分数与除法相类比,学生可猜想出分数的基本性质;将推导圆柱体积公式与推导圆面积公式相类比,学生可猜想出推导圆柱体积公式也可用“割补法”。

第三,用分析法培养学生的猜想能力。这是“由果测因”的猜想方式,即从问题的结论出发,逆推而回,去猜测其成立的条件。在数学教学中,常用这种猜想去探求解题的思路。例如这样一道思考题:已知扇形的半径是6厘米,如下图所示,求阴影部分面积。

通过观察不难得出,求图1中阴影部分的面积,也就是求图2中阴影部分面积的一半,而图2中阴影部分面积即为圆面积的四分之一减去等腰直角三角形aob的面积。这样分析后,问题也就一目了然了。

第四,用直观法培养学生的猜想能力。这种方式可通过实验、演示推测出结论。如教学“射线与角”这个内容时,大多数学生对“角的大小与两边长短无关”很难理解,可让学生通过动手操作,猜想出结论。如下图所示,一个直角的两边虽说增长了,但直角还是直角,没有变化,由此可推出“角的大小与两边长短无关”。

猜想是可贵的,它既是一种创造性的思维方式,也是一种良好的心理品质。在数学中,如果能正确运用,效果一定很理想。

数学与猜想读后感篇八

浅谈数学教学中的猜想教学科学家牛顿有句名言:“没有大胆的猜想,就不可能有伟大的发明和发现。”将猜想引入数学教学之中,将有助于学生开阔视野、活跃思维、培养创新意识、促进能力的提高。因此,著名的数学家波利亚说:“数学既要教证明,又要教猜想。”

在数学教学中如何教学生展开猜想,这里谈一下我的具体做法:

一、问――诱发猜想。

猜想是数学发展的动力,它可以激发学生的求知欲望,使他们不断探索。当学生发现自己的猜想与课本上基本一致时,他们会感受到猜想的乐趣,享受到成功的喜悦,就会以更大的热情投入到对新知的探求中去。

二、导――验证猜想。

数学知识的抽象性与儿童思维的形象性是一对矛盾,解决这一矛盾的有效途径之一就是操作。在学生有了初步的猜想后,教师要积极鼓励学生开阔思维,给学生营造一种宽松的、和谐的良好猜想氛围,不限制学生的思维疆域,鼓励学生积极的寻找猜想的依据,索求猜想的合理性和准确性,不迷信已有的结论,不满足现成的答案,要通过自己的实践操作,来检验猜想的真伪。

例如:三角形的内角和是180度。这是一个十分重要的概念。在教学中我让学生自己动手操作,自己寻求:三角形内角和的答案。这时有的学生将三角形的三个角分别剪下来,拼在一起是一个平角;有的学生剪下三角形的两个角后,再与第三个角拼在一起同样可以得出结论;还有的学生则用量角器分别量出每个角的度数,把三个角度数相加。

通过这样的亲身实践,学生对知识从感性认识上升到理性记忆。在猜想中探索出正确的答案,在实践中验证了猜想的准确性,从而加深了对知识发生过程的理解。

三、说――完善猜想。

说是学生把感性的知识通过理性表现的一种有效途径,也是完善认知和猜想的必要过程。猜想是人们依据事实,凭借直觉所做出的合理推测,是一种创造性的思维活动。儿童想象力丰富,猜想也是百花齐放,教师要给他们创造表现自我的机会,让他们把自己的猜想依据、实践过程以及得到的结论说出来,使其认识更加明确、思维更加完善。

例如:在复习近平面图形的周长和面积时,我出了一道这样的题目:我有一根绳子,你想一想,用它围成的哪种平面图形的面积最大?学生们各抒己见,结论正确的同学,不仅要阐述自己依据什么旧知来推测新知,还要详细地叙述论证的过程。猜想不合理的同学也要能说出自己的理论依据和实验过程,并且要告诉大家自己的猜想失败的原因。

通过对猜想过程的回顾、总结和反思,使成功的经验明朗化并巩固下来,也使失误成为教训,学生获得的远比得到一个答案要多得多。

四、练――运用猜想。

学生沉浸于猜想成功的兴奋状态时,教师不失时机地给学生设计灵活、开放。

[1][2]。

数学与猜想读后感篇九

为什么我看这个数学思维方法几页就觉得很受益,有触动。因为以前自己数学能学好感觉只是天然的选择,下意识的动作,在这里能找到原理,让你的行为有理论依据,更加明晰思维方法的重要性。自己就是受益于这些思维方法,但却没意识到,看了书才恍然大悟。很多习以为常,想当然的事情明白了这样设计的道理了。比如为啥设计小学五年级六年级。为什么三四年级、初中一年级会是槛。区别主要是抽象能力的发展不同。思维在低年级作用不是特别大。差距显现不出来。从作者的言外之意也可以看到数学思维方法是最重要的东西,但却不是课堂教学的常态目标,只是教学的附属品,渗透出来的,有人悟性高,捕获的多,发展的好。有人不敏感,攫取的少。差距就出来了。

但不管从数学教育从业者还是我们个人的经历来说,数学思维方法都是最基本的。属于对数学本质的认识,理性的认识。

奥数就是为了训练数学思维方法啊。但是真假奥数不一样,假奥数就是教给你套路,记住就好。

我自己数学学习也是原发性的。没人指导,没人培训。不过有人指点肯定会更轻松,或者能更进一步。

我们常说语文学习,词汇是理解力的基础。在数学中,概念是数学学习的基础,是抽象思维的基础和基本形式。概念大概等同于中文阅读里的抽象词汇,不过概念是有相关系统的东西。说这个是为了说明我们平时说的打好基础再拓展。到底什么是基础。基础就是概念与概念之间的关系构成的知识结构。

所以也自然明白日常我们说的“拓展”是什么。拓展就是在理解概念之间关系的知识结构基础上,利用思想方法、模型思想、推理思想等学习数学,解决问题。

将本文的word文档下载到电脑,方便收藏和打印。

数学与猜想读后感篇十

g・波利亚,数学家、教育家,曾任美国国家科学院、美国艺术与科学学院院士,匈牙利科学院荣誉院士,伦敦数学会、瑞士数学会、美国工业数学与应用数学学会荣誉会员,法国巴黎科学院通讯院士。出生于匈牙利布达佩斯,1942年移居美国。获布达佩斯eotvoslorand大学数学博士学位。著有《数学的发现》、《数学分析中的问题和定理》、《数学物理中的等周不等式》等。

著名数学家g・波利亚撰写的一部经典名著―《数学与猜想》,书中讨论的是自然科学、特别是数学领域中与严密的论证推理完全不同的一种推理方法――合情推理(即猜想)。通过许多古代著名的猜想,讨论了论证方法,阐述了作者的观点:不但要学习论证推理,也要学习合情推理,以丰富人们的科学思想,提高辩证思维能力,书中的例子不仅涉及数学各学科,也涉及到物理学,全书内容丰富,谈古论今,叙述生动,能使人看到数学中真正的奥妙。

本书将数学中的推理模式与生活中的实例相联系,论述深入浅出,读来令人兴味盎然。全书有大量习题,书末附有习题解答。

读完《数学与猜想》后,我明白猜想是可贵的,它既是一种创造性的思维方式,也是一种良好的心理品质。因此,应积极主张达成两者之间的合作和统一。

猜想是人们的一种重要思维活动,它是在已有知识和事实的基础上,对未知的事物及其规律做出某种假定或提出预测的看法。牛顿看到苹果落地,猜想出万有引力;门捷列夫根据化学元素数量的不断增多,认为元素的质量和化学性质之间一定存在着某种联系,猜想出元素周期律;魏格纳在观察地图时,猜想出大陆漂移说……日内瓦大学做过一个调查,发现众多科学家都是受到突然的启示,从猜想中得到帮助。从这个角度讲,也可以说,科学史是一部“猜想史”。

猜想不必真。因为直觉思维并不排斥逻辑思维,猜想出的结论是否正确,需要通过实践的验证或逻辑的论证才能确定。科学史证明,每一个伟大的科学猜想,都是经过一个曲折、反复、长期的试验、实践或考察的研究过程才成为科学。古希腊科学家亚里士多德关于自由落体理论的.猜想统治了两千多年,但最终被意大利科学家伽利略否定。而英国人f・格思里提出的“四色猜想”,至今对于四色猜想是否解答了,数学家们的意见还是莫衷一是。

猜想是科学。科学猜想并非是凭空臆构、胡思乱想。猜想是为了对一定的经验事实引出理解,是以知识为基础的。猜想能激发学习兴趣,有利于提高教学效率。

正如我们所知,猜想具有跳跃性,它不需要有充足的理由,对事物的认识可以忽略细节,可以跨越常规思维的若干小步进程,径直地得出结论。应该说,这符合学生生活中的思维习惯。如果教师恰当地加以引导猜想,能激发学生浓厚的学习兴趣,调动学生原有的知识和经验去探索新知识。

猜想有利于培养学生在学习中的的创新能力和开拓精神。

中国在世界数学领域中有很多了不起的地方,如数学家陈景润在数论方面独领风骚,为国争了光。但有人说:“陈景润研究哥德巴―赫猜想是厉害,而生于十七世纪的哥德巴―赫(1690~1764)则更厉害。”因此,在教学中,教师要经常善于引导学生大胆提出猜想或假说,一定会收到意想不到的效果。

大自然往往把一些深刻的东西隐藏起来,只让人们见到表面或局部的现象,有时甚至只给一点暗示,只能从中得到部分的不完全的信息。善于猜测的人,仅凭借于部分的消息,加上经验、学识和想像,居然可以找出问题正确或近于正确的答案,使人不能不承认,这是一种才华的表现。大自然是一部巨大的谜书,这些谜是永远猜不完的,猜出得越多,涌现的新谜也就越多。科学家的任务是要发现自然之谜(相当于制谜)和猜出自然之谜,第一,用类比法培养学生的猜想能力。这是把某一或几个方面彼此一致的新旧事物放在一起相比较,让学生由旧事物的已知属性去猜测新事物也具有相同或类似属性的一种方法。在数学领域中,用这种方法常可由对象条件的相似去猜想结论的相似,由问题形式的相似去猜想求解方法的相似。如将分数与除法相类比,学生可猜想出分数的基本性质;将推导圆柱体积公式与推导圆面积公式相类比,学生可猜想出推导圆柱体积公式也可用“割补法”。

第三,用分析法培养学生的猜想能力。这是“由果测因”的猜想方式,即从问题的结论出发,逆推而回,去猜测其成立的条件。在数学教学中,常用这种猜想去探求解题的思路。例如这样一道思考题:已知扇形的半径是6厘米,如下图所示,求阴影部分面积。

通过观察不难得出,求图1中阴影部分的面积,也就是求图2中阴影部分面积的一半,而图2中阴影部分面积即为圆面积的四分之一减去等腰直角三角形aob的面积。这样分析后,问题也就一目了然了。

第四,用直观法培养学生的猜想能力。这种方式可通过实验、演示推测出结论。如教学“射线与角”这个内容时,大多数学生对“角的大小与两边长短无关”很难理解,可让学生通过动手操作,猜想出结论。如图所示,一个直角的两边虽说增长了,但直角还是直角,没有变化,由此可推出“角的大小与两边长短无关”。

猜想是可贵的,它既是一种创造性的思维方式,也是一种良好的心理品质。在数学中,如果能正确运用,效果一定很理想。但愿我的课堂中多一些学生的猜想与印证!

数学与猜想读后感篇十一

要判断一个理论(或者说法)是否正确,首先要分析它的陈述是否科学。如果它对概念的定义以及它作出的结论模棱两可,你就没有办法针对其定义和结论进行反驳或验证。用卡尔·波普尔的话说,这样的理论就是不科学的(不可验证,不可证伪,不可反驳)。

例如古希腊时期有一个著名的预言。公元前547年,吕底亚国王克罗索斯想对波斯发动攻势,就派使者去希腊德尔斐阿波罗神殿请求神谕。女巫回复说有一个帝国将会陷落。克罗索斯断定是波斯帝国将陷落,于是便挥军向波斯发起攻击。结果,灭亡的不是波斯帝国,而是吕底亚自己。这个预言在陈述上就是不科学的,因为它作出的结论模棱两可。当战争结果出来之后,你无法指出它的预言究竟是正确的还是错误的。

假如女巫预言:“波斯帝国将陷落。”那么这个预言作出的结论就是明确的,具有可检验性,可证伪性和可反驳性。按照卡尔·波普尔的划分,这样的预言在陈述上就是科学的,因为你可以对其进行验证,证伪和反驳。当战争结果出来之后,你可以肯定的指出它的预言是正确的还是错误的。

只有陈述清晰明确的理论才是可验证和可证伪的理论。陈述不清不楚、模棱两可的理论都是不可验证和不可证伪的理论,这样的理论都是用来愚弄傻子的。遗憾的是,这个世界上大量的理论都是不清不楚模棱两可的,宗教领域尤其如此(基督教和犹太教除外)。可以不夸张的说,宗教领域(基督教和犹太教除外)绝对是愚弄傻子的天然乐园。

数学与猜想读后感篇十二

我在无意中看见了掉落在角落的纸页,被皮筋捆成一摞,有。

字典。

一般厚。我把这一摞纸页小心翼翼地拿出来,然后如饥似渴地开始在这些纸页上咬文嚼字,纸张很薄,有点类似于那种纸钱,早已泛黄,爸爸恰好从书房出来,看见了我正在看这一摞纸,就说:“孩子,你不知道吧。这是我一个作家朋友的手稿,看看或许对你有益,但是对我来说是毫无用处了。”我低头看看这份手稿,充满了疑虑,于是我带着好奇一口气读完了手稿。

这是看似像是讲述宇宙的猜想并且通过实验得出的结论,其实与其说是一篇精彩的百科知识,不如说是一部杂文,我从作家的语言中读出他并非是想要讲述宇宙,而是要通过宇宙去说明旧社会的封闭与现实生活的低贱。爸爸说:“这份手稿叫《普林(作家朋友的名字)猜想》。”由此看得出,这位热爱写作的人是个想象力十分丰富的先生。

不多说废话,我来谈谈这份手稿。我最喜欢里面的人物,被普林先生描绘得有血有肉,我喜欢柯丽丽,她虽然自尊心很强,但是她拥有探索精神。我们就应该像柯丽丽学习,什么事情都要钻研到底,不可以放弃。就像大海里的礁石一样,无论海浪有多么大,都会坚持地站在那里。我佩服阿斯达教授的智慧,他研究出了宝藏的根源还挖掘了海底的资源,和他的小组成员去宇宙探索,与外星人交流,使我不得不佩服他的智慧。是啊我们面对困难如果想要迎刃而解就得有智慧,想要有智慧就得多观察多思考。

读完了这本书,思绪连篇……。

数学与猜想读后感篇十三

昨天,妈妈送给了我一本书,叫做《奇妙的数王国》,我先看了这一篇《一场莫名其妙的战争》。

这一篇故事讲的是:弟弟小华和哥哥小强听到了枪炮声,就跑到了山顶上,他们看到有两支军队正在打架,一支军队穿着红色军装,他们胸前都有一个数字,这些数字都是偶数,另一支队伍穿着绿色军装,他们胸前也都有一个数字,但是,这些数字都是奇数。这时,小强和小华听到草丛里有人哭泣,于是小强就扒开草地一看,有一个衣着华丽的胖老头,他就是正在哭泣的人。

小强发现这个人胸前的数字是0,就以为他是0号,其实那个人告诉小强他就是0,那个人就是零国王。这时,响起了嘹亮的军号声,接着,偶数队伍中亮出了一面大红旗,突然,出来了一位军官,他的胸前写着一个“2”字,他就是偶数军团的2司令,在奇数这边也有一个军官,他的胸前写着一个“1”字,他就是奇数军团的1司令。这时,1司令和2司令已经让战斗进入了高潮。

其实,1司令和2司令是零国王的左膀右臂。这时,小强就问零国王:“是不是最小的正整数就能当司令?”其实不是这样的,1司令和2司令都有一种很特殊的能力。2司令逼着1司令和零国王把偶数叫做男人数,把奇数叫做女人数,可1司令和零国王都不同意,2司令这下可发火了,他就让战争继续开始。

数学与猜想读后感篇十四

这个暑假,我读了《数学王国探秘》这一本书,这本书让我了解到数学的历史以及一些数学知识,逸事。让我有了很深的感触。

数学是起源于生活,也应用于生活。人们创造数目的最早的动机便是想知道一堆物体具体的数目。在数学的发展中,出现了一个智慧的迷宫,那就是幻方。这个游戏是给定1,2……n2。这些数字要求它们排列成n×n的方阵,并要使每一行,每一列,每一条对角线上的所有数字之和相等。每条直线上的数字之和叫做幻方常数。但有一个问题如何快速解决标准幻方,即从1按自然数顺序依次填到n2,这首先就要确定幻方常数例如三阶幻方常数是15,四阶幻方常数是34,那么n阶幻方的常数m是多少呢。我们可以先把n阶幻方的所有数的之和求出,得s=1+2+3+……+(n2―1)+n2=(1+n2)+(2+n2-1)+(3+n2―2)+……=n2/2(1+n2)再除n得m=1/n×n2/2(1+n2)=n/2(1+n2)所以标准幻方均可用m=n/2(1+n2)。

而幻方的的排法也是异常的多,五阶幻方超过2亿,七阶幻方超过3亿,让我也不得不感叹数学的灵活多变。

书中让我另一处感触最深的一个便是巧算勾股数,在学习勾股定理的时候我们便会注意到整勾股数的问题也就是x2+y2=z2的正整数解组,简称勾股数,例如(3,4,5)所以如果a,b,c都是勾股数并具有(a2+b2=c2)那么a,b,c就称为一组勾股数那么,只需要将他们同时乘以正整数k,其结果(ka,kb,kc)也是一组勾股数。所以只要考虑a,b,c两两互素的勾股数,并把它称为基本勾股数组。那么怎么创造出一组勾股数来呢?毕达哥拉斯提出的一组在课本里出现过,便是设m是任意大于或等于2的正整数,则(m2―1,2m,m2+1)一定是一个勾股数,因为这组是两两互素,是基本勾股数组。但无法给出所有勾股数组。我国的数学名著《九章数论》给出了更妙的方法:若给两个数m,n那么,1/2(m2―n2)、mn、1/2就是一组勾股数每次给的m,n不同所得勾股数也不同。并且如果m,n互素,这个公式便能套出所有两两互素的勾股数组。因此这个公式叫做x2+y2=z2的通解公式。

数学的奇妙我只领略一二,以后还有更长的数学道路需要我去体味。

数学与猜想读后感篇十五

在这个寒假中,我读了一本书,名叫《不一样的数学故事》。这是一本有趣的书,本书的作者是梦小得。

这本书主要讲数学十分好玩,书中的人物有怪怪老师和他的一群学生。

我读完了这本书,我感受到了,数学特别好玩。我特别喜欢书中的怪怪老师,因为,我觉得他讲的数学课非常好玩,所以,在我读了《不一样的数学故事》我就发现,学习是快乐的,是简单的,只要你找对方法。最后,我建议同学们读一读这本书。

我爱数学!

这本书的作者是张秀丽,书里写了这几个主要的人物,它们是:怪怪老师,皮豆,蜜蜜,女王,十一,和乌鲁鲁(它是怪怪老师从外星球带来的一只狗狗)。这本书每章都有数学知识。我来给大家说说这本书的主要内容吧!

这本书讲了怪怪老师回到阿瓦星球充电,皮豆他们还是在数学的世界了遨游,又一次,皮豆是东西是在零食包里发现了一张卡片。上面写着集齐10000张卡片就可以得到宇宙飞船的船票,于是皮豆他们向乌鲁鲁要了40000张,因为他们有四个人。所以要了40000张,。第二天他们和乌鲁鲁一起出发前往宇宙飞船,当他们见到宇宙飞船时个个都很兴奋。就在这时乌鲁鲁却在一边大声地叫着说:“这不是真的,这是3d电影“。大家一下子就没有了兴奋劲,感觉上当受骗了。

他们一起回到家打电话给了报社,把工厂骗人的事情和报社的人说了。之后关于工厂骗人的新闻就上了头条。他们虽然是上当受骗了,但是他们却从中学到了计数单位。他们也和怪怪老师学到了四则运算。他们在打假的同时也学到了很多的知识。

我突然很想很想能成为皮豆他们这样子。这样真好啊!

《好玩的数学》的作者是中国有名的科普教授――谈祥柏,这本书也是他送给少年儿童最好的礼物。

谈祥柏教授是我国着名的科普作家,从事数学科普工作已经有半个多世纪了,他与张景中院士,李毓佩教授一起被称为“中国科普三驾马车”。谈祥柏教授还有着扎实的古文功底与非常渊博的文史知识,并通晓英、日、德、法以及阿拉伯文等多种语言,因此谈祥柏教授写的《趣味数学》的内容妙趣横生,并且与智力的训练巧妙的结合在了一起,深受我们少年儿童的喜爱。

谈祥柏教授还将许多国外的着名而且优秀教学科普作品翻译给了中国所有读者,其中包括世界着名数学科普大师马丁加德纳等许多着名人物的作品。

谈祥柏教授写的《好玩的数学》中分为许多种类,包括:数学是大花园,数学史大作坊,数学是大超市,数学是大课堂,数学是大戏台,这些内容都表达着自己含义的大题目,中题目,还有“弹子盘上的数学”中有的小题目……还有许多有趣的题目和有趣的内容,只有有趣的题目才是最吸引人的,因为只有题目新奇才可以吸引读者。

同学们,听了这些你是不是也对这本书很感兴趣了呢?不妨和我一起看看吧!

数学与猜想读后感篇十六

数学学科是现在学生学习的噩梦,尤其是很多害怕数学的同学后来告诉我,经常做噩梦都是梦见考试时做不出数学。记得高中时代,很多女同学不敢选物理,作为一个女生的我是个例外,如果数学也实施选科的话,可能很多同学首先会放弃数学。为什么这样?带着一直以来的疑惑,我拜读了乔·博勒教授的《这才是数学》,有一些收获。

书上说,据统计40%以上的人不喜欢数学,甚至对数学怀有深深的厌恶和恐惧。这种情感来源于传统的数学教学模式,即老师站在黑板前讲解数学定理及方法,学生则在下面将老师的板书抄下来,再做大量的习题来巩固。这种教学模式往往形成学生只要记住相关知识就能将其掌握的假象,却掩盖了他们数学能力低下的事实。我们传统教学模式确实都如此,教师大量地教、学生被动地学,依稀记得高中时代,数学课堂就是老师讲足40分钟,满满的几大黑板的板书,老师口干舌燥,班级同学有些听懂,有些没听懂(也就假装懂)。作为一位女生,庆幸的是我的数学没有那么糟糕,也算是班级中上水平,我回想我读书时代学数学的乐趣,那就是面对难题,我没有放弃,尝试各种方法去解决,虽然有时候花了很长很长的时间,绞尽脑汁,睡醒、吃饭、洗澡的时候也会在想。突然脑子一闪,貌似找到了知识“联结点”,成功解决,那种喜悦是多么刻骨铭心。我想,这就是一种兴趣,一种成功体验,促使我不放弃学数学。现在的小学生如果有这样成功的体验,我想他不会不喜欢数学的。

乔·博勒教授对几千名美国和英国的中学生进行了为期数年的纵向调研,重点分析学生如何开展数学学习,以便找出好的教学方法。让学生能够以一种不同的方式去学习数学,那么他们将来很可能在数学领域取得成功。看起来,这些学习方式在国内难以实施,譬如尽可能地激发学生学习数学兴趣,留给学生足够的思考时间,只要他们在想在坚持,就不限制时间等等。但这些教学理念是值得我们去学习,慢慢去改变“满堂灌”模式的。

书中指出,人们学不好数学是因为没有找到正确的方法,而不是所谓的“智力问题”。传统的教学方式注重“知识点”,但是学习过程更重要的是建立关联,找到关联。有时碰到不会解的难题看看人家的解题过程,感叹“为什么自己想不到”。问题就在这里,为什么想不到?现在的小学生在做《数学课堂作业本》的'时候,看了题做习题时肯定会用到刚刚学过的知识点,不用自己去找。但是综合解决实际问题时,面对各类题型却没有现成的知识点供使用,导致知识点混乱,方法乱用,不会从现有条件一步步推演到熟悉的知识点上去。这一过程是传统数学教学薄弱的地方,却是数学学习最关键的地方。

数学与猜想读后感篇十七

今天读了一篇《零国王斗跳蚤》的故事。

零国王被跳蚤咬了,它拿剑向跳蚤刺去,跳蚤准备和它大战。

跳蚤拿出一把比老鼠胡须还细的小宝剑跟零国王杀在一起。零国王被杀到跷跷板上,跳蚤跳到另一头,把国王弹飞到半空。零国王说自己表面个头大,但是没重量,因为是零。跳蚤打了喷嚏把国王冲出去好远,零国王一屁股坐在地上。跳蚤说连个喷嚏都经受不住还跟我斗,再见吧!

零国王气的双目圆瞪,摘下腰间的乘法钩子勾住跳蚤,喊道:"变",跳蚤不见了,国王自言自语说它能把任何东西乘没,就连法术高强的小数点都治不它。

这个故事让我明白了零是一个很厉害的数字。

【本文地址:http://www.xuefen.com.cn/zuowen/15184760.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档