总结是对自己的一个交代,是对过去一段时间的努力和付出的肯定。引用相关理论知识,提升总结的深度和广度。以下是一些个人成长总结的分享,希望对大家有所启发。
数学建模的论文篇一
摘要:数学作为很多学科的计算工具,可以说是现代科学的基础,要想利用数学来解决实际问题,首先要建立相应的数学模型,本文在数学建模思想概念和特点的基础上,从计算机软件、实际生活中的应用等方面,对其应用的发展进行了分析,最后从分析问题、建立模型、校验模型三个阶段,对数学建模的方法,进行了深入的研究。
引言。
随着自然科学的发展,利用数学等思想来解决实际问题,越来越受到人们的重视,数学作为一门历史悠久的自然科学,是在实际应用的基础上发展起来,但是随着理论研究的深入,现在数学理论已经非常先进,很多理论都无法付诸实践,在这种背景下,如何利用现有的数学理论来解决实际问题,成为了很多专家和学者研究的问题。通过实际的调查发现,要想利用数学来解决实际问题,首先要建立相应的数学模型,将实际的问题转化成数学符号的表达方式,这样才能够通过数学计算,来解决一些实际问题,从某种意义上来说,计算机就是由若干个数学模型组成的,计算机软件之所以能够解决实际问题,就是根据实际应用的需要,建立了一个相应的数学模型,这样才能够让计算机来解决。
数学是一门历史悠久的自然科学,在古时候,由于实际应用的需要,人们就已经开始使用数学来解决实际问题,但是受到当时技术条件的限制,数学理论的水平比较低,只是利用数学来进行计数等,随着经济和科技水平的提高,尤其是在工业革命之后,自然科学得到了极大的发展,对于利用自然科学来解决实际问题,也成为了人们研究的重点,在市场经济的推动下,人们将这些理论知识转化成为产品。计算机就是在这种背景下产生的,在数学理论的基础上,将电路的通和不通两种状态,与数学的二进制相结合,这样就能够让计算机来处理实际问题,从本质上来说,这就是数学建模思想的范畴,但是在计算机出现的早期,数学建模的理论还没有形成,随着计算机软件技术的发展,人们逐渐的意识到数学建模的重要性,发现利用数学建模思想,可以解决很多实际的问题,而数学建模的概念,就是将遇到的实际问题,利用特定的数学符号进行描述,这样实际问题就转化为数学问题,可以利用数学的计算方法来解决。
如何解决实际问题,从有人类文明开始,就成为了人们研究的重点,随着自然科学的发展,出现了很多具体的学科,利用这些不同的学科,可以解决不同的实际问题,而数学就是其中最重要的一门学科,而且是其他学科的基础,如物理学科中,数学就是一个计算的工具,由此可以看出数学的重要性,进入到信息时代后,计算机得到了普及应用,无论是日常生活中还是工作中,计算机都有非常重要的应用,而在信息时代,注重的是解决问题的效率。与其他解决问题的方式相比,数学建模显然更加科学,现在数学建模已经成为了一门独立的学科,很多高校中都开设了这门课程,为了培养学生们利用数学解决实际问题的能力,我国每年都会举办全国性的数学建模大赛,采用开放式的参赛方式,对学生们的数学建模能力进行考验,而大赛的题目,很多都是一些实际问题,对于比赛的结果,每个参赛队伍的建模方式都有一定的差异,其中选出一个最有效的方式成为冠军。由此可以看出,对于一个实际的问题,可以建立多个数学模型进行解决,但是执行的效率具有一定的差异,如有些计算的步骤较少,而有些计算的过程比较简单,而如何评价一个模型的效率,必须从各个方面进行综合的考虑。
2.1计算机软件中数学建模思想的应用。
通过深入的分析可以知道,计算机之所以能够解决实际问题,很大程度上依赖与计算机软件,而计算机软件自身就是一个或几个数学模型,在软件开发的过程中,首先要进行需求的分析,这其实就是数学建模的第一个环节,对问题进行分析,在了解到问题之后,就要通过计算机语言,对问题进行描述,而计算机语言是人与计算机进行沟通的语言,最终这些语言都要转化成0和1二进制的方式,这样计算机才能够进行具体的计算。由此可以看出,计算机就是依靠数学来解决实际问题,而每个计算机软件,都可以认为是一个数学模型,如在早期的计算机程序设计中,受到当时计算机技术水平的限制,采用的还是低级语言,由于低级语言人们很难理解,因此在程序编写之前,都会先建立一个数学模型,然后将这个模型转化成相应的计算机语言,这样计算机就可以解决实际的问题,由于计算机能够自行计算的特点,只要输入相应的参数后,就可以直接得到结果,不再需要人为的计算。
经过了多年的发展,现在数学建模自身已经非常完善,为了培养我国的数学建模人才,从1992年开始,每年我国都会举办一届全国数学建模大赛,所有的高校学生都可以参加,大赛采用了开放性的参赛方式,通常情况下,对于题目设置的也比较灵活,会有多个题目提供给队员选择,学生可以根据自己的实际情况,来选择一个最适合自己的问题。而数学建模大赛举办的主要目的,就是让学生们掌握如何利用数学理论,来解决实际问题,在学习数学知识的过程中,很多学生会认为,数学与实践的距离很远,学习的都是纯理论的知识,学习的兴趣很低,与一些实践密切相关的学科相比,选择数学专业的学生很少,而数学建模的出现,在很大程度上改善了这种情况,让人们真正的了解数学,并利用数学来解决复杂的问题。受到特殊的历史因素影响,我国自然科学发展的起步较晚,在建国后经历了很长一段时间封,闭发展,与西方发达国家之间的交流比较少,因此对于数学建模等现代科学,研究的时间比较短,导致目前我国很少会利用数学建模来解决实际问题,相比之下,发达国家在很多领域中,经常会用到数学建模的知识,如在企业日常运营中,需要进行市场调研等工作,而对于这些调研工作的处理,在进行之前都会建立一个数学模型,然后按照这个建立的模型来处理。
从本质上来说,数学是在实际应用的基础上,逐渐形成的一门学科,但是受到当时技术水平的限制,虽然人们已经懂得去计算,却并知道自己使用的是数学知识,随着自然科学的发展,对数学的应用越来越多,而数学自身理论的发展速度很快,远远超过了实际应用的范围,同时随着其他学科的发展,数学变成了一种计算的工具,因此数学应用的第一个阶段中,主要是作为一种工具。随着电子计算机的出现,对数学的应用达到了一个极限,人们在数学和物理的基础上,制作出了能够自动计算的机器,在计算机出现的早期,受到性能和体积上的限制,只能进行一些简单的数学计算,还不能解决实际的问题,但是计算机语言和软件技术的.发展,使其在很多领域得到了应用,在计算的基础上,能够解决很多问题,而软件程序的开发,其实就是建立数学模型的过程,由此可以看出,数学建模思想应用的第二阶段中,主要是以现代计算机等电子设备的方式,来解决实际的问题。
3.1分析问题。
数学模型的应用都是为了解决实际问题,虽然很多问题都可以通过建模的方式来解决,但是并不是所有的问题,因此在遇到实际问题时,首先要对问题进行具体的分析,首先就是看是否能够转化成数学符号,如果能够直接用数学语言来进行描述,那么就可以容易的建立相应的数学模型,但是通过实际的调查发现,随着经济和科技的发展,遇到的问题越来越复杂,其中很多都无法直接用数学语言来描述,这就增加了数学建模的难度。由此可以看出,分析问题作为数学建模的第一个环节,也是最重要的一个环节,如果问题分析的不够具体,那么将无法建立出数学模型,同时对数学模型的建立也具有非常重要的影响,通过实际的调查发现,能够建立高效率的数学模型,都是对问题分析的比较彻底,甚至有些独特的理解,只有这样才能够采用建立一个最简单的模型,而随着数学建模自身的发展,现在建立模型的过程中,对于一个实际的问题,经常需要建立多个模型,这样通过多个数学模型协同来解决一个问题。
在分析实际问题后,就要用数学符号来描述要解决的问题,这是建立数学模型的准备环节,要想利用数学来解决实际问题,无论采用哪种方式,都要转化成数学语言,然后才能够通过计算的方式解决,而数学模型的过程,就是在描述完成后,建立相应的数学表达式,通常情况下,在分析问题时,都能够发现某种内在的规律,这个规律是数学建模的基础。如果无法找到这个规律,显然就不能利用现有的一些数学定律,从而建立相应的表达式,最后解决相应的问题,由此可以看出,分析问题的内在规律,是影响数学建模的重要因素,而这个规律的发现,除了在现有的数学知识外,也可以结合其他学科的知识,尤其是现在遇到的问题越来越复杂,对于以往简单的问题,只需要建立一个简单的模型即可解决,而现在复杂的问题,经常需要建立多个模型。因此现在数学建模的难度越来越大,从近些年全国数学建模大赛的题目就可以看出,对于问题的描述越来越模糊,甚至出现了一些历史上的难题,而不同学生根据自己的理解,建立的模型也具有很大的差异,其中一些模型非常新颖,为实际问题的解决提供了良好的参考,目前我国对数学建模的研究有限,尤其是与西方发达国家相比,实践的机会还比较少。
在数学模型建立之后,对于这个模型是否能够解决实际问题,具体的执行效率如何,都需要进行校验,因此检验是数学模型建立最后的一个环节,也是非常重要的一个步骤,通常情况下,经过校验都能够发现模型中存在的一些问题,从而进行完善,这样才能够保证严谨性,在实际校验的过程中,要对数学模型的每个部分进行验证,通过输入特定的数据,看得到的结果是否符合理论值,如果没有问题,就说明该模型可以解决实际问题。除了检验模型的准确外,校验还有另外一个作用,就是优化模型,在选定数据后,能够看到数学模型计算的整个过程,这时就可以对具体的细节进行优化,如哪部分可以减少计算的步骤,或者简化计算的方式等,这样可以使整个模型更加科学、合理,由此可以看出,校验工作对于数学模型的建立,具有非常重要的意义。
4结语。
通过全文的分析可以知道,对于数学理论的应用,从很久之前就已经开始了,但是数学建模思想的出现,却是随着计算机技术的发展,逐渐形成的一门学科,电子计算机的出现,在很大程度上改变了处理事情的方式,利用计算机软件,只要输入相应的参数,就可以直接得到结果,这正是数学模型完成的任务,只是计算机的出现,省略了中间的计算过程,因此计算机软件的方式,是数学建模思想最好的应用方法,要想解决不同的问题,只要建立不同的模型,然后编写相应的程序。
数学建模的论文篇二
信息化时代,数学科学与其他学科交叉融合,使得数学技术变成了一种普适性的关键技术。大学加强数学课程的应用功能,不但可以为学生提供解决问题的思想和方法,而且更为重要的是可以培养学生应用数学科学进行定量化、精确化思维的意识,学会创造性地解决问题的应用能力。数学建模课程将数学的基本原理、现代优化算法以及程序设计知识很好地融合在一起,有助于培养学生综合应用数学知识将现实问题化为数学问题,并进行求解运算的能力,激发学生对解决现实问题的探索欲望,强化数学课程本身的应用功能,凸显数学课程的教育价值,适应大学数学课程以培养学生创新意识为宗旨的教育改革需要。
大学传统的数学主干课程,如高等数学、线性代数、概率论与数理统计在奠定学生的数学基础、培养自学能力以及为后续课程的学习在基础方面发挥奠基作用。但是,这种原有的教学模式重在突出培养学生严格的逻辑思维能力,而对数学的应用重视不够,这使得学生即使掌握了较为高深的数学理论,却并不能将其灵活应用于现实生活解决实际问题,更是缺乏将数学应用于专业研究和军事工程的能力,与创新教育的基本要求差距甚远。教育转型要求数学教学模式从传统的传授知识为主向以培养能力素质为主转变,特别是将数学建模的思想方法融入到数学主干课程之中,在教学过程中引导学生将数学知识内化为学生的应用能力,充分发挥数学建模思想在数学教学过程中的引领作用。数学课程教学改革要适应这一教学模式转型需要,深入探究融入式教学模式的理论与方式,是推进数学教育改革的重要举措。
2.1理清数学建模思想方法与数学主干课程的关系。数学主干课程提供了大学数学的基础理论与基本原理,将数学建模的思想方法有机地融入到数学主干课程中,不但可以有效地提升数学课程的应用功能,而且有利于深化学生对数学本原知识的理解,培养学生的综合应用能力。深入研究数学主干课程的功能定位,主要从课程目标上的一致性、课程内容上的互补性、学习形式上的互促性、功能上的整体优化性等方面,研究数学建模本身所承载的思想、方法与数学主干课程的内容与逻辑关系,阐述数学建模思想方法对提高学生创新能力和对数学教育改革的重要意义,探索开展融入式教学及创新数学课程教学模式的有效途径。
2.2探索融入式教学模式提升数学主干课程应用功能的方式。融入式教学主要有轻度融入、中度融入和完全融入三种方式。根据主干课程的基本特点,对课程体系进行调整,在问题解决过程中安排需要融入的知识体系,按照三种方式融入数学建模的思想与方法。以学生能力训练为主导,在培养深厚的数学基础和严格的逻辑思维能力的基础上,充分发挥数学建模思想方法对学生思维方式的培养功能和引导作用,培养学生敏锐的分析能力、深刻的'归纳演绎能力以及将数学知识应用于工程问题的创新能力。
2.3建立数学建模思想方法融入数学主干课程的评价方式。融入式教学是处于探索中的教学模式,教学成效有待于实践检验。选取开展融入式教学的实验班级,对数学建模思想方法融入主干课程进行教学效果实践验证。设计相应的考察量表,从运用直觉思维深入理解背景知识、符号翻译开展逻辑思维、依托图表理顺数量关系、大胆尝试进行建模求解等多方面对实验课程的教学效果进行检验,深入分析融入式教学模式的成效与不足,为探索有效的教学模式提出改进的对策。
3.1改革课程教学内容,渗透数学建模的思想方法。传统的数学主干课程教学内容,将数学看作严谨的演绎体系,教学过程中着力于对学生传授大学数学的基础知识,而对应用能力的培养却重视不够。使得本应能够发挥应用功能的数学知识则沦为僵死的教条性数学原理,这失去了教学的活力。学生即使掌握了再高深的数学知识,仍难以学会用数学的基本方法解决现实问题。现行的大学数学课程教学内容中,适当地渗透一些应用性比较广泛的数学方法,如微元法、迭代法及最佳逼近等方法,有利于促进学生对数学基础知识的掌握,同时理解数学原理所蕴涵的思想与方法。
这样,在解决实际问题的时候,学生就会有意识地从数学的角度进行思考,尝试建立相应的数学模型并进行求解,拓展了数学知识的深度与广度,提升了学生的数学应用能力四、结语数学建模是数学科学在科技、经济、军事等领域广泛应用的接口,是数学科学转化成科学技术的重要途径。在数学主干课程中融入数学建模的思想与方法,可以推动大学数学教育改革的深入发展,加深学生对相关知识的理解和掌握,有助于从思维方式上培养学生的创新意识与创新能力。
此外,数学建模思想方法融入教学主干课程还涉及到许多问题,比如数学建模与计算技术如何有效结合以进行模拟仿真、融入式教学模式的基本理论、构建新的课程体系等问题,仍将有待于更深入的研究。
数学建模的论文篇三
摘要:运筹学与数学建模2门课程联系密切,在运筹学教学中,适当融入数学建模思想,能大幅度提高学生应用数学解决实际问题的能力.从运筹学教学中教学大纲的改革、教学环节的设计等方面进行了探索与实践.教学实践表明,将数学建模思想融入到运筹学教学中能提高课堂教学的效果,锻炼学生的动手实践能力.
1运筹学教学中融入数学建模思想的必要性。
2数学建模思想融入运筹学的教学改革。
3运筹学教学中融入数学建模思想的教学改革成效。
4结束语。
数学建模的论文篇四
在高等教育事业改革不断深化的背景下,为了提升教育教学质量,新时期对大学数学教学提出了更高的要求。大学数学作为课堂教学的主体,教师在传授知识的同时,要注重学生学习能力和解决问题能力的培养。
数学知识来源于生活,应用于生活,如微积分作为高等数学知识中的典型代表,在各个行业中具有不可或缺的作用。为此,任课教师在大学数学教学中培养学生发现问题、分析问题和解决问题的能力十分重要,在传授知识的过程中帮助学生利用所学知识来解决实际问题。一般情况下,教师着重介绍相关数学概念和原理,推导常用公式,促使学生能够记住公式,学会公式的应用过程,逐渐掌握解题技巧。
因此,如何能够在传授知识的同时,促使学生掌握数学学习方法,将所学知识应用到实践中来解决数学问题是一个首要问题。从大量教学实践中可以了解到,在大学数学教学中渗透数学建模思想十分重要,有助于激发学生的学习兴趣,促使学生积极投入其中,切实提升学生的数学专业水平。
在大学数学教学中渗透数学建模思想,应该结合实际情况,深入挖掘数学知识。在教学中,教师应该充分发挥自身引导作用,联系学生数学知识实际学习情况,有针对性地整合数学知识,了解相关数学内容,这样不仅可以丰富教学内容,还可以为课堂教学注入新的活力,有效激发学生的学习兴趣,提升学习成效。具体表现在以下方面:
(一)闭区间连续函数的性质。
闭区间连续函数的性质内容是大学数学教学中的重要组成部分,由于知识理论性较强,知识较为抽象,学习难度较大,在讲解完相关理论知识后,可以引入椅子的稳定问题,创建数学模型,提问学生如何在不平稳的地面上平稳地放置椅子。学生可以了解到这一问题同所学知识相关联,闭区间连续函数的性质可以解决这一问题。学生整合所学知识,通过对问题的分析,可以了解到利用介值定理來解决问题。通过建立数学模型,学生更加充分地掌握了闭区间连续函数的`性质,提升了学习成效,为后续知识学习打下了坚实的基础。
(二)定积分。
定积分是高等数学教学中的重要组成部分,在解决几何问题时均有所应用,并且被广泛应用在实际生活中。如,在一道全国大学生数学建模竞赛题目中,计算煤矸石的堆积,煤矿采煤时所产生的煤矸石,为了处理煤矸石就需要征用土地来堆放煤矸石,根据上级主管部门的年产量计划和经费如何堆放煤矸石?题目中的关键点在于堆放煤矸石的征地费用和电费的计算。征地费计算难度较小,但是煤矸石堆积的电费计算难度较高,但此项内容涉及定积分中的变力做功知识点。学生掌握这些内容后就可以建立数学模型,更加高效地了解如何根据预期开采量来堆放煤矸石。通过数学模型,学生也可以了解到定积分内容同实际生活之间的联系,学习积极性就会大大提升。
(三)最值问题。
在高等数学中,最值问题占比比较大,同时在实际生活中应用较为普遍,导数知识可以解决实际生活中的最值问题,这就需要提高对导数知识实际应用的重视程度。教师在为学生讲解完导数的相关概念知识后,通过建立关于天空的采空模型,提问学生为什么雨后太阳出来了,雨滴还在空中,那么将为人们呈现出什么样的景色?学生回答彩虹。继续提问彩虹为什么有颜色,是什么决定了天空中彩虹的高度?对此,学生的兴趣较为浓厚,可以分为若干个小组进行讨论。通过分析可以得出,雨滴可以反射太阳光,形成彩虹。结合光线的反射和折射定律,借助所学的导数知识来计算得出太阳光偏转角度的最值,有效解决实际学习的问题,加深对知识的理解和记忆,提升数学知识学习成效。
(四)微分方程。
微分方程知识同实际生活之间息息相关,建立微分方程可以有效解决实际生活中的问题。这就需要学生在了解微分方程知识的基础上,进一步建立数学模型来解决问题。如,在当前社会进步和发展下,人均物质生活水平显著提升,肥胖成为危害人们身体健康的主要问题之一,受到社会各界广泛的关注和重视。通过问题精简化和假设,可以得到微分方程模型,在分析方程中饮食控制和运动锻炼两个关键要素后,有助于避免人们走入减肥误区,帮助他们树立正确的减肥理念。
(五)矩阵。
在高等数学教学中,矩阵的概念较为抽象和复杂,在讲解问题之前,应该根据知识点来创设教学情境,辅助教学活动。通过引入企业工厂生产总成本模型,充分描述工厂生产中需要的原材料和劳动力,并且详细记录管理费用。这有助于加深人们对矩阵概念的认知和理解,提升学习成效,同时帮助学生深入理解和记忆,锻炼学生的数学解题思维,加深概念理解和记忆,掌握解题技巧和方法,从而提升学生的数学建模意识。
综上所述,在大学数学教学中,可以通过数学建模思想来引导学生养成良好的自主学习能力,发挥自身的主体能动性和创新能力,提升学生解决问题的能力,将所学知识灵活运用到实际生活中,养成良好的数学素养。
数学建模的论文篇五
对于高职院校的学生来讲,数学在其教学过程中起着基础性的作用,对于学生后续的学习相当关键。但是从现阶段高职院校数学教学的基本情况来看,数学教师的教学方法以及教学策略都相当落后,对于学生数学兴趣的提升造成了不同程度的影响。在这样的背景下,相关专家提出了数学建模的方式,希望以此提升高职院校高等数学的教学效率。本文结合数学建模在高职高专人才培养当中的意义和作用入手,对于其中的应用策略进行全面的分析,希望为相关单位提供一个全面的参考。
随着我国社会的发展,经济产业结构日益升级,因此高等院校的人才需求日益扩大,对于高职教育的发展提供了前所未有的契机。在这样的背景下,从数学建模入手,将其思想融入到高等教育的数学教学当中,对于其中的策略和方法进行全面的研究应该是一项具有普遍现实意义的工作。
从近些年的发展来看,参加过数学竞赛的学生在科研能力等方面都具有比其他同学更强的优势,因此数学建模在提升学生创新能力、提高学生知识水平以及调动学生的.学习兴趣都具有十分重要的意义。比如在解决实际问题的时候,数学建模通过利用各种技巧,可以使得学生分析问题、创造能力得以全面的提升,进而使得学生在摒弃原始思考问题方式的基础上,敢于向传统的知识发出挑战,对于学生的综合能力的全面提升相当关键。其次,数学知识本就源于生活,因此在建模的基础上学生就可以带着问题去思考,这对于数学知识整体性的发挥以及解决问题能力的提升都具有十分重要的意义。最后,面对传统数学的解决方式,很多学生望而生畏,因此主动分析问题的欲望就会受到遏制。在这样的背景下,通过数学建模方式,学生会发现数学方法的灵活性,进而使得他们解决问题的能力得以全面的提升。
3.1制定切实可行的教学大纲,从而使得教学进度得以保障。教学大纲在高职教学当中起着十分重要的作用,这对于教学内容的合理性以及提升学生学习的针对性都具有十分重要的意义[1]。比如在教学高等数学(一)的选修模块时,教学大纲的制定应该结合学生的专业,从而使得学生的数学学习真正取得实效。比如可以为理工类的学生选择无穷级数以及傅里叶变换的内容;机械类的学生选择线性代数以及解析几何作为教学内容,从而使得学生的综合能力得以全面的提升。3.2开展“三段式”的教学模式。数学建模在以解决实际问题为核心的过程中,使得学生分析问题以及组织问题的能力得以全面的提升,这种方式的本质为素质教育,因此不能和现行的其他教学模式分割开来,这就需要相关部门开展“三段式”的教学模式,使得学生的数学兴趣得以全面的提升。其中,第一段需要还原数学知识的原创过程,使得学生明确数学知识的产生过程,进而让学生从生活案例当中发现数学的价值,比如知道极限是由人影的长度变化引起的,导数是由于驾车的速度引入的,使得学生发现知识的价值,进而就会大大提升自己的学习兴趣和探究意识。第二段:讲解数学知识。数学建模是在实际问题当中引入的,因此要通过具体数学知识的讲解使得学生明确数学建模的真正价值,比如在讲解微积分的过程中,可以以“极限-微分-积分”为主线,使得学生对于数学的分析能力真正得以提升[2]。然后在为学生积极引入大量数学图表的基础上,为增强学生的感性认识,进而提升学生的综合能力奠定坚实的基础。第三段:数学知识的运用。随着社会的发展,数学的应用在各行各业都发挥出巨大的作用,因此对于高等数学在实际生活当中发挥出来的作用进行全面的探究是实现这种知识价值的真正途径。在这样的背景下,高等数学教师要将每个知识点的运用真正灌输给学生,比如指数增长在银行计息当中的应用、定积分在学习曲线当中的应用、再生资源在数学开发以及管理当中的应用等等。从而使得学生数学学习中的创新意识以及应用能力得以全面的提升。3.3开设数学实验,提升学生的综合素质。数学建模为学生提供了一种真正的“数学实验”,在这种实验的过程中,学生对于数学知识的发展以及由来过程都会得到进行全面的考虑,这对于他们数学探索意识的提升具有十分重要的意义。另外,在计算机辅助实验的过程中,学生的动脑能力也会得到全面的提升,这对于学生主动的学习数学相当关键。因此在教学过程中,教师要积极利用这种方式对于学生进行全面的培养。
总之,随着我国经济水平的不断提升,社会对于高职院校的重视力度日益提升,因此对于高职院校当中数学建模思想在高等数学教学当中的应用进行全面的分析是实现学生综合素质得以全面提升的关键措施,这对于学生的长远发展也相当关键,相关教育工作者要加大在这方面的研究力度,力求将高职院校的学生培养成为新时代所需要的人才。
[1]吴健辉,黄志坚,汪龙虎.对数学建模思想融入高等数学教学中的探讨[j].景德镇高专学报,20xx,(4).
[2]张卓飞.将数学建模思想融入大学数学教学的探讨[j].湘潭师范学院学报(自然科学版),20xx,(1).
数学建模的论文篇六
随着社会的不断发展和科学技术的进步,数学在现实生活中的应用越来越广泛,尤其是计算机技术的发展及广泛应用,使数学建模思想在解决社会各个领域中的实际问题的应用越来越深入。本文笔者简要谈谈数学建模思想融入大学数学类课程的意义和方法。
所谓数学建模就是指构造数学模型的过程,也就是说用公式、符号和图表等数学语言来刻画和描述一个实际问题,再经过计算、迭代等数学处理得到定量的结果,从而供人们分析、预报、决策与控制。那么数学模型就是利用数学术语对一部分现实世界的描述。数学建模思想是指理论联系实际,将实际的事物抽象成数学模型,然后利用所学的理论来解决问题的一种思想。
在新形势下,传统的数学教学方法已经无法适应现在大学数学教育改革的需求,数学建模思想与大学数学类课程教育融合成为目前高等院校数学教学改革的突破口。
(1)数学知识在各个领域的应用越来越广泛。如今数学知识在各个领域的应用越来越广泛,尤其是在经济学中的应用最为显著。自从1969年创设诺贝尔经济学奖以来,就有不少理论成果来自利用数学工具分析经济问题。事实上,从1969年到20xx年这35年中,一共产生了53位获奖者,其中拥有数学学位的共有19人,所占比例为35.8%;其中拥有理工学位的有9人,所占比例为17%;二者共计占52.8%;其中共有29位诺贝尔经济学奖的获得者是以数学方法为主要的研究方法,约占总人数的63.1%。然而几乎所有的诺贝尔经济学奖获得者都运用了数学方法来研究经济学理论。除了在经济领域,数学建模思想也广泛应用于生物医学,包括超声波、电磁诊断等方面。同时数学建模还将数学与生物学融合进了基因科学,例如基因表达的定型、基因组测序、基因分类等等,在生物学领域需要建立大规模的模拟以及复杂的数学模型。可见数学建模思想的应用是非常广泛的,并对其他领域的发展起着重要的推动作用。
(2)有利于激发学生的学习热情,丰富大学数学课程。一般的数学课,通常只是重视理论知识的讲解和传授,对知识点的推理和思想方法的分析较少。而且多数学生为了应付考试,也只是以“类型题”的方式去复习知识点。这样的方式虽然能够让学生掌握一部分数学知识,可是却不能提高学生的数学素质,不能提高学生对大学数学的学习兴趣。而数学建模思想运用数学知识来解决生活中的实际问题,这样就使数学活了起来,而不是死的理论知识。运用数学建模思想能够让学生在数学中感悟生活,在生活中体会数学的价值,更容易吸引学生的学习兴趣。而兴趣是学习最有效的动力,让学生主动参与学习而非被动学习,取得的教学效果会更好。
(3)是加强数学教学改革,适应时代发展的需要。在大学数学教学活动中,许多学生常常陷入这样的困惑之中:花费了大量的精力,做了很多习题,但是却感受不到数学的作用和价值。而教师在教学中也总是告诉学生数学是一门很有用的课程,但是却举不出现实的例子。并且传统的教学方式也只是教会学生掌握简单的理论知识,并不能提高学生的数学素养和数学意识。而将数学建模思想融入到大学的数学类课程之中就能很好地解决这些问题。因为将数学建模思想运用到数学类课程中,就能够让学生在独立思考和探索中感受到数学在现实生活中的实用价值,提高学生运用数学的眼光去观察、分析以及表示各种事物的空间关系、数量关系和数学信息的能力,提高学生的创造能力和创新意识。
(1)教师在教学过程中较少渗入数学建模思想。目前在高校数学教学中数学建模的思想应用得仍然较少,重视程度不够。不少高校的教师在开展大学数学类课程时,仍然只是停留在数学知识的教学方面,并没有对学生进行研究性学习探索。据调查,大多数高校教师对日常的教学工作能够认真完成规定的教学任务,但能够真正创造性地把数学建模思想融入到数学教学任务中的教师较少。大多数高校数学老师都意识到探索式的数学建模教学很重要,但真正将数学建模思想与数学教学融合的尝试和探索却很少。可见多数高校教师虽然明白数学建模思想的重要性,但是由于缺乏足够的数学建模教学的相关知识及经验,在实际教学中数学建模思想仍未得到充分的运用。
(2)开设的有关数学建模的课程和活动较少。虽然数学建模思想得到了越来越广泛的应用,但是在高校中实际开设的有关数学建模的课程并不多,尤其是应用数学、数学实验以及计算机应用等一些需要渗入数学建模思想的课程在实际的教学过程中并没有创造性地运用数学建模思想。另一方面,校内自主开展的有关数学建模竞赛和活动并不多,宣传力度也不够,无法让更多的学生了解数学建模的意义和价值,更无法参与到数学建模活动中去。
(3)学生对数学的态度和观念还未改变,对数学建模缺乏深入的了解。大学数学是一门较为抽象的学科,其概念、定理和性质都不容易掌握,由于其具有一定的难度,所以不少学生对大学数学类课程以及数学建模没有兴趣。并且这些学生在初中和高中阶段也学习数学,但是不少学生是为了应付考试,并没有见识到数学的应用性,觉得数学是一门纯理论的课程,没有实用价值。同时很多学生对数学建模思想的运用并不够了解,不知道如何将数学知识和数学方法应用到实际的生活中去,觉得数学没有用,也没有深入学习的意义。
(1)提高课堂教学质量,创造性地运用数学建模思想。大学的数学类课程主要有“线性代数”、“高等数学”、“运筹学”、“数学建模”、“概率论与数理统计”等,这些课程的核心部分都跟高等数学有关,所以要注重提高数学类课程的教学质量关键就在于高等数学,而要提高高等数学的教学质量就必须在教学过程中创造性地应用数学建模思想。对于主修数学的学生,要加强对计算机软件和语言的学习,系统性地对数学原理进行剖解和分析,合理运用数学知识和数学方法解决社会实际问题。在教学中多引导、启发学生利用对生活问题和科学问题的深入研究,主动结合自己的课程理论知识和数学建模,使数学建模思想融入到学生的整个学习过程中去。对于非数学领域的问题,要启发学生运用计算机软件建模,从而解决不同领域中的数学建模问题。
(2)多开设跟数学建模有关的数学类课程。例如除了开设跟数学建模有关的必修课,还可以开设一些跟数学建模有关的选修课,为其他专业的学生提供接触和了解数学建模思想的机会,为学生拓展知识领域,为其解决该领域的问题提供有效的方法。例如,经济学有关专业的学生就可以通过选修跟数学建模有关的课程,解决其在经济学中遇到的问题,因为很多跟经济学有关的问题仅仅靠经济学的知识是无法解决的,像贷款计算这样的问题就要将数学与经济学联系起来才能解决实际问题。
(3)广泛宣传,让学生了解数学建模的意义和价值。学生是教学过程中的主体,目前,大学数学建模课程开设效果不佳,学生参与度低的主要原因就是学生缺乏对数学建模的深入了解。那么,要提高学生的参与性,促进数学建模思想与大学数学类课程的融合就必须加强宣传,让学生深入了解什么是数学建模。同时,在课堂上就是也要转变传统枯燥的教学方式,多使用启发式教学和探索式教学,吸引学生的学习兴趣,让他们发现数学对社会实际生活的重要作用,转变他们对数学的态度,并引导学生对数学建模和数学课程感兴趣。
(4)转变数学教育理念及教育方式。要转变传统的教育方式,将教学的重点放在数学知识在生活中的应用问题上,而不是将知识与实际生活割裂开来。同时在教学中要注重证明和推理,加强学生对数学方法的掌握注重培养学生对实际问题的逻辑分析、简化、抽象并运用数学语言表达的能力。也就是说教学的重点在于提高学生的数学学习能力和加强数学意识和数学方法的应用,这样才能够培养出具有创新能力和创新意识的人才。
(5)多开展数学建模活动和竞赛,提高学生参与性。在高校内部要多开展跟数学有关的活动和竞赛以及专家讲座等,一方面加强学生对数学建模的认识,另一方面也提高了学生的参与性。通过专家讲座,不仅可以让学生更深入地了解数学建模的价值,也加强了学术交流,提高学生的数学建模应用能力。通过数学建模竞赛,为学生提供展示自己智慧、充分发挥其能力的平台。同时,竞赛也可以让学生在竞赛中发现自己的不足,在交流中不断完善自己的缺陷,拓展学生的思维。而且,在数学建模比赛中,通过让学生探究跟生活实际有关的例子,提高学生对数学建模的兴趣,加强学生对模型应用的直观性认识,促进学校应用型人才的培养。
总之,数学建模思想和高校数学类课程的融合,对于高等数学教学改革具有非常重要的意义。把数学建模思想融入到高等数学教学中,可以更好地提高学生的数学学习能力,提高他们运用数学思想和数学方法分析问题、解决问题和抽象思维的能力。高校教师要加强数学建模思想的应用,让学生初步掌握从实际问题中总结数学内涵的方法,提高学生的数学学习兴趣,为高校学生专业课的学习奠定坚实的数学基础。
数学建模的论文篇七
就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。
(二)教学方法传统化。
教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。
二、建模在高等数学教学中的作用。
对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。
高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。
三、将建模思想应用在高等数学教学中的具体措施。
(一)在公式中使用建模思想。
在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的'教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。
(二)讲解习题的时候使用数学模型的方式。
课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。
(三)组织学生积极参加数学建模竞赛。
一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。
四、结束语。
高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。
参考文献。
[1]谢凤艳,杨永艳。高等数学教学中融入数学建模思想[j]。齐齐哈尔师范高等专科学校学报,20xx(02):119—120。
[2]李薇。在高等数学教学中融入数学建模思想的探索与实践[j]。教育实践与改革,20xx(04):177—178,189。
[3]杨四香。浅析高等数学教学中数学建模思想的渗透[j]。长春教育学院学报,20xx(30):89,95。
[4]刘合财。在高等数学教学中融入数学建模思想[j]。贵阳学院学报,20xx(03):63—65。
数学建模的论文篇八
1培养创造性思维学生在学习数学知识的过程中,虽然其接受的知识和经验是前人研究和发现的成果,但对于学生来说,其处于知识再发现的地位。教师向学生教授数学发现的思维和方法,换言之就是重点引导学生重温数学经验和知识的研究道路,进而保证学生的再发现能够顺利实现。这也是培养学生创新思维和能力的一个重要途径。利用数学建模能够有效地弥补数学教学过程中存在的缺陷,使学生充分体会到数学发现过程中的乐趣,进而激发学生学习数学的热情和积极性,培养其创造性思维。
2选择经典案例开展数学建模讨论、分析教师在实际的数学课堂教学中,可选择一些社会实际案例为讲授分析的主要对象,如实际生活和高科技的热点话题。教师可对此类实例进行必要的分析与讲解,在此过程中,积极引导学生独立钻研和研究问题,并培养学生主动查阅相关资料、自主讨论的能力。与此同时,教师还要及时与学生进行交流,答疑释难,并要求学生在自己实际能力的基础上构建恰当的模型,由易到难,循序渐进。除此之外,还要使学生充分发挥其主观能动性,培养学生发现问题,思考问题以及处理问题的能力。以微积分方程为例,教师在课堂教学中,可以“经济增长”作为主要案例,向学生系统地阐述微积分方程的实际应用过程,进一步加深学生对知识的理解、掌握和应用。
3同时开设数学建模与高等数学课程在职业院校数学教学过程中,同时开设数学建模与高等数学课程,能够有效提高学生对基础知识的理解能力和掌握程度,促进学生实践动手能力的培养。在数学建模课程的开设中,应该在教师的指导下,充分利用教学软件,引导学生动手实验和计算,加深学生对知识的掌握。在此过程中,使学生充分了解到运用数学理论和方法去分析和解决实际问题的全过程,进一步提高学生的积极性和思维意识能力,使他们意识到数学在实际生活应用中的关键作用。同时,促使学生将计算机技术融入数学学习中去,以现代化的高新科技为媒介,着手实际社会问题的解决。
4创新教学模式根据职业院校学生学习的特点和知识水平,重点提高学生运用数学的技能和思维方式来处理实际生活和专业问题的能力。要想从根本上培养学生的创新能力,一定要改变原来单一固定的教学模式,尝试和探索基于学生实际情况的教学措施和方式。经过长期的实践经验研究,讨论式教学和双向教学方式对培养学生的能力非常有效。这两种教学模式能够加深学生参与课堂教学的程度,激发学生学习数学的'主动性,最终达到提高教学效率的目的。所以,数学建模可以以具体问题为媒介,采用小组集体讨论解决问题的方法,培养学生的创新能力和意识,进一步加快职业技术院校数学教学模式的创新。
5组建数学建模团队在实际的数学教学中,教师可引导学生构建数学建模团队。在教师对数学建模的深入分析为基础,充分调动学生参与问题解决的主动性,师生积极互动,最终完成数学建模。如此一来,不仅能够有效培养学生积极进取的良好学习态度,而且还能够促进学生数学逻辑思维能力的提高。
6搭建校内数学建模网络平台在职业技术院校中构建校内数学建模网络平台,积极宣传与数学建模有关的知识经验,为学生主动获取数学建模信息提供各种数据资料。数学建模网络平台的搭建,能够有效促进教师和学生,学生与学生之间的交流与沟通,大大缩短学生和数学建模之间的距离,进而促进学生自主学习能力的提高和培养。
总而言之,数学建模思想是学生将基础理论知识与实际解决问题的方法相结合的最佳途径。将数学建模融入职业院校数学中,全面培养学生的创新意识和数学应用能力,进一步使数学为达成学院的教学和培养计划奠定基础,为培养更多更优秀的现代化社会人才服务。
数学建模的论文篇九
高校学生社团是一种具有共同兴趣爱好的学生自发组织的开展一些艺术、娱乐和学术型的活动的团体。学生社团以其鲜明的开放性、自主性以及多样性等特点,为一些有特长的学生提供了广阔的舞台,让这些学生可以更好的发挥自己的才能,促进其更好的成才。全国大学生数学建模竞赛是最早由教育部工业与数学应用学会共同承办的一个科技性的赛事,该比赛要通过数学和计算机的知识来解决实际生活中的问题,由于其特有的比赛形式,使得高职院校在全校范围内直接选拔参赛队员是件费神的事情,因此,为了更好的为数学建模竞赛选拔人才,激发学生的学习兴趣,学术性社团“数学建模协会”也就应运而生。数学建模协会的成立,可以更好的为学生提供一个展示自己的机会,可以增强学生对数学的学习兴趣,培养学生应用数学解决实际问题的能力,激发学生的创新思维,为数学建模竞赛选拔人才。本文主要以西安航空职业技术学院数学建模协会为例,探讨高职数学建模社团活动开展的形式和意义。
(一)数学建模社团有利于数学建模竞赛的开展。高职数学建模协会为数学建模竞赛搭建了一个平台,是数学建模竞赛强有力的后盾,数学建模竞赛成绩的取得与这个平台密不可分,只有充分发挥数学建模社团的作用,才能源源不断的为数学建模提供人力和智力保障,才能更好的推动高职数学的学习氛围。1、数学建模协会起着动员宣传的作用从没听过,到知道,在到熟悉,只有通过大力宣传和动员,才能让更多的人了解数学建模,让更多优秀学生参加到数学建模竞赛中。大学校园中有许多数学爱好者,他们对数学建模也有一定的认识,只要有参加数学建模活动的愿望的,都可以利用数学建模协会招新的机会,加入数学建模创新协会。将成绩优秀的学生邀请加入数学建模协会,对进一步扩大数学建模协会,夯实数学建模基础,起着举足轻重的作用。2、数学建模协会起着知识传播的作用高职院校学生在校学习时间较短,学业较为繁重,课余时间较少,数学建模培训的时间不足,无法让学生在短时期内掌握较多的数学建模相关知识。因此,利用数学建模协会活动可以开展数学建模课程的培训工作,普及数学建模相关知识。采用“老带新”的模式进行数学建模知识的普及。通过制定系统的培训方案,在每年秋季竞赛后,参加过竞赛的同学对新入协会的成员可以进行初级培训,为今后的竞赛奠定基础。3、数学建模社团起着选拔学生的作用每年数学建模竞赛的队员需要通过校内赛等形式进行选拔,此时,数学建模协会就起着校内赛命题及选拔队员的作用,当然这种选拔方式也有的弊端,就是所有队员都是来自校内赛成绩优秀的学生,而校内赛发挥不理想但建模能力突出或计算机技术水平优秀的学生就没法参加数学建模竞赛。为确保每一位有能力的学生都能够加入到建模竞赛队伍中来,可以通过校内竞赛与建模协会推荐两者相结合的方式选拔建模竞赛学生,以确保最优优秀的学生参加数学建模竞赛。(二)数学建模社团有利于大学生综合素质的培养。(1)数学建模社团属于专业的学术性社团,成立的目的是为了参加全国大学生数学建模竞赛,数学建模社团活动的趣味性和实践性可以提高学生的学习兴趣,培养学生自主学习的能力,增加学生参与竞赛的热情。社团活动中的培训使学生可以更好的应对竞赛,取得更好的成绩。另外,竞赛之余还可以进行其他领域的学术交流,比如计算机,经济,工程等领域,良好的交流氛围激发学生的创新思维和意识,从而培养他们的创新能力。(2)数学建模社团是学生自发组织的服务学生的群体,除了学术研究之外,还可以进行一些创新创业的活动,具有更多的实践的机会。比如,可以利用平时社团所学的知识,以团体的形式进行一些数据处理的校企合作;也可以以微信平台和微信群等发布一些数学建模相关的微课等,进行一些微信群讲座等等。这样可以让学生真正体会到数学的用处,达到学以致用的效果。(3)数学建模社团是学生自发组织的学术性社团,社团的组织机构都是学生在担任,社团的活动也都是学生在协调策划,甚至很多时候社团的老成员都可以辅助老师进行社团的一些学术性的讲座。因此,在学习的同时还锻炼了他们的处事应变能力团队合作的能力,可以说提高了学生的综合素质。
(一)数学建模社团的管理形式。数学建模协会作为一个学生群体组织,需要好的制度和管理模式。以笔者所在学校为例,数学建模创新协会具有自己的一套规章管理制度;在管理形式方面是以“三个管理面”来进行社团管理和学术交流的,具体如下:1、学术交流面这个主要是通过“社团内部进行学术交流活动”和“老带新培训”两部分组成,内部的交流活动主要是学生之间的相互沟通和交流,以及不定期的邀请指导教师和外校专家做一些数学建模报告。老带新培训是指社团主席团成员(一般是参加过前一年全国大学生数学建模竞赛的学生)为新入社团的学生进行培训,培训的内容基本上都是之前指导教师对他们集训时的内容,这种培训方式可以提升社团成员的授课和理解问题的能力,对于在校大学生来说是一次很好的锻炼。2、网络交流面采用qq群,网络空间和微信公众平台等开展社团成员之间的交流互动,社团宣传。笔者所在学校的数学建模创新协会每一届社团都有相应的qq群,另外,在20xx年也积极申请了微信平台,目前的'关注量也在800余人,微信平台的建立可以更方面使大学生关注数学建模相关信息,尤其是对大一新生可以更多的取了解数学建模,扩大数学建模的受益面和影响力。力求在大学生中营造一种“人人知数模,人人爱数模,人人参与数模”的良好的教育环境,使建模活动广泛化、群众化。3、交流互访面开展研讨会,专家报告会,社团联谊会等交流活动,既可以丰富数学建模社团学生的知识面,又能促进数学知识的理解和吸收,通过与其他社团的联谊,丰富了社团学生的业余生活,又能学习其他社团好的管理经验,促进社团管理的制度化、规范化、专业化,也只有通过不断的学习,不断的交流,才能真正“走出去”,建立一个管理完善,富有成效的学生社团。(二)数学建模社团的特色活动。数学建模社团在开展学术活动和辅助教师进行竞赛培训的同时,还不定期的举行一些活动,在提高学生学习兴趣的同时也以扩大了数学建模的影响力。以笔者坐在学校为例,每年可以开展一系列的数学建模活动。比如,数学建模创新协会纳新,数学建模创新协会趣味运动会,数学科技节,趣味数学知识竞赛,数学建模经验交流会,数学建模校内赛,数学辅导周,数学建模专题讲座。这些社团活动贯穿整个学年,不仅可以“由点及面、由浅入深”的对全国大学生数学建模竞赛进行宣传,在最大的范围内,提升数学建模大赛的影响力及参与度,成效较好。而且让枯燥的学术型社团变得丰富多彩,成为学生课后获取知识的一种平台,同时也是社团蓬勃发展的利器。
总之,数学建模社团活动的开展,有利于培养学生的创新意识和思维,有利于激发了学生的学习兴趣,有利于丰富学生的课后生活,有利于调动了学生参加学术型社团的积极性,同时也是高职院校组织参加数学建模竞赛的强有力的后盾。
[1]胡建茹,王摇娟.加强专业社团建设推进大学生创新实践能力培养[j].中国石油大学学报:社会科学版,20xx(12)。
[2]王珍娥,宋维,孙洁.数学社团建设的探索与实践[j].机械职业教育,20xx(7)。
[3]李湘玲,王泳兴.大学生社团发展与创新型人才培养互动机制研究:以吉首大学为例[j].黑龙江教育,20xx(11)。
[4]孙浩,叶正麟.西北工业大学数学建模创新教育之探索[j].高等数学研究,20xx(4)。
作者:张兰单位:西安航空职业技术学院通识教育学院。
数学建模的论文篇十
为了培养小学生良好的数学学习兴趣,激发他们的数学潜能,教师需要采取必要的措施注重数学建模思想的有效培养,促进学生的全面发展。在制定相关培养策略的过程中,教师应充分考虑小学生的性格特点,提高数学建模思想培养的有效性。基于此,文章将从不同的方面对小学生数学建模思想的培养策略进行初步的探讨。
作为小学数学教学中的重要组成部分,数学建模思想的渗透及相关教学活动的顺利开展,有利于提高复杂数学问题的处理效率,保持数学课堂教学的高效性。要实现这样的发展目标,增强小学生数学建模思想的实际培养效果,需要加强对学生动手实践能力的培养,激发学生的更高兴趣。建模的过程涉及问题表述、求解、必要解释及有效验证,在这四个环节中,可能会存在一定的问题,影响着数学教学计划的实施。因此,教师需要利用学生动手实践能力的作用,实现数学建模思想的有效培养,促使小学生能够在数学建模过程中享受到更多的快乐。比如,在讲解“认识角”知识的过程中,某些学生认为边越长角度也越大。为了使学生能够对其中的知识点有更加正确而全面的认识,教师可以通过在黑板上设置一些能够活动的三角板,让学生亲自动手操作,以此得出角与边长的正确关系,为后续教学计划的实施打下坚实的基础。通过这种教学方法的合理运用,可以激发出学生们在数学建模学习中的更高兴趣,丰富他们的想象力,从而使他们对数学建模思想有一定的了解,在未来学习过程中能够保持良好的`数学建模能力。
通过对小学阶段各种数学实践教学活动实际概况的深入分析,可知构建良好的数学模型有利于加深学生对各知识(福建省莆田市秀屿区东峤前江小学,福建莆田351164)点的深入理解,增强其主动参与数学建模教学活动的积极性。因此,为了使小学生数学建模思想培养能够达到预期的效果,教师需要结合实际的教学内容,建立必要的数学参考模型,提升学生对数学建模思想的整体认知水平。比如,在讲授“异分母分数加减法”这部分知识的过程中,可以设置“0.8千克+300克”“1.6千克-400克”等问题,向学生提问是否可以直接计算,并说出原因。当学生通过对问题的深入思考,总结出“单位不同不能直接计算”的结论后,继续向学生提问小数计算中为什么每一位都要对齐,实现“计数单位统一后才能计算”这一数学模型的构建。在这样的教学过程中,学生可以加深对知识点的理解,实现数学建模思想的有效培养。
加强小学生数学建模思想的有效培养,需要在具体的教学活动开展中注重对数学思想的灵活运用,增强相关模型构建的可靠性,促使学生在长期的数学学习中能够不断提高自身的数学能力,运用各种数学知识处理实际问题。比如,在“角的度量”这部分内容讲解的过程中,为了提高学生对角的分类及画角相关知识点的深入理解,教师可以将所有的学生分为不同的小组,让学生们通过小组讨论的方式,对角的正确分类及如何画角有一定的了解,并让每个小组代表在讲台上演示画角的过程。此时,教师可以通过对多媒体教学设备的合理运用,利用动态化的文字与图片对其中的知识要点进行展示,确保学生们能够在良好的教学模式中提升自身的认知水平,并在不断的思考过程中逐渐形成良好的创造性思维,强化自身的创新意识。比如,在讲解“图形变换”中的轴对称、旋转知识点的过程中,教师应通过对学生的正确引导,运用三角板、圆柱等教学辅助工具,让学生从不同的角度对各种轴对称图形、旋转后得到的图形进行深入思考,提高自身数学建模过程中的创新能力,从不同的角度深入理解图像变换过程,对这部分内容有更多的了解。因此,教师应注重小学生数学建模思想培养中多方位思考方式的针对性培养,提高学生的创新能力,优化学生的思维方式,全面提升小学数学建模教学水平。
总之,加强小学生数学建模思想培养策略的制定与实施,有利于满足素质教育的更高要求,实现对小学生数学能力的有效锻炼,确保相关的教学计划能够在规定的时间内顺利地完成。与此同时,结合当前小学数学教育教学的实际发展概况,可知灵活运用各种科学的数学建模思想培养策略,有利于满足学生数学建模学习中的多样化需求,为相关教学目标的顺利实现提供可靠的保障。
[1]童小艳.小学数学教学中培养学生建模思想的策略[j].学子(教育新理念),20xx(6).
[2]白宁.先学而后教——小学生数学建模思想培养的捷径[j].数学学习与研究,20xx(16).
数学建模的论文篇十一
摘要:在新课改以后,要求教师要在教学中重视学生的主体地位,提升学生学习兴趣,培养他们的自主学习能力。本文从小学数学教学过程中数学建模入手,对如何将数学建模运用到学生解题过程中进行了分析。
数学建模是指利用数学模型的形式去解决实际中遇到的问题,换句话说,就是利用数学思维、数学方法解决各种数学问题。数学建模是在新课程改革后出现的新概念,经过一段时间的观察我们可以发现,数学建模的方法能够有效的提高学生的学习兴趣,培养学生的数学能力。这种方式能够将复杂的数学问题利用简单的方式找到解决方案,是提高小学数学课堂效率及课堂质量的有效手段。小学数学是小学学习中的重要课程之一,也是培养学生数学思维的重要阶段。可以说,小学数学的学习是学生学习数学的关键,对今后的学习起到极大的影响。因此,对于小学数学教师来说,不断的完善教学手段,提高数学课堂质量是教学工作中的重中之重。而数学建模就是为了解决数学在生活中的实际问题,能够让学生感受到数学本身的魅力,培养他们的数学思维,提高数学学习能力,从而让小学数学教学质量也得到大幅度的提升。小学数学与数学建模之间有着密不可分的作用,两者相互联系、相互促进,如何有效的将数学建模运用在小学数学教学过程中,是每个小学数学教师都值得思考的问题。
数学建模是为了解决数学中遇到的问题,数学本身特别是小学数学也是一门较贴近学生生活的学科。因此在数学学习中,教师要首先培养学生的数学学习意识,让他们感受到数学与生活的紧密联系,然后再引导学生用数学建模去解决遇到的问题。在这一过程中,数学教师要注意以下两个问题:(一)在教学中一定要贴近学生的生活,课堂中所提出的问题也必须要符合生活实际,让学生对所学内容感到亲切。积极引导学生利用多种方式解决同一问题,尤其是利用数学建模的方式,以达到培养他们的数学思维以及想象能力的目的。(二)在学生进行数学建模的过程中要利用多鼓励的方式调动他们对数学学习的积极性,让他们在数学建模中获得成就感,增加自信心,以此来提高学生在今后学习中使用数学建模方法的热情。
二、提高学生想象力,用数学建模简化问题。
对于小学生来说,他们的思维与其他年龄段相比极其活跃,拥有了丰富的想象力。在数学学习中,如果能将想象力与数学学习结合在一起,一定会得到意想不到的效果。教师可以根据小学生这一特点,提高他们的想象力,然后再引导他们利用数学建模解决问题,让题目简单化。具体来说,就是在面对复杂的'数学问题时,教师可以先为学生创建教学情境,以这样的方式提高学生的学习兴趣,让他们愿意主动去深入的研究遇到的题目。之后教师再去对他们进行引导,让他们能够理解题目中所提问题的含义,并能够运用他们的想象能力思考解决问题的方式。最后再引导他们进行数学建模,解决问题。这样的方式充分的利用了学生的想象能力,将所需解决的问题简单化。
三、选择合适的题目作为建模案例。
在数学建模过程中,教师也要时刻牢记题目应该贴近学生的生活,符合实际,并且具有一定的趣味性,让他们有兴趣投入到数学建模的过程中去,然后再反复练习之后达到提高他们建模能力的目的。在选择数学建模案例时教师主要应该注意以下两点:首先,教师在选择建模案例时要尽量选择比较典型的问题,能够让学生在学习了该题目以后掌握这一类的解题方法,达到小学数学教学的目的。所以,这就需要教师对题目进行深入的分析,看是否在拥有趣味性、真实性的同时符合教学要求。其次,题目最好能够拥有可变性,教师能够通过对题目中已知条件的改变让学生进行不同方面的建模练习,以此提高他们数学建模的能力。
四、引导学生主动进行数学建模。
在教师经过反复的教学后,学生都已经拥有了基本的数学建模知识,了解了数学建模过程,并且能够在解题过程中简单的使用数学建模。此时,教师在教学中就可以引导学生利用数学建模解决数学题目了。引导学生用数学建模方法解决数学问题,就要在解题过程中多对学生进行这一方面的鼓励,让他们提高建模信心。在这一过程中,教师还可以尝试让学生之间利用合作的方式让他们进行数学建模方法的探讨,并在探讨的过程中吸取他人的经验,提高自己数学建模水平,同时这样的方式能够让数学建模深入到每一个学生的心中,逐渐影响每一个学生的解题思路,让他们能够在解题过程中熟练运用建模的方式,提高解题能力。数学建模的方法能够有效的改变过去的传统教学思路,增加学生对数学的学习兴趣,提高数学解题能力。这种教学方法对于小学数学教师来说,值得不断的探讨研究,并应用在教学中,以此提高数学课堂的教学效率和教学质量。
数学建模的论文篇十二
数学建模是衔接数学与应用问题的桥梁,该课程主要培养学生的综合素质要求。本文针对于数学建模的课程考核问题进行探讨,分析数学建模课程考核存在问题,改革思路,并提出多层次综合考核方式,应用于数学建模的课程考核,效果良好。
数学建模是一门介绍数学知识应用于解决实际问题的方法课程,该课程主要讲授如何针对日常生活中的实际问题,做假设简化并进行抽象提取,然后用数学表达式或者数学公式等将该问题表达出来,并求解该问题,从而达到解决实际问题的目的。数学建模的教学内容包含常见数学模型的介绍、数学软件编程和处理实际问题的数学方法。即数学建模是一门衔接数学与实际问题的应用型课程,其教学、考核等都与其他数学课程不同。中共中央国务院《关于深化教育改革全面推进素质教育的决定》明确指出:“高等教育要重视培养大学生的创新能力、实践能力和创业精神,普遍提高大学生的人文素养和科学素质。”特别对于当前处于经济结构调整期,“中国制造”向“中国创造”转型,国家需要大量的高素质创新型人才。而高校是培养高素质创新型人才的重要基地,需要改变原有的人才培养模式,提高学生的动手能力和综合素质,培养适合经济发展需要的高素质创新型人才。因此,本科教学中越来越重视培养学生收集处理信息的能力、获取新知识的能力、分析和解决问题的能力、语言文字表达能力以及团结协作和社会活动的能力。数学建模竞赛是利用数学知识解决实际问题的竞赛活动,要求参赛学生利用三天三夜的时间完成数学建模竞赛,整个竞赛过程中学生需要分析问题、查找资料、建立模型、编程求解、撰写建模论文等步骤。这些步骤要求参赛学生具有较强的信息收集、知识获取、分析、编程、论文撰写、团队协作等能力。因此,数学建模竞赛活动是培养学生各方面能力的竞赛,也是全国参与人数最多、受益面最广、举办时间最长的竞赛活动之一。数学建模是信息与计算科学和应用数学专业的专业必修课,参加数学建模竞赛的必须培训课程,数学建模的考核不仅仅是给出该课程的成绩,更重要的承担为数学建模竞赛选拔参赛人员的任务。本文针对数学建模的考核问题进行讨论。
(1)考核手段和目的存在误区。传统的考核方法注重于理论知识的检验,忽略了对学生创新意识、实践能力的培养。同时,教育主管部门对于该课程的考核要求与其他课程类似,仅仅考核知识点的.掌握,忽视了该课程的开设目地,从而使得部分学生的利用数学方法解决实际问题的能力未能提高,没有达到学习此课程的目的。(2)考核重结果,轻过程。目前,数学建模是考查课程,该课程的考核存在两个极端:简单根据学生的数学建模论文给予成绩或试卷考试成绩。考核结果忽略了对学生的各方面能力的考察,导致开卷考试变成了学生的简单应付了事;而且部分考核只看最后的结果,而忽略了数学建模的整个训练过程。(3)考核方式单一。数学建模课程牵涉数学方法、编程能力、论文的写作能力、及其综合动手能力等。单纯从试卷或最终数学建模论文不能体现学生的各种能力。导致学生的某一种能力掩盖了其他能力的展现,导致数学建模竞赛学生选拔过程中存在一种现象:通过各种方式选拔的“优秀”学生,真正参加数学建模竞赛时,根本无法动手。(4)教学改革需要。随着大数据、人工智能、深度学习等领域的兴起,数学知识是解决此类实际问题的必须工具,解决该类问题的过程其实就是数学建模的过程。随着“新工科”培养计划的兴起,数学、编程、写作能力成为衡量人才的重要指标。数学建模是衔接数学和实际问题的桥梁,设置合理的考核方式,体现学生多方面能力是数学建模课程考核改革的动力。
(1)转变教育观念,树立科学考核。数学建模是一门利用数学方法、计算机编程、论文写作等方面知识解决实际问题的课程。该课程主要培养学生利用数学建模方法解决实际问题的能力。因此,任课教师改变课程考核等同于考试的观念,将考核过程贯穿学生的学习阶段,学习阶段融入整个考核过程。从而避免教、考脱节的现象,形成教考相互融合,提高学生的积极性。(2)实施多元化考核,提高学生的动手能力。数学建模课程是综合利用各种能力解决实际问题的方法论型课程,该课程的最终目的是培养学生的各种能力及其解决实际问题的综合能力。包含多个知识点的试卷测试是应试教育的体现,不足以反映学生的动手能力。多元化的考核方式能促进教学过程逐步向以训练学生的解决实际问题能力为导向,激发学生的创新意识、锻炼学生的实践能力。(3)实施多元化考核,促进学生学风。多元化考核将教学和考核的过程相互融合,学生的学习和考核交替进行,能够促使学生、自我反省,发现自己学习的不足,及时改进。同时,教考融合能够促使学生自发学习,调到学生的学习积极性,避免出现“平时送、考前紧、考后忘”的现象。
鉴于数学建模是利用计算机、数学解决实际问题的方法论文课程。该课程的教学过程包含介绍数学建模所用知识点和综合利用各个知识点解决实际问题两个阶段。该课程考核改革主要训练学生综合利用知识解决实际问题的能力,过程的训练是教学的重点。考试改革需贯穿于该课程的具体教学过程,因此将考核分为阶段考核、综合考核、结课考核、参赛考核四种方式。(1)阶段考核。数学建模的教学内容包括编程语言介绍、数学建模方法介绍和数学论文写作介绍几个主要的方面。相应地,编程能力、应用数学建模能力和论文写作能力的训练是数学建模的根本目的。因此,本项目拟根据数学建模的教学大纲安排,对每种能力进行单独考核,结合每种能力的特点,设置不同的题目,考核每种能力的得分。根据教学进度发布测试题目,初步拟定每种能力的测试成绩各占总成绩的10%,共占总成绩的30%。(2)综合考核。数学建模是综合运用各种能力的解决实际问题。在各种能力训练的基础上,强化训练学生的综合运用各种知识的能力。在此阶段,从历年数学建模题目和日常生活中挑出2~3个题目,进行适当简化处理,促使学生利用3~5天的时间完成一篇论文,进行点评评分,挑选部分典型论文进行讲解;然后要求学生继续完善论文,再次点评评分,如此循环多次。每个题目的成绩约占总成绩的10%,该阶段共占总成绩的30%。(3)结课考核。针对数学建模授课期间的知识点训练和综合训练,最后仿照数学建模的参赛组织形式,从实际生活中挑选2个侧重点不同的题目;同时,建议选课学生自由组合,3人一组,共同完成数学建模论文。该阶段对前期训练的检测,同时考核学生的团队精神,最终论文的成绩占总成绩的40%。(4)参赛考核。数学建模课程可作为数学建模竞赛的前期培训,从选课选手中选取部分成绩优秀的学生,组织他们参加全国大学生数学建模竞赛,竞赛获国家级奖,最终成绩直接评为优秀;广西区级奖最终成绩可直接评为良好。
该考核方案在信息与计算科学专业的数学建模课程试用。教学中将考核过程融入教学过程,教学过程穿插考核,这样能够防止“考核型学习现象”,促使学生逐步向“学习型考核”转变。同时,数学建模是应用型课程,多元化考试能够训练学生的应用数学、计算机编程和论文书写能力,单一考核不再适应,多元化考核能够发现学生的优点,促进教学过程转变为“以能力为导向”,符合当前的教育改革理念。数学建模讲授的内容有:线性规划模型、非线性规划模型、图论模型(最短路模型、生成树模型、网络图模型)、微分方程模型、差分方程模型、插值模型、拟合模型、回归分析模型、因子分析模型、统计检验模型、综合评价模型、模拟仿真模型等模型及其相关算法的软件编程。在教学安排中,对于数学模型部分尽可能讲解数学建模中常见模型的建模方法、模型特点及其适应范围、该模型的求解算法等。对于涉及模型求解算法的理论及其具体的求解步骤略讲或者不讲解,对于调用软件的算法集成命令及其调用方法等详细介绍。对于数学建模论文写作方面,通过阅读优秀论文,特别是我校20xx年的“matlab创新奖”论文。同时,选取部分简单例题,根据完整数学建模论文的章节要求布置任务,要求完成相应论文。然后根据学生的完成情况,进行详细点评,特别数学建模论文的写作及其注意事项。学生主动完成平时练习的积极性高,80%的同学能够按时完成布置的任务。剩下部分同学再经过多次提醒之后也补交了布置的任务。从提交的作业发现,大部分同学的作业都是自己认真完成,少数同学是在参考他人的基础之上完成。在课程结束后,参照数学建模的形式,要求同学们可以自由组队,队员人数为1~3人,根据人数的多少,设置不同的评价标准。为考查学生的学习情况,本人给出几道历年真题或类真题,这些题目是根据当前的热点新闻等经过加工而提出。从学生提交的结课论文来看,已经达到了预期效果,大部分同学具备了数学建模的基本素质,掌握了数学建模技巧,能够完成数学建模论文。通过两年的试用,信息与计算科学专业参加数学建模竞赛的人数比往年增加20%,而获得省(区)级奖以上的奖项比往年增加40%。因此,说明数学建模考核方案对学生的评价具备一定的准确性。
为配合考核方案的实施,特拟定考核改革调查问卷,本人共做了两次问卷调查,共收到近八十分问卷。问卷包括数学学习兴趣、参加数学建模的积极性、考核严厉与否、考核方案认同度等内容。统计调查问卷发现,学生对数学知识的学习兴趣明显提高,参加数学建模竞赛的积极性也大幅度提高。并且大部分学生认同考核方案,也赞成将考核过程与教学过程相结合。从调查问卷的统计结果看:有近70%的学生认为该课程应该严格考核;76%的学生认同该考核方案。由此可见,数学建模考核方式改革具有一定的推广和实施价值(见图1)。
根据实施《数学建模》考核改革方案的学生反馈情况,总的来看,学生对考核方案比较认同,也同意严格考核。从学生的参赛人数和获奖比例也说明了该考核方案能有效提升学生的学习兴趣,提高学生的各方面能力。
[2]谢发忠,杨彩霞,马修水.创新人才培养与高校课程考试改革[j].合肥工业大学学报,20xx.24(2):21-4.
[3]李红枝,毛建文,古宏标,黄榕波,邢德刚.创新意识和创新能力培养中高校考试改革的探索[j].山西医科大学学报,20xx.13(4):397-400.
[5]蒲俊,张朝伦,李顺初,付晓舰.地方综合性大学理工科学生数学建模创新培养改革的探讨[j].中国大学教学,20xx.7:56-8.
数学建模的论文篇十三
摘要:数学建模课堂中学生的自主探究、合作学习与教师的科学引导并不矛盾而是相辅相成的。只有在教师科学、适时、适当地引导下才能更好地突出学生的主体地位,从而打造出自主探究、合作学习、愉悦发展的高效数学建模课堂。
一、新课的引入需要发挥教师的作用。
教师在数学建模课堂上的引导作用首先体现在教师对新课的引入上。教师一段精彩的导入会点燃学生学习的热情、激发学生的学习兴趣、唤起学生的好奇心,能把学生的注意力迅速集中到要学的知识上来。这对提高教学质量、提高学生的学习效果起着不可估量的作用。同时,新课前的导入环节是对学生进行情感教育的最佳时刻。学生只有在教师的引导下才能够体会到数学建模的价值、增强学好数学建模的信心。俗话说:“好的开始是成功的一半。”数学建模课堂也是这样。因此,在新课引入时要充分发挥教师的作用。
二、在教学任务的设计上需要发挥教师的作用。
数学建模课堂一般应采用任务型教学模式,是让学生通过自主探究、合作学习、交流展示的方式完成一系列学习任务来达到特定的教学目标和学习目标。学生在课堂中的主体作用能否得到有效发挥取决于教师对问题设计质量的高低。教师应通过设计一系列高质量的问题把复杂的数学建模问题分解成若干简单问题来引导学生更好地发挥其主动性。学生也只有在这些问题的正确引导下才能突破难点并向着学习目标努力,有效防止学生思考、探究、交流的内容偏离学习目标等现象的出现。这些任务的制订需要充分发挥教师的作用。
三、在新旧知识的联系点上需要发挥教师的作用。
建构主义强调新知识是在学生已有知识的基础上通过学生自身有意义的建构获得的。笔者认为,学生自主建构知识应在教师的科学引导下进行。尤其是对于数学建模这样高难度的知识更是这样。失去了教师的科学引导,学生易产生疲倦感,久而久之会丧失学习数学建模的兴趣和信心。因此,在新旧知识联系点上应发挥教师的作用。教师应在准确掌握教学目标、难点的基础上,充分考虑学生的认知能力、习惯、思维方式,通过有针对性的具体问题唤起学生对旧知识的回忆,再通过启发性问题引导学生去发现新知识,从而实现温故知新的目的。在教师引领下学生自主建构知识可以使学生少走弯路,从而使学生更加高效地自主探究、掌握新知识。
四、在教学重点、难点上需要教师的引导。
教学的重点、难点是每一节课的核心和主线,只有准确把握了重点、突破了难点才能更好地掌握本节课的内容。在强调学生自主探究、小组合作学习的课堂教学模式中,数学建模教材的重点、难点学生往往把握不准、难以突破。这就需要教师科学引导学生主动去发现重点、突破难点。教师引导学生发现重点、突破难点并不是让教师直接告诉学生本节课的重点是什么、怎样突破难点,而是通过具体问题的引导让学生自己找到重点、并通过学生自己的思考、讨论解决疑难问题。学生在教师的引导下通过自己的努力、讨论解决了疑难后,学生会非常兴奋,从而会越来越喜欢数学建模课。相反,在没有教师引导的数学建模课堂中,学生经常被困难吓倒,从而对数学建模课产生畏惧感。由此可见,教师对学生的科学引导是学生学好数学建模必不可少的环节。在以学生为本、注重学生全面发展、提倡课堂中突出学生主体地位的背景下,教师的引导仍是数学建模课堂中不可缺失的要素。数学建模课堂中学生的自主探究、合作学习与教师的科学引导并不矛盾而是相辅相成的。只有在教师科学、适时、适当地引导下才能更好地突出学生的主体地位,从而打造出自主探究、合作学习、愉悦发展的高效数学建模课堂。
数学建模的论文篇十四
随着我国高等教育的发展,高校招生规模越来越大,而生源质量较低,特别是独立学院院校。就我校而言,绝大多数专业都开设了数学类课程。但在教学中,普遍认为理论性太强,与实际脱节严重,不能引起学生的学习兴趣。并且,传统教学忽视了学生用数学解决实际问题的能力,所以,进行数学教学改革势在必行。数学建模可培养学生利用数学知识解决实际问题的能力,通过数模方法对实际问题进行巧妙处理,让学生体会到数学不仅能传播理论知识和求解一些数学问题,还可将其应用到实际问题中,让学生看到一些实际模型的来龙去脉,提高学生的学习积极性。数学建模是培养学生综合科学素质和创新能力的一个极好载体,而且能充分考验学生的洞察能力、创新能力、联想能力、使用当代科技最新成果的能力等。学生们同舟共济的团队合作精神和协调组织能力,以及诚信意识和自律精神的塑造,都能得到很好的培养。技能技术的掌握和团队合作精神对于独立学院学生将来进入社会十分重要,这也是衡量独立学院办学成功与否的一个方面。因此,独立学院的人才培养目标定位,既要达到本科生应具备的理论基础,又要有相对突出的专业技能,应培养“应用型本科”人才。因而,独立学院的数学课堂上应该多方面渗透数学模型的思想。
(一)人才培养创新的需要。
根据独立学院人才培养目标和实际情况,有针对性的加大基础课和实践环节教学的'比重,侧重于实践能力的培养,在专业课程体系中适当增加实验、实践教学内容,加强与社会实体的联系。力求培养出具有实际操作能力的高素质大学生。数学建模是将一个实际问题,对其作出一些必要的简化与假设,将其转化成一个数学问题,借助数学工具和数学方法精确或近似地解决该问题,并用数学结果解释客观现象、回答实际问题并接受客观实际的检验。数学建模能弥补传统数学教学在实际应用方面的不足,促进数学教师在现代化教学手段、教学模式方面的更新。数学建模有助于调动学生的学习兴趣,在计算机应用能力、实践能力和创新意识的培养方面都有着非常大的作用,以便学生将来能更好地适应工作岗位。
(二)高校教学改革的需要。
当今社会信息高度发达,竞争日益激烈,必须具备一定的创新意识和创新能力,否则很难适应社会信息时代的要求。传统的教学模式是以课堂理论讲授为主,学生绝大部分时间都集中学习书本知识,很少有机会接触社会,也难做到学以致用。绝大多数课程都是教师的一言堂,考试也是以教师讲课内容为主。学生忙于记录和背诵而闲置其聪慧的头脑。长期的灌输式教学导致学生明显缺乏学习的主动性,会听从而不会质疑,更不会形成开创性的观点,很难适应企事业单位动态的工作环境。数学作为一门传统基础学科,对独立学院的学生来说,学习上有一定的难度。我们的教学应以“必需,够用”为度。数学建模从形式到内容,都与毕业后工作时的条件非常相近,是一次非常好的锻炼,学生通过自主的学习,把实际的问题转化为数学理论解决,有助于学生创新能力的培养动手能力的提高,这也正是独立学院院校应用型本科人才培养的方向。
(三)学生参加数学建模竞赛的需要。
独立学院学生思维活跃,且比较注重个人能力素质的提高。很多学生愿意在学校参加一些竞赛来提高自己。全国大学生数学建模竞赛尤其受学生重视,但仍有很多大学生不了解这类竞赛,因此,在数学课堂上引入数学建模思想,学生既了解了数学建模,又对数学公式提起了兴趣,还有助于独立学院学生在全国大学生数学建模竞赛中取得优异成绩。
高等数学的作用表现在为各专业后续课程的学习提供必要的数学知识,培养各专业学生的数学思想与数学修养,全面提高大学生创新思维和应用能力。只有把数学建模思想融入数学教学中,才能调动学生学习数学的积极性,培养学生的创新能力,实现提高学生综合分析问题能力的最终目标。
作者:崔玮王文丽单位:中国地质大学长城学院信息工程系。
数学建模的论文篇十五
摘要:在新课改以后,要求教师要在教学中重视学生的主体地位,提升学生学习兴趣,培养他们的自主学习能力。本文从初中数学教学过程中数学建模入手,对如何将数学建模运用到学生解题过程中进行了分析。
数学建模是指利用数学模型的形式去解决实际中遇到的问题,换句话说,就是利用数学思维、数学方法解决各种数学问题。数学建模是在新课程改革后出现的新概念,经过一段时间的观察我们可以发现,数学建模的方法能够有效的提高学生的学习兴趣,培养学生的数学能力。这种方式能够将复杂的数学问题利用简单的方式找到解决方案,是提高初中数学课堂效率及课堂质量的有效手段。初中数学是初中学习中的重要课程之一,也是培养学生数学思维的重要阶段。可以说,初中数学的学习是学生学习数学的关键,对今后的学习起到极大的影响。因此,对于初中数学教师来说,不断的完善教学手段,提高数学课堂质量是教学工作中的重中之重。而数学建模就是为了解决数学在生活中的实际问题,能够让学生感受到数学本身的魅力,培养他们的数学思维,提高数学学习能力,从而让初中数学教学质量也得到大幅度的提升。初中数学与数学建模之间有着密不可分的作用,两者相互联系、相互促进,如何有效的.将数学建模运用在初中数学教学过程中,是每个初中数学教师都值得思考的问题。
数学建模是为了解决数学中遇到的问题,数学本身特别是初中数学也是一门较贴近学生生活的学科。因此在数学学习中,教师要首先培养学生的数学学习意识,让他们感受到数学与生活的紧密联系,然后再引导学生用数学建模去解决遇到的问题。在这一过程中,数学教师要注意以下两个问题:(一)在教学中一定要贴近学生的生活,课堂中所提出的问题也必须要符合生活实际,让学生对所学内容感到亲切。积极引导学生利用多种方式解决同一问题,尤其是利用数学建模的方式,以达到培养他们的数学思维以及想象能力的目的。(二)在学生进行数学建模的过程中要利用多鼓励的方式调动他们对数学学习的积极性,让他们在数学建模中获得成就感,增加自信心,以此来提高学生在今后学习中使用数学建模方法的热情。
二、提高学生想象力,用数学建模简化问题。
对于初中生来说,他们的思维与其他年龄段相比极其活跃,拥有了丰富的想象力。在数学学习中,如果能将想象力与数学学习结合在一起,一定会得到意想不到的效果。教师可以根据初中生这一特点,提高他们的想象力,然后再引导他们利用数学建模解决问题,让题目简单化。具体来说,就是在面对复杂的数学问题时,教师可以先为学生创建教学情境,以这样的方式提高学生的学习兴趣,让他们愿意主动去深入的研究遇到的题目。之后教师再去对他们进行引导,让他们能够理解题目中所提问题的含义,并能够运用他们的想象能力思考解决问题的方式。最后再引导他们进行数学建模,解决问题。这样的方式充分的利用了学生的想象能力,将所需解决的问题简单化。
三、选择合适的题目作为建模案例。
在数学建模过程中,教师也要时刻牢记题目应该贴近学生的生活,符合实际,并且具有一定的趣味性,让他们有兴趣投入到数学建模的过程中去,然后再反复练习之后达到提高他们建模能力的目的。在选择数学建模案例时教师主要应该注意以下两点:首先,教师在选择建模案例时要尽量选择比较典型的问题,能够让学生在学习了该题目以后掌握这一类的解题方法,达到初中数学教学的目的。所以,这就需要教师对题目进行深入的分析,看是否在拥有趣味性、真实性的同时符合教学要求。其次,题目最好能够拥有可变性,教师能够通过对题目中已知条件的改变让学生进行不同方面的建模练习,以此提高他们数学建模的能力。
四、引导学生主动进行数学建模。
在教师经过反复的教学后,学生都已经拥有了基本的数学建模知识,了解了数学建模过程,并且能够在解题过程中简单的使用数学建模。此时,教师在教学中就可以引导学生利用数学建模解决数学题目了。引导学生用数学建模方法解决数学问题,就要在解题过程中多对学生进行这一方面的鼓励,让他们提高建模信心。在这一过程中,教师还可以尝试让学生之间利用合作的方式让他们进行数学建模方法的探讨,并在探讨的过程中吸取他人的经验,提高自己数学建模水平,同时这样的方式能够让数学建模深入到每一个学生的心中,逐渐影响每一个学生的解题思路,让他们能够在解题过程中熟练运用建模的方式,提高解题能力。数学建模的方法能够有效的改变过去的传统教学思路,增加学生对数学的学习兴趣,提高数学解题能力。这种教学方法对于初中数学教师来说,值得不断的探讨研究,并应用在教学中,以此提高数学课堂的教学效率和教学质量。
【本文地址:http://www.xuefen.com.cn/zuowen/15179201.html】