实际问题与方程数学教案设计(汇总16篇)

格式:DOC 上传日期:2023-11-26 05:30:55
实际问题与方程数学教案设计(汇总16篇)
时间:2023-11-26 05:30:55     小编:琴心月

教案能够帮助教师系统地组织和展开教学内容,提高教学的有效性。编写教案之前,需要对教学内容进行深入理解和准备。教案范文的分享可以促进教师之间的共同进步和成长。

实际问题与方程数学教案设计篇一

本节课的重难点在于设未知数和找等量关系,通过这两道题的练习,为第三道题的变式练习做准备。

3.养殖场有白兔和黑兔,白兔的只数是黑兔的4倍。

(1)白兔和黑兔一共230只,白兔和黑兔各有多少只?

(2)白兔比黑兔多138只,白兔和黑兔各有多少只?

请同学们先独立完成第一问,然后我们进行交流。

第二问请大家认真思考,观察与第一问的区别,独立完成后,进行交流。

四、课堂小结。

通过本节课的学习:

实际问题与方程数学教案设计篇二

教学目标:

1、经过探索与交流解决问题的过程,感受解决问题的一些策略,学习画线段图分析数量关系,学会解决与倍有关的两步计算实际问题及相应的变式问题。

2、感受数学与日常生活的密切联系,进一步增强对数学兴趣和信心,初步形成独立思考和探索问题的意识、习惯。

教学重点:学习画线段图分析数量关系,感受解决问题的一些策略,学会解决与倍有关的两步计算实际问题。

教学难点:画线图表示和分析数量问题,解决与倍有关的两步计算实际问题的变式题。

教学步骤。

教师活动过程。

学生活动过程。

一、谈话。

导入。

同学们:你们知道班上谁平时最讲究卫生,衣着最整洁吗?(不提漂亮,避免学生盲目攀比),确实,衣着是我们生活中的一件重要事情。那么,××同学你知道吗,你的衣服是谁给你买的呢?你知道它们的价格吗?今天这节课我们就来研究一个有关衣服的问题。(板书:实际问题)。

从学生的日常生活中引出数学问题,既自然又能吸引学生的注意力,为新课的教学奠定了良好的基础。

教学内容。

教师活动过程。

学生活动过程。

二、探究新知。

1、教学例题。

(1)课件出示妈妈带芳芳买衣服的情景。

衣服标价28元,营业员阿姨说:“上衣的价钱是裤子的.3倍。

请一名学生板演,其余在书上画。要求一套衣服要多少钱,也就是求裤子和上衣的价钱一共是多少元,那么该怎样表示这个问题呢?可以这样表示(师生边说边板演)。

(3)现在线段图画完了,你能指着线段图说说每一部分的意思吗?

(1)学生根据教学情境,说说了解到的有关信息,加深对题意的理解。

(2)学生根据题意,同桌进行讨论,弄清上衣和一套衣服的价钱该怎么表示,并将线段图补充完整。

(3)结合线段图说说每一部分表示的意思。

教学内容。

教师活动过程。

学生活动过程。

2、教学试一试。

3、比较。

(4)这个问题需要几步计算解决?你会解答吗?写在自己的随堂本上。(若有困难,可以与同桌讨论后再做。)。

(5)谁来说说你是怎样解答的?先算什么,再算什么?

(6)有不同的算法吗?若有,则让学生结合线段图说说”1+3“和”28×4“表示的意思,若没有则不教学第二种解法。

(2)先看线段图,问题改了,线段图要不要改?怎样改呢?你能说出要改的是哪部分吗,师画线段图。

(3)在随堂本上独立解答。

(4)交流:你是怎么做的呢?怎么想的?(注意引导学生有序地表达自己的思考过程)。

(5)有不同的解法吗?(没有别的解法则不讲另外的解法)。

上面这两道题在解答方法上有什么相同的和不同的地方?师补充出完整课题。

(4)学生独立解答或讨论后解答,全班交流。

(5)学生交流自己的解答过程,并说说先算什么,再算什么。

(6)学生交流不同的解法。

(1)思考怎样解答芳芳的问题。

(2)用线段图表示题意。

(3)独立解答。

(4)有序地说说自己的想法和解答的过程。

(5)交流不同的解法。

学生根据自己的理解说出相同点和不同点。

教学内容。

教师活动过程。

学生活动过程。

三、应用拓展。

四、小结全课布置作业。

1、想想做做第1题。

出示图,说说要求的问题,独立解答后再交流。

根据已知的信息,你能求出什么问题?

2、想想做做第2题。

说图意后,独立解答。

交流时,说说怎么想的(注意表达的有序性)。

3、想想做做第3题。

出示图,从中你得到哪些信息?要求我们做什么?你打算怎么办?独自填表,全班集体订正。

4、补合适的条件。

湖中黑天鹅有24只,,

白天鹅和黑天鹅共有多少只?

5、根据情境图,编一道今天学习的两步计算的实际问题(素材:雅典奥运会上,罗马尼亚获得金牌8枚,中国获得金牌32枚)。

(1)通过今天这节课,你有哪些收获?

(2)作业想想做做第4题。

1、先说出要求的问题,再独立解答、交流。

2、说图意后,独立解答交流。

3、交流题中的信息,填表后,集体订正。

4、同桌一人补合适的条件,另一人再说出算式。

学生交流感受,

完成课堂作业。

教学设计说明。

1、经历探索和交流解决问题的过程,感受解决问题的一些策略,学习用线段图对信息进行再加工,帮助分析、理解数量关系,寻找解题方法。

2、强调与他人合作交流,重视思维与表达的有序性。

3、鼓励解题方法多样化,但不强求一题多解。

4、感受数学与日常生活的密切联系,初步形成独立思考和探究问题的意识、习惯,增强应用数学的意识。

实际问题与方程数学教案设计篇三

教学内容:

教科书p13例9、p14练一练、p16练习三第1~3题。

教学目标:

1.使学生在解决实际问题的过程中,理解并掌握形如ax+bx=c的方程的解法,会列上述方程解决两步计算的实际问题。

2.掌握根据题意找出数量间相等关系的方法,养成根据等量关系列方程的习惯。

教学重点:

掌握列方程解应用题的基本方法,在理解题意分析数量关系的基础上正确找出应用题中数量间的相等关系。

教学难点:

能正确找出应用题中数量间的相等关系。

教学过程:

一、谈话导入。

今天研究一个与颐和园有关的数学问题。

二、学习新知。

1.p13例9。

(1)指名读题,分析数量关系。

用线段图表示出题目中数量之间的关系吗?

学生尝试画图,集体交流。

根据线段图得到:水面面积+陆地面积=颐和园的占地面积。

启发:这大题目中有两个未知数,我们设谁为x呢?

(2)列方程并解方程。

指名学生列出方程,鼓励学生独立求解。

如果用x表示陆地面积,那么可以怎样表示水面面积呢?

追问:这道题可以怎样检验?

检验:a、72.5+72.53=290(公顷)b、217.572.5=3。

(3)观察我们今天学习的'方程,与前面的有什么不同?

小结:像这样含有两个未知数的问题我们也可以列方程来解答。

(4)学生独立完成p14练一练第1题。

三、巩固练习。

1.p14练一练第2题。

教师引导学生找出数量关系式。

陆地面积2.4-陆地面积=2.1。

2.解方程。

2x+3x=60。

3.6x-2.8x=12。

100x-x=198。

3.根据线段图列出方程。

4.解决实际问题:(列方程解)。

(2)一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?

在做这道题时你认为应注意什么呢?

四、全课小结。

在解答这一类应用题时应注意什么?

五、课堂作业。

p16练习三第2-3题。

实际问题与方程数学教案设计篇四

教学内容:

义务教育课程标准实验教科书(苏教版)数学第五册第43页例题和“试一试”,第43-44页“想想做做”第1-4题。

教学目标:

1、经历探索和交流解决问题的过程,感受解决问题的一些策略,学习画线段图分析数量关系,学会解决与倍有关的两步计算实际问题及相应的变式问题。

2、感受数学与日常生活的密切联系,进一步增强对数学学习的兴趣和信心,初步形成独立思考和探究问题的意识和习惯。

教学准备:准备上衣、裤子的图片(裤子图片上标有28元的标签)。

教学过程:

一、创设生活情境,导入新课。

谈话:星期天,郭老师去商场为孩子买衣服,了解到了以下信息,(依次贴出图片):

裤子:28元。

上衣:价钱是裤子的3倍。

根据这些信息,你能提出哪些数学问题?(或问:你能解决哪些问题?或是你想知道什么?)(学生独立思考,同桌交流)。

根据学生汇报,教师板书:

1、一件上衣多少钱?

2、买一套衣服多少钱?

3、一件上衣比一条裤子贵多少钱?(或:一条裤子比一件上衣便宜多少钱?)。

……。

二、探索新知,感知方法。

师生讨论“画数学”的方法:

一条裤子28元可以用一条线段来表示:

实际问题与方程数学教案设计篇五

本节课教者以教材为依托,利用教材提供的素材,结合生活实际,为学生创设探究数学问题的情境,鼓励学生根据已有信息提出想要解决的问题,激起学生发现问题、提出问题的兴趣和欲望,进而促使学生根据已有信息和提出的数学问题去探究解决问题的方法,从而使学生能以一种数学的眼光去看待生活,学会用数学去解决生活中的实际问题。特别是教者帮助学生根据已知信息画出线段,用线段图去分析问题、了解数量之间的关系,进而感知方法、解决问题,为今后自主学习打下基础。具体表现在:

1、培养了学生的问题意识。

俗话说“不学不成,不问不知”,问题意识是创新素质的基础,在教学中,教者着力于培养学生“学会问,善于问”的能力,切实改变教学中只教“学答”,不教“学问”的现象。

2、教会了学生画线段图。

本节课中的线段图是第一次在教学中出现,在认知上是由直观具体的“图”向较为抽象的“线段”的过渡,而这又是帮助理解数量关系,解决问题的一种有效手段。教者让学生根据以往的知识基础,理清数量关系,讨论得出线段图的画法,明确一条线段表示一个数量,两条线段之间是有联系的,而这个联系可以从信息里得到;在对“问号该标在哪儿”的`讨论中,明确了问题不同,问号所在的位置就会不同,解决的方法就会不同。

3、教会了学生用多种方法解决问题。

学生在解决了一套衣服的价钱后,教者一句“还有什么方法吗?”又激起了学生的解决问题的欲望,通过自主探索,教者适时点拨,根据线段图的直观性,很快地就用有关倍数和的知识解决了。

4、重视了学生的说理训练。

在解决问题的过程中,不仅让学生列式解答,还让学生说出解题的依据,使学生在解题时不仅知其然,而且知其所以然。

实际问题与方程数学教案设计篇六

苏教版《义务教育课程标准实验教科书数学》二年级(下册)第87~88页。

教学目标。

1。使学生能从开放的情境中合理提取数学信息,能够从条件或问题想起确定解题思路,能正确地分步列式解答相关的两步计算实际问题。

2。使学生在解决问题的过程中,培养初步的分析、综合和推理能力。

3。使学生在解决问题的过程中,积极与同伴进行交流,体会成功的快乐。

教学过程。

一、创设问题情境,自主探究解决方法。

1。课件演示小猴摘桃的情境。

毛毛猴说:“我们一共摘了42个桃。”

提问:如果你是小猴,你准备怎样安排自己的食物?

学生可能提出两种方案:(1)每天吃的个数同样多。(2)每天吃的个数不同,如:第一天吃9个,第二天吃12个。

提问:根据这些信息,你能提出哪些数学问题呢?

估计学生会提出:吃了多少个桃?还剩下多少个桃?……。

谈话:我们先来解决其中一个问题:还剩下多少个桃?你能独立解决吗?

[设计意图:变静态展示问题为动态生成问题,培养学生根据已有信息提出问题的能力。]。

2.探究解决方法。

要求学生先独立思考解决,再进行小组交流。

学生可能有下面两种想法:(1)从条件想起。根据每天吃9个桃,吃了3天可以求出长尾猴吃了多少个桃,再用一共摘了42个桃减去吃的桃,得到还剩多少个桃。(2)从问题想起。要求还剩多少个桃,需要知道摘了多少个桃和吃了多少个桃,已知摘了多少个桃,所以要先求出吃了多少个桃。

谈话:你能根据上面的讨论,自己列式解答这个问题吗?

学生尝试列式,教师板书:

(1)吃了多少个桃?9×3=27(个)。

(2)还剩多少个桃?42—27=15(个)。

提问:9×3求得的是什么?42—27为什么会得到剩下的呢?

3.引导反思,形成思路。

提问:为什么要先算已经吃了多少个桃?

4.迁移解题思路。

出示“试一试”。

毛毛猴说:“我一共摘了42个桃。”长尾猴说:“第一天吃(9)个,第二天吃(12)个(用学生课始时提出的数据)。”大卡提出问题:“还剩下多少个?”

提问:要解决这个问题,应先求什么?

学生独立解决问题,并在小组里交流自己的想法与计算方法。

教师巡视,并及时发现下面两种解法,指名板演:

(1)9+12=21(个);42—21=21(个)。

(2)42—9=33(个);33—12=21(个)。

组织交流时,重点引导学生表述第一种方法的思考过程,并提问:这样解答与例题的解答方法有什么相同点?(都是要先求已经吃了多少个)。

交流第二种方法。提问:这种解法先求什么?与第一种解法有什么不同?

二、分层练习,逐步巩固。

1.做“想想做做”第1题。

学生叙述题意后,提问:要先求什么?为什么?

学生独立解题,并组织反馈。

2.做“想想做做”第2题。

学生自主解决,并汇报解决问题的过程。

让不同解法的学生分别说一说自己是怎样想的(着重引导学生理解每一种解法是先求什么,再求什么的)。

3.做“想想做做”第3题。

学生独立列式解答,并与同伴交流(每一种解法的思考过程)。

4.做“想想做做”第4题。

学生独立解答后,组织全班交流。

5.拓展练习。

毛毛猴摘了3天桃,一共摘了31个;长尾猴也摘了3天桃,每天摘9个。

(1)毛毛猴与长尾猴一共摘了多少个桃?

(2)毛毛猴比长尾猴多摘了多少个桃?

学生独立解答后,提问:这两道题有什么相同的地方?

三、整理反思,形成思路。

提问:这节课你有什么收获?解答两步计算的实际问题,我们可以怎样思考呢?举例说一说。

实际问题与方程数学教案设计篇七

学生在解方程的基础上进一步学习用方程解决实际问题,通过我的教学实践和教学反思,我觉得“重视关键句分析训练,让学生感悟方程的思想。”

解决实际问题首先要引导学生分析题目的条件和问题,找出题目中的关键句,根据关键句找出题目中的直接的相等关系,这样可以便于学生列出方程,解答问题。由于我知道我们现在的.数学课堂教学对等量关系式的训练不够重视,于是我课前谈话中用了很多时间对等量关系式的写法进行了训练。先从倍数关系,再到相差关系,然后两种关系合并,要求学生分别写出等量关系式,为本节课的教学打下良好的基础。为了突出根据关键句写等量关系式,我出示例题后,直接问:“三句话中你觉得哪一句最重要,为什么?”让学生根据“的东北虎只数比的3倍还多100只,写出三种等量关系,有三种关系式就对应着三种解法,哪一种关系式最容易想到。让学生感受到要提高正确率,我们可以从最容易的入手,学生已经掌握了“求一个数比另一个数的几倍多几(或少几)”的实际问题,我们就要引导学生,充分利用已有的知识经验解决新的问题。学生是学习的主体,出示问题后让学生尝试解决问题,教师通过巡视,充分了解学生的困难以及想法,然后才能很好的组织交流。为了使学生认识到方程的思想,我故意让学生先交流用倒推策略解决问题,当交流完列式后让学生说出每一步所表示的意识时,学生感到困难,再次问学生用倒推策略解决时,还可能出现什么错误,这样从两个方面让学生认识到用倒推策略解决的不足,才能更好的让学生主动愿意来学习用方程来解。方法的优劣是比较出来的,当然也是因人而异的。方程为什么要写设语,方程是怎样列出来的,把未知转化为已知条件,才能更好的利用我们最容易想到的等量关系式列出方程才能大大提高正确率。解完例题再次比较总结,列方程是怎样想的,而倒推策略是怎样想的。然后再总结列方程解决问题的一般步骤,只有让学生充分感受到方程的作用和价值,学生才会自愿用列方程来解决新的问题。

实际问题与方程数学教案设计篇八

1、课件演示小猴摘桃的情境。

毛毛猴说:“我们一共摘了42个桃。”

提问:如果你是小猴,你准备怎样安排自己的食物?

学生可能提出两种方案:(1)每天吃的个数同样多。(2)每天吃的个数不同,如:第一天吃9个,第二天吃12个。

提问:根据这些信息,你能提出哪些数学问题呢?

估计学生会提出:吃了多少个桃?还剩下多少个桃?……。

谈话:我们先来解决其中一个问题:还剩下多少个桃?你能独立解决吗?

[设计意图:变静态展示问题为动态生成问题,培养学生根据已有信息提出问题的能力。]。

2.探究解决方法。

要求学生先独立思考解决,再进行小组交流。

学生可能有下面两种想法:(1)从条件想起。根据每天吃9个桃,吃了3天可以求出长尾猴吃了多少个桃,再用一共摘了42个桃减去吃的桃,得到还剩多少个桃。(2)从问题想起。要求还剩多少个桃,需要知道摘了多少个桃和吃了多少个桃,已知摘了多少个桃,所以要先求出吃了多少个桃。

谈话:你能根据上面的讨论,自己列式解答这个问题吗?

学生尝试列式,教师板书:

(1)吃了多少个桃?9×3=27(个)。

(2)还剩多少个桃?42—27=15(个)。

提问:9×3求得的是什么?42—27为什么会得到剩下的呢?

3.引导反思,形成思路。

提问:为什么要先算已经吃了多少个桃?

4.迁移解题思路。

出示“试一试”。

毛毛猴说:“我一共摘了42个桃。”长尾猴说:“第一天吃(9)个,第二天吃(12)个(用学生课始时提出的数据)。”大卡提出问题:“还剩下多少个?”

提问:要解决这个问题,应先求什么?

学生独立解决问题,并在小组里交流自己的想法与计算方法。

实际问题与方程数学教案设计篇九

1、通过处理实际问题,让学生体验从算术方法到代数方法是一种进步。

2、初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念。

3、培养学生获取信息,分析问题,处理问题的能力。

二、过程与方法。

通过实际问题,感受数学与生活的联系。

三、情感态度与价值观。

培养学生热爱数学热爱生活的乐观人生态度。

【教学方法】。

探索式教学法。

教师准备教学用课件。

【教学过程】。

一、新课引入。

教师提出教科书第79页的问题,同时出现下图:

问题2:你会用算术方法求出王家庄到翠湖的距离吗?

问题3:能否用方程的知识来解决这个问题呢?

可以提示学生从时间、路程、速度、四地的排列顺序等方面去考虑。)。

当学生列出不同算式时,应让他们说明每个式子的含义)。

教师可以在学生回答的基础上做回顾小结:

1、问题涉及的三个基本物理量及其关系;。

2、从知的信息中可以求出汽车的速度;。

3、从路程的角度可以列出不同的算式:

如果设王家庄到翠湖的路程为x千米,那么王家庄距青山千米,王家庄距秀水千米.

问题1:题目中的“汽车匀速行驶”是什么意思?

问题3:根据车速相等,你能列出方程吗?

教师引导学生设未知数,并用含未知数的字母表示有关的数量。

教师引导学生寻找相等关系,列出方程.

教师根据学生的回答情况进行分析,如:

依据“王家庄至青山路段的车速=王家庄至秀水路段的车速”可列方程:

依据“王家庄至青山路段的车速=青山至秀水路段的车速”

可列方程:

给出方程的概念,介绍等式、等式的左边、等式的右边等概念.

含有未知数的等式叫方程.

归纳列方程解决实际问题的两个步骤:

实际问题与方程数学教案设计篇十

这节课的内容是一元一次方程第一课时。课后,我对本节课从四方面进行了如下反思:

一:对选择引例的反思。

在小学学生已接触过方程,但没有过多的研究。而本节课是一元一次方程的开篇课,它起着承上启下的作用,通过这节课既要让学生认识到方程是更方便、更有力的数学工具,又要让学生体验到从算术方法到代数方法是数学的进步,这些目标的实现谈何容易!课本上的例题虽然能很好的体现方程的优越性,但难度较高。学生很少有利用方程解应用题的经历,能否理解和接受?斟酌再三,还是放到后面再讲。那么哪个题既简单又能明显地承载着从算术到方程的进步呢?几乎翻阅了所有的有关资料,无独有偶,在新课标教案126页的一道数学名题“啊哈,它的全部,它的一半,其和等于19。”让我眼前一亮,我为自己好不容易找到一个例题而兴奋不已,立刻拿去和我们数学组经验丰富的老教师交流一下我的想法,他们觉得这个例子倒挺好的,可是也提出了一个让我深思的问题,这个题不是能够很好地体现出从算术到方程的进步,因为题很简单,方程的优越性体现的不够明显。刚才的新奇和兴奋迅速冷却了下来,陈老师的一句话彻底点醒了我,如果实在找不到合适的例题,不妨就用这个题,通过这个题从语言和方法上突破它,可以先让学生感知方程的优越性,后面学习中再不断地渗透方程的优越性。听完陈老师的一席见解,我顿时豁然开朗,增加了以这个题作为引例的信心。事实证明,这个引例既富有创新又能激发学生的兴趣,既符合学生的已有经验和知识水平,又符合学生的认知规律。

二:对选题的反思。

我在备课中【活动3】最初选用的题是:

修改后的题是:

判断下列各式是方程的有:

(1)(2)(3)(4)(5)。

考虑到学生初对方程概念的研究,不在数字上人为的设置障碍,因为是否是方程与数字的大小根本无关,于是把数字全部统一成了6、2、8三个数,利于学生从未知数和等号的角度进一步理解方程的概念。最初选用的题数字太多,显得题很多且条理性不强,容易分散学生对概念本质的把握。改进后的题目更利于学生观察方程的特征,从而更深刻地掌握概念的本质。需要特别说明的是,如果说前5个小题是为了让学生抓住方程的两个要点,那么后3个小题则是对概念本质的提升,即:是否是方程与未知数所在的位置、未知数的个数、未知数的次数等均无关。

三:对课堂实践的反思。

本节课的设计思路:首先以“名题欣赏”导入,引入概念,通过四组练习让学生深刻理解方程和一元一次方程的概念,最后由学生自己归纳小结。

当环节进行到【活动3】时,我让学生写出一个或几个方程,在给学生判断点评时,我发现学生在黑板上写的全部都是未知数在等号左边的方程,这时我突然意识到学生在模仿我前面呈现的方程,不禁暗自责怪自己考虑不周,怎么没出一个等号两边都含有未知数的方程呢?它给我敲响了一个警钟。正当我想写一个等号两边都含有未知数的方程来弥补设计上的不足时,我忽然发现最后一排的一位男生已经高高地举起了手,他提出问题:“老师:等号两边都含有未知数的式子是不是方程,例如:2y-1=3y”?我为有学生能提出这样的问题而感到庆幸,一是因为它及时弥补了我备课中的不足;二是由学生提出问题要比我提出问题更有价值。这可以反映出该生善于思考,同时也反映出了学生真实的疑惑。为了提高学生的探究能力,我并没有急于解释,而是把问题抛给学生,让学生来解决。我立刻提出:“谁能解决这位同学提出的`问题呢?”这时我看到后面几位学生已经高高地举起了手。我随机点了一名学生,这位同学回答到:“判断一个式子是不是方程只要看是否含有未知数和等号就ok了,与未知数的位置无关!”他精彩的回答引起听课教师一阵喝彩!我也顿时惊喜万分,他说的太好了,不管是语言表达还是准确性上都无可挑剔。我为敢于给学生这样一个机会又一次感到庆幸;通过这个同学精彩的回答,我深深地感受到:“教师给学生一个机会,学生就会还你一个惊喜。”

四:教后整体反思。

成功之处:

1.引例、练习题的选择都很恰当。

2.思路清晰,重点突出,注意到了学生的自主探索,节奏把握较好。

3.数学文化的渗透比较自然。

4.“写一个或几个一元一次方程”此环节的设计体现了从理论到实践的过程,使学生的能力得到提升,学习效果得到落实。

5.语言简练,教态大方,师生互动比较热烈,充分调动了学生的积极性。

6.板书设计较为合理。本节课的主要内容都以提炼的方式呈现出来。

不足之处:

1.在处理三道实际背景题时留给学生的思考时间偏少,显得仓促。

2.在后面两组题环节之间的过渡语言不是很自然。

3.授课语言仍需加强锤炼。

这节课的准备和每个环节的设计我颇费了一些心思,上完课之后总的感觉是达到了我预期的目标。非常感谢评委组的老师们中恳的建议,以及同行们的肯定,这让我受益匪浅。在今后的教学中,我将扬长避短,力争做的更好!

实际问题与方程数学教案设计篇十一

教学内容:教科书第8页的例4、练一练、练习三的第1~4题。

3.进一步感受数学和人民生产、生活的密切关系,体会到数学的价值。

教学重点:理解现价、原价、折扣三量关系;培养学生综合运用所学知识解决问题。

教学难点:通过实践活动培养学生与日常生活的密切联系,体会到数学的应用价值。

设计理念:数学最终是要为生活服务的,回归生活的数学才是有用的数学。本课内容和日常生活密切联系,学了就可以学以致用,可以让学生真正体会到数学的价值。

教学步骤教师活动学生活动。

一、开门见山,

1.教学例4,认识折扣。

谈话:我们在购物时,常常在商店里遇到把商品打折出售的情况。

出示教材例4的场景图,让学生说说从图中获得了哪些信息。

提问:你知道“所有图书一律打八折销售”是什么意思吗?

在学生回答的基础上指出:把商品减价出售,通常称作“打折”。打“八折”就是按原价的80%出售,打“八三折”就是按原价的83%出售。

强调:原价是单位“1”,原价×折扣=现价,区别降价多少元。

学生观察场景图。

二、探索解法。

1.提出例4中的问题:《趣味数学》原价多少元?

进一步启发:根据刚才的讨论,你能找出题中数量之间的相等关系吗?

教师根据学生的回答板书:

原价×80%=实际售价。

提出要求:你会根据这个相等关系列出方程吗?

请学生到黑板上板演。

2.引导检验,沟通联系:算出的结果是不是正确?

启以学生用不同的方法进行检验:可以求实际售价是原价的百分之几,看结果是不是80%;也可以用15元乘以80%,看结果是不是12元。

学生讨论。

学生先说出自己的想法。

学生在小组里相互说一说,再在全班交流。

学生尝试列出方程。

学生独立验算,再交流检验的方法。

三、巩固练习”先让学生说说《成语故事》的现价与原价有什么关系,知道了现价怎样求原价。再让学生根据例题中小洪的话列方程解答。

学生解答后再解读方程:你是怎样列方程的?列方程时依据了怎样的数量关系?你又是怎样检验的?学生小组内交流。

学生列方程解答。

四、拓展提高1.做练习三的第1题。

学生读题后,先要求学生说出每种商品打折的含义,再让学生各自解答。

学生解答后追问:根据原价和相应的折扣求实际售价时,可以怎样想?

2.做练习三的第2题。

先学生独立解答,再对学生解答的情况加以点评。

3.做练习三的第3题。

先在小组里相互说一说,再指名学生回答。

4.做练习三的第4题。

先让学生独立解答,再指名说说思考过程。

学生先相互说一说,再列式解答。

学生独立解答,集体订正。

学生小组交流。

学生独立解答。

五、全课小结本节课你有什么收获?商品的原价、现价、折扣之间有什么关系?

六、布置作业课后抽时间到附近的商场或超市去看一看,收集一些有关商品打折的信息,并自己计算商品的现价或原价。

将本文的word文档下载到电脑,方便收藏和打印。

实际问题与方程数学教案设计篇十二

1.教材背景。

作为曲线内容学习的开始,“曲线与方程”这一小节思想性较强,约需三课时,第一课时介绍曲线与方程的概念;第二课时讲曲线方程的求法;第三课时侧重对所求方程的检验.

本课为第二课时。

主要内容有:解析几何与坐标法;求曲线方程的方法(直译法)、步骤及例题探求.

2.本课地位和作用。

承前启后,数形结合。

曲线和方程,既是直线与方程的自然延伸,又是圆锥曲线学习的必备,是后面平面曲线学习的理论基础,是解几中承上启下的关键章节.

“曲线”与“方程”是点的轨迹的两种表现形式.“曲线”是轨迹的几何形式,“方程”是轨迹的代数形式;求曲线方程是用方程研究曲线的先导,是解析几何所要解决的两大类问题的首要问题.体现了坐标法的本质——代数化处理几何问题,是数形结合的典范.

后继性、可探究性。

求曲线方程实质上就是求曲线上任意一点(x,y)横纵坐标间的等量关系,但曲线轨迹常无法事先预知类型,通过多媒体演示可以生动展现运动变化特点,但如何获得曲线的方程呢?通过创设情景,激发学生兴趣,充分发挥其主体地位的作用,学习过程具有较强的探究性.

同时,本课内容又为后面的轨迹探求提供方法的准备,并且以后还会继续完善轨迹方程的求解方法.

数学建模与示范性作用。

曲线的方程是解析几何的核心.求曲线方程的过程类似于数学建模的过程,它贯穿于解析几何的始终,通过本课例题与变式,要总结规律,掌握方法,为后面圆锥曲线等的轨迹探求提供示范.

数学的文化价值。

解析几何的发明是变量数学的第一个里程碑,也是近代数学崛起的两大标志之一,是较为完整和典型的重大数学创新史例.解析几何创始人特别是笛卡儿的事迹和精神——对科学真理和方法的追求、质疑的科学精神等都是富有启发性和激励性的教育材料.可以根据学生实际情况,条件允许时指导学生课后收集相关资料,通过分析、整理,写出研究报告.

3.学情分析。

我所授课班级的学生数学基础比较好,思维活跃,在刚刚学习了“曲线的方程和方程的曲线”后,学生对这种必须同时具备纯粹性和完备性的概念有了初步的认识,对用代数方法研究几何问题的科学性、准确性和优越性等已有了初步了解,对具体(平面)图形与方程间能否对应、怎样对应的学习已经有了自然的求知欲望.

二、目标分析。

1.教学目标。

知识技能目标。

理解坐标法的作用及意义.

掌握求曲线方程的一般方法和步骤,能根据所给条件,选择适当坐标系求曲线方程.

过程性目标。

通过学生积极参与,亲身经历曲线方程的获得过程,体验坐标法在处理几何问题中的优越性,渗透数形结合的数学思想.

通过自主探索、合作交流,学生历经从“特殊——一般——特殊”的认知模式,完善认知结构.

通过层层深入,培养学生发散思维的能力,深化对求曲线方程本质的理解.

情感、态度与价值观目标。

通过合作学习,学生间、师生间的相互交流,感受探索的乐趣与成功的'喜悦,体会数学的理性与严谨,逐步养成质疑的科学精神.

展现人文数学精神,体现数学文化价值及其在在社会进步、人类文明发展中的重要作用.

2.教学重点和难点。

难点:几何条件的代数化。

依据:求曲线方程是解几研究的两大类问题之一,既是重点也是难点,是高考解答题取材的源泉.主要包括两种类型求曲线的方程:一是已知曲线形状时常用待定系数法;二是动点轨迹方程探求,本课的重点主要是探索动点的曲线方程.

曲线与方程是贯穿平面解几的知识,是解析几何的核心.求曲线方程是几何问题得以代数研究的先决,求曲线方程的过程类似数学建模的过程,是课堂上必须突破的难点.

三、教学方法及教材处理。

1.教学方法:探究发现教学法.

遵循以学生为主体,教师为主导,发展为主旨的现代教育原则,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,通过学生主动探索、积极参与、共同交流与协作,在教师的引导和合作下,学生“跳一跳”就能摘得果实,于问题的分析和解决中实现知识的建构和发展,通过不断探究、发现,让学习过程成为心灵愉悦的主动认知过程,使师生的生命活力在课堂上得到充分的发挥.

2.学法指导。

学生学法:互相讨论、探索发现。

由于学生在尝试问题解决的过程中常会在新旧知识联系、策略选择、思想方法运用等方面遇到一定的困难,需要教师指导.作为学生活动的组织者、引导者、参与者,教师要帮助学生重温与问题解决有关的旧知,给予学生思考的时间和表达的机会,共同对(解题)过程进行反思等,在师生(生生)互动中,给予学生启发和鼓励,在心理上、认知上予以帮助.

这样,在学法上确立的教法,能帮助学生更好地获得完整的认知结构,使学生思维、能力等得到和谐发展.

实际问题与方程数学教案设计篇十三

教学内容:

教科书第1页的例1、例2和试一试,完成练一练和练习一的第1~2题。

教学目标:

理解方程的含义,初步体会等式与方程的联系与区别,体会方程就是一类特殊的等式。

教学重点:

教学难点:

会列方程表示数量关系。

教学过程:

一、教学例1。

1.出示例1的天平图,让学生观察。

提问:图中画的是什么?从图中能知道些什么?想到什么?

2.引导。

(1)让不熟悉天平不认识天平的学生认识天平,了解天平的作用。

(2)如果学生能主动列出等式,告诉学生:像“50+50=100”这样的式子是等式,并让学生说说这个等式表示的意思;如果学生不能列出等式,则可提出“你会用等式表示天平两边物体的质量关系吗?”

二、教学例2。

1.出示例2的天平图,引导学生分别用式子表示天平两边物体的质量关系。

2.引导:告诉学生这些式子中的“x”都是未知数;观察这些式子,说一说写出的式子中哪些是等式,这些等式都有什么共同的特点。

3.讨论和交流:写出的式子中,有几个是等式,有几个不是,而写出的等式都含有未知数,在此基础上,揭示方程的概念。

三、完成练一练。

1.下面的式子哪些是等式?哪些是方程?

2.将每个算式中用图形表示的未知数改写成字母。

四、巩固练习。

1.完成练习一第1题。

先仔细观察题中的式子,在小组里说说哪些是等式,哪些是方程,再全班交流。要告诉学生,方程中的未知数可以用x表示,也可以用y表示,还可以用其他字母表示,以免学生误以为方程是含有未知数x的等式。

2.完成练习一第2题。

五、小结。

六、作业。

完成补充习题。

板书设计:

x+50=100。

x+x=100。

像x+50=150、2x=200这样含有未知数的等式叫做方程。

实际问题与方程数学教案设计篇十四

一、课前预习:

1、某厂今年1月份的总产量为100吨,平均每月增长20%,则:。

二月份总产量为____________吨;三月份总产量为____________吨。(填具体数字)。

2、某厂今年1月份的总产量为500吨,设平均每月增长率是x,则:

二月份总产量为____________吨;三月份总产量为____________吨。(填含有x的式子)。

3、某种商品原价是100元,平均每次降价10%,则:第一次降价后的价格是________元;第二次降价后的价格是_______元。(填具体数字)。

4、某种商品原价是100元,平均每次降价的百分率为x,则:第一次降价后的价格是________元;第二次降价后的价格是_______元。(填含有x的式子)。

实际问题与方程数学教案设计篇十五

2.通过自学探究掌握裁边分割问题。

(阅读课本p47页,思考下列问题)。

1.阅读探究3并进行填空;

2.完成p48的思考并掌握裁边分割问题的特点;

设上、下边衬的宽均为9xcm,左、右边衬的宽均为7xcm,则:

由中下层学生口答书中填空,老师再给予补充。

思考:如果换一种设法,是否可以更简单?

设正中央的长方形长为9acm,宽为7acm,依题意得。

9a·7a=(可让上层学生在自学时,先上来板演)。

效果检测时,由同座的同学给予点评与纠正。

9.如图,要设计一幅宽20m,长30m的图案,两横两竖宽度之比为3∶2,若使彩条面积是图案面积的四分之一,应怎样设计彩条的宽带?(讨论用多种方法列方程比较)。

注意点:要善于利用图形的平移把问题简单化!

(只要求设元、列方程)。

实际问题与方程数学教案设计篇十六

3.使学生初步养成正确思考问题的良好习惯。

和难点。

课堂设计。

一、从学生原有的认知结构提出问题。

为了回答上述这几个问题,我们来看下面这个例题。

例1某数的3倍减2等于某数与4的和,求某数。

(首先,用算术方法解,由学生回答,教师板书)。

解法1:(4+2)÷(3-1)=3.

答:某数为3.

(其次,用代数方法来解,教师引导,学生口述完成)。

解法2:设某数为x,则有3x-2=x+4.

解之,得x=3.

答:某数为3.

纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们运用一元一次方程解应用题的目的之一。

我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系。因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程。

本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤。

二、师生共同分析、研究一元一次方程解简单应用题的方法和步骤。

师生共同分析:

1.本题中给出的已知量和未知量各是什么?

2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)。

上述分析过程可列表如下:

x-15%x=42500,

所以x=50000.

答:原来有50000千克面粉。

(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)。

(2)例2的解方程过程较为简捷,同学应注意模仿。

依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:

(2)根据题意找出能够表示应用题全部含义的一个相等关系。(这是关键一步);

(4)求出所列方程的解;

(5)检验后明确地、完整地写出答案。这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义。

(仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨。解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误。并严格规范书写格式)。

解:设第一小组有x个学生,依题意,得。

3x+9=5x-(5-4),

解这个方程:2x=10,

所以x=5.

其苹果数为3×5+9=24.

答:第一小组有5名同学,共摘苹果24个。

学生板演后,引导学生探讨此题是否可有其他解法,并列出方程。

(设第一小组共摘了x个苹果,则依题意,得)。

三、课堂练习。

2.我国城乡居民1988年末的储蓄存款达到3802亿元,比1978年末的储蓄存款的18倍还多4亿元。求1978年末的储蓄存款。

3.某工厂女工人占全厂总人数的35%,男工比女工多252人,求全厂总人数。

四、师生共同小结。

首先,让学生回答如下问题:

1.本节课了哪些内容?

3.在运用上述方法和步骤时应注意什么?

依据学生的回答情况,教师总结如下:

(2)以上步骤同学应在理解的基础上记忆。

五、作业。

1.买3千克苹果,付出10元,找回3角4分。问每千克苹果多少钱?

2.用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?

【本文地址:http://www.xuefen.com.cn/zuowen/15157911.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档