责任感是指对自己承担的任务或义务认真负责的态度和意识。总结要结合实际情况,针对性地提出问题和解决方案。接下来是一些总结范文,希望能为大家提供一些启示和思考的方向。
九年级数学直线与圆的位置关系说课稿篇一
本章节是高中必修2平面解析几何初步圆与方程的第三节内容。本节内容是学生在已经掌握“圆的方程”、“直线和圆的位置关系”后,在已获得一定的探究方法的基础上,进一步探究两圆的位置关系,它是圆与方程章节中一种重要的位置关系。
(二)教学目标。
2.掌握利用圆心距和半径之间的大小关系判定圆与圆的位置关系。
(三)重点、难点。
二、说教法。
常言道:“教必有法,教无定法”。所以我针对高一学生的心理特点和认知能力水平,大胆地处理教材,并作了精心的安排,采用启发式教学、循序渐进的原则、采取类比、观察、讨论、归纳等方法,注重创设问题情景,充分体现数学是源于实践又运用于生活。在本节课的教学中注意与学生已有知识的联系,减少学生对新概念接受的困难。通过教师的引导,启发调动学生的积极性,让学生在课堂上动手、动口、动眼、动脑,主动参与到整个教学活动中,教法的核心是类比,在直线与圆位置关系的基础上类比出圆与圆的`位置关系。
三、说学法。
“授人以鱼,不如授人以渔”。培养学生类比、观察、分析、归纳能力,根据本节课的特点,我以实际问题为出发点,以学生活动为主线,让学生自己观察、归纳,让他们在学习中学会学习。
四、说教学过程分析。
环节1,举一些生活中常见的例子,奥迪标志,五连环,齿轮等引出所要讲的新课题圆与圆的位置关系,。
环节2,在进入新课讲解之前,先给学生复习直线与圆的位置关系,在由此拓展拓展到圆与圆的位置关系。给学生讲解圆与圆之间的几种位置关系和用圆心距和半径之间的大小关系判定圆与圆的位置关系。
环节3,例1由两圆的方程判断位置关系,重点讲解几何方法,若有学生提到代数法,教师对两种方法进行比较,告诉学生怎样恰当选用这两种方法。
例2难度加深一些,要充分运用两圆相切的几何性质,要引导学生想到不同的解题思路。然后做一些练习进行巩固。
九年级数学直线与圆的位置关系说课稿篇二
授课时间:.11.17早上第二节授课班级:初三、1班授课教师:
教学目标:
知识与技能目标:1、理解直线和圆相交、相切、相离的概念。
2.初步掌握直线和圆的位置关系的性质和判定及其灵活的应用。
过程与方法目标:1.通过直线和圆的位置关系的探究,向学生渗透分类、数形结合的思。
想,培养学生观察、分析、概括、知识迁移的能力;
2.通过例题教学,培养学生灵活运用知识的解决能力。
情感与态度目标:让学生从运动的观点来观察直线和圆相交、相切、相离的关系、关注知识的生成,发展与变化的过程,主动探索,勇于发现。从而领悟世界上的一切物体都是运动变化着的,并且在一定的条件下可以转化的辩证唯物主义观点。
教学程序设计:
程序。
教师活动。
学生活动。
备注。
创设。
问题。
情景。
利用多媒体放映落日的动画。引导学生从公共点个数和圆心到直线的距离两方面体会直线和圆的不同位置关系。
学生看投影并思考问题。
调动学生积极主动参与数学活动中.。
探
究
新
知
1、通过观察直线和圆的公共点个数得出直线和圆相离、相交、相切的定义。
2、观察圆心到直线的距离d与r的大小变化,类比点和圆的位置关系由圆半径和点与圆心的距离的数量关系来判定,总结得出直线与圆的位置关系由圆心到直线的距离与圆半径之间的数量关系来判定。得到直线和圆的位置关系的判定方法和性质。
.
布置。
作业。
1、课本第101页7.3a组第2、3题。
2、课余时间,留心观察周围事物,找出直线和圆相交,相切,相离的实例,说给大家听。
九年级数学直线与圆的位置关系说课稿篇三
在本届贵阳市中青年教师教学研讨会中,修文中学提出打造有自己特色的“良知高效课堂”,整个课堂进程分四步八环节。本人承担的是直线与圆的位置关系这一堂课与大家交流,有不足之外请老师们批评指正。
从知识结构来看,直线与圆的位置关系是对圆的方程应用的延续和拓展,又是后续研究圆与圆的位置关系和直线与圆锥曲线的位置关系等内容的基础。在直线与圆的位置关系的判断方法的建立过程中蕴涵着诸多的数学思想方法,这对于进一步探索、研究后续内容有很强的启发与示范作用。
对于直线和圆,学生已经非常熟悉,并且知道直线与圆有三种位置关系:相离,相切和相交。从直线与圆的直观感受上,学生懂得从圆心到直线的距离与圆的半径相比较来研究直线与圆的位置关系。本节课,学生将进一步挖掘直线与圆的位置关系中的“数”的关系,学会从不同角度分析思考问题,为后续学习打下基础。另外学生在探究问题的能力,合作交流的意识及反思总结等方面有待加强。
新课程标准的要求是能根据直线与圆的方程判断其位置关系(相交、相切、相离),体会用代数方法处理几何问题的思想,感受“形”与“数”的对立和统一;初步掌握数形结合的思想方法在研究数学问题中的应用。
根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,本节课教学应实现如下教学目标:
掌握用圆心到直线的距离d与圆的半径r的大小比较,判断直线与圆位置关系,几何法。
理解直线和圆的三种位置关系,感受直线和圆的位置与它们的方程所组成的二元二次方程组的解的对应关系;体验通过比较圆心到直线的距离和半径之间的大小及通过方程组的解的个数判断直线与圆的位置关系,能用直线和圆的方程解决一些条件下圆的切线问题;领会数形结合的数学思想方法,提高发现问题、分析问题、解决问题的能力。
通过对本节课知识的探究活动,加深学生对解析法解决几何问题的认识,从而领悟其中所蕴涵的数学思想,体验探索中成功的喜悦,激发学习热情,养成良好的学习习惯和品质。
教法学法为了实现上述教学目标,本节课采取以下教学方法:
(1)恰当的利用多媒体课件,通过学生熟悉的实际生活问题引入课题,拉近数学与现实的距离,激发学生的问题意识和求知欲,调动学生主体参与的积极性。
(2)采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,站在学生思维的最近发展区上启发诱导。
(3)在整个数学教学过程中,既要体现学生的主体地位,更要强调教师的主导地位,在科学讲授的同时教会学生清晰的思维和严谨的推理。
在学法上注重以下几点:
(2)在用代数法解决直线与圆的位置关系时,要能够明确运算方向,把握关键步骤,正确的处理较为复杂数据。
整个教学过程是四步组成,自主学习,合作探究,老师辅导、课堂展示。共分为八个环节,复习、独立训练、相互探讨、老师参与、形成结论、课堂展示、评价(互评师评)、反思。
通过问题情境,激发学生的学习兴趣,使学生找到要学的与以学知识之间的联系;问题串的设置可让学生主动参与到学习中来;在判断方法的形成与应用的探究中,师生的相互沟通调动学生的积极性,培养团队精神;知识的生成和问题的解决,培养学生独立思考的能力,激发学生的创新思维;通过练习检测学生对知识的掌握情况;根据学生在课堂小结中的表现和课后作业情况,查缺补漏,以便调控教学。
九年级数学直线与圆的位置关系说课稿篇四
1、教材的地位和作用。
圆的教学在平面几何中乃至整个中学教学都占有重要的地位,而直线和圆的位置关系的应用又比较广泛,它是初中几何的综合运用,又是在学习了点和圆的位置关系的基础上进行的,为后面的圆与圆的位置关系作铺垫的一节课,在今后的解题及几何证明中,将起到重要的作用。
2、教学目标:
根据学生已有的认知的基础及本课的'教材的地位、作用,依据教学大纲的确定本课的教学目标为:
(1)知识目标:
a、知道直线和圆相交、相切、相离的定义。
会根据直线和圆相切的定义画出已知圆的切线。
c、根据圆心到直线的距离与圆的半径之间的数量关系揭示直线和圆的位置。
2)能力目标:
让学生通过观察、看图、列表、分析、对比,能找出圆心到直线的距离和圆的半径之间的数量关系,揭示直线和圆的关系。此外,通过直线与圆的相对运动,培养学生运动变化的辨证唯物主义观点,通过对研究过程的反思,进一步强化对分类和归纳的思想的认识。
3)情感目标:
在解决问题中,教师创设情境导入新课,以观察素材入手,像一轮红日从海平面升起的图片,提出问题,让学生结合学过的知识,把它们抽象出几何图形,再表示出来。让学生感受到实际生活中,存在的直线和圆的三种位置关系,便于学生用运动的观点观察圆与直线的位置关系,有利于学生把实际的问题抽象成数学模型,也便于学生观察直线和圆的公共点的变化。
3。教材的重点难点。
直线和圆的三种位置关系是重点,本课的难点是直线和圆的三种位置关系的性质与判定的应用。
4。在教学中如何突破这个重点和难点。
解决重点的方法主要是:
(2)把直线在圆的上下移动,引导学生用运动的观点观察直线和圆的位置关系,并让他们发现直线与圆的公共点的个数,揭示直线和圆相交、相切、相离的定义,归纳直线和圆的三种位置关系。是什么?)。
(1)突破直线和圆不能有两个以上的公共点,让学生讨论,最后明确否定(因为直线和圆有三个或三个以上的公共点,那么这与不在同一条直线上的三点就可以作一个圆,相矛盾)。
(2)把直线在圆的上下移动,引导学生用运动的观点观察直线和圆的位置关系,并让他们发现直线与圆的公共点的个数,揭示直线和圆相交、相切、相离的定义,归纳直线和圆的三种位置关系。
(3)突破直线和圆有唯一一个公共点是直线和圆相切(指直线与圆有一个并且只有一个公共点,它与有一个公共点的含义不同)。
(4)突破直线和圆的位置关系的(如果圆o的半径为r,圆心到直线的距离为d,
1,直线l与圆o相交=dr。
3,直线l与圆o相离=dr。
式子的左边反映是两个图形(直线和圆)的位置关系的性质,右边是反映直线和圆的位置关系的判定。二、学情分析根据初三学生活泼好动好奇心和求知欲都非常强,并且在初一,初二基础上初三学生有一定的分析力,归纳力和根据他们的特点,联系生活实际中结合问题结合本节课适合学生的学习材料注重激发学生的求知欲让他们真正理解这节课是在学习了点和圆的位置关系的基础上,进行的为后面的圆与圆的位置关系作铺垫的一节课。通过直线与圆的相对运动,揭示直线与圆的位置关系,培养学生运动变化的辨证唯物主义观点;通过对研究过程的反思,进一步强化对分类和化归思想的认识。
三、教法设计复习点和圆的位置关系,引导学生用类比的方法来研究直线与圆的位置关系,在直线与圆的位置关系的判定的过程中,采用小组讨论的方法,培养学生互助、协作的精神。学生质疑这一环节充分培养学生敢于提问的习惯,做到不懂就问。学生小结,让学生自己归纳本节课学习的内容,培养学生用数学语言归纳问题的能力。
1,学生观察日出照片,把观察到的情况用自己的语言说出来,抽象出几何图形在学生回答的基础上,教师通过多媒体演示圆与直线的三种位置关系。
2,进一步让学生感受到数学产生于生活,与生活密切相关,并能使学生更好的直观感受直线和圆的三种位置关系。
3,强调公共点的唯一性。给出定义时,尽可能地有学生来概括和叙述,有利于提高学生的语言表达能力。
4,有利于新旧知识的联系,培养学生的迁移能力,掌握用定量研究来解决问题的方法。在学生回答问题的基础上,教师打出直线和圆的位置关系以及它们的数量特征。
5,通过直线到圆的距离d和半径r这两个数量之间的关系来研究直线和圆的位置关系。这样很好的体现数形结合的思想,使较为复杂的问题能简单化。
6,让学生自己归纳本节课学习的内容,培养学生用数学语言归纳问题的能力。
复习点和圆的位置关系,引导学生用类比的方法来研究直线与圆的位置关系,在直线与圆的位置关系的判定的过程中,采用小组讨论的方法,培养学生互助、协作的精神。学生质疑这一环节充分培养学生敢于提问的习惯,做到不懂就问。
学生小结,让学生自己归纳本节课学习的内容,培养学生用数学语言归纳问题的能力。
创设情境、导入新课、新授、巩固练习、学生质疑、学生小结、布置作业。
[提问]通过观察、演示,你知道直线和圆有几种位置关系?
[讨论]一轮红日从海平面升起的照片。
[新授]给出相交、相切、相离的定义。
[类比]复习点与圆的位置关系,讨论它们的数量关系。通过类比,从而得出直线与圆的位置关系的性质定理及判定方法。
[巩固练习]例1,
出示例题。
(1)r=2cm;(2)r=2。4cm;(3)r=3cm。
由学生填写下例表格。
公共点个数。
圆心到直线距离d与半径r关系。
公共点名称。
直线名称。
图形。
补充练习的答案由师生一起归纳填写。
教学小结。
直线与圆的位置关系,让学生自己归纳本节课学习的内容,培养学生用数学语言归纳问题的能力。然后老师在多媒体打出图表。
本节课主要采用了归纳、演绎、类比的思想方法,从现实生活中抽象出数学模型,体现了数学产生于生活的思想,并且将新旧知识进行了类比、转化,充分发挥了学生的主观能动性,体现了学生是学习的主体,真正成为学习的主人,转变了角色。
六,板书设计:
1,相交、相切、相离的定义。
例1:
三,课堂练习。
四,小结。
九年级数学直线与圆的位置关系说课稿篇五
《普通高中数学课程标准》指出:在平面解析几何初步的教学中,教师应帮助学生经历如下过程:首先将几何问题代数化,用代数的语言描述几何要素及其关系,进而将几何问题转化为代数问题;处理代数问题;分析代数结果的几何含义,最终解决几何问题。这种思想应贯穿平面解析几何教学的始终,帮助学生不断地体会“数形结合”的思想方法。
《直线与圆的位置关系》这一节内容出现在必修2的第二章《平面解析几何初步》的第二节《圆与圆的方程》的第三小节的位置。就整套教材而言,《平面解析几何初步》一章的教学主要是让学生体会到用代数方法处理几何问题的思想,为选修教材中的《圆锥曲线与方程》一章打好基础。它是前两节《直线与直线方程》和《圆与圆的方程》的综合应用,也为后一小节《圆与圆的位置关系》提供研究方法的一个重要示例,是整个《平面解析几何初步》章节的重要内容,起着贯穿始终、应用反馈的重要作用,而且是贯彻“用代数方法处理几何问题”思想和“数形结合”方法的重要的反映内容和工具。在本章中的作用非常重要。
1、知识目标:
2、能力目标:
要使学生体会用代数方法处理几何问题的思路和“数形结合”的思想方法。
四、教法分析:
1、教学方法:启发式讲授法、演示法、辅导法。
2、教材处理:
(1)例题1(1)(2)用两种不同的办法求解,让学生自己体会这两种方法。
通过老师引导和让学生自己探索解决,反馈学生的解决情况。
(2)增加一个过一点求圆的切线方程的题型,帮助学生增加对直线与圆的认识。
3、学法指导:本节课的学法是继续指导学生把新问题转化为已有知识解决的化归思想。
4、教具:多媒体电脑、投影仪、自做多媒体。
五、过程分析:
教学。
环节。
教学内容。
设计意图。
新课引入。
1、学生观察日出照片,把观察到的情况用自己的语言说出来,抽象出几何图形,在学生回答的基础上,通过多媒体演示圆与直线的三种位置关系。让学生感受到数学产生于生活,与生活密切相关,并能使学生更好的直观感受直线和圆的三种位置关系。然后引入本节课的课题。
2、在上一章,我们在学习了直线的方程后,研究了点和直线、直线与直线的位置关系,本章我们已经学习了圆的方程,现在我们要研究直线与圆以及圆与圆的位置关系。
1数学产生于生活,与生活密切相关。
2、以实际问题引入有利于激发学生学习数学的兴趣,有利于扩展学生的视野。
新课讲解。
一、知识点拨:
答:把圆心到直线的距离d和半径r比较大小:
2、我们如何利用坐标法将初中判断直线和圆的位置关系代数化?
答:先利用点到直线的距离公式求圆心到直线的距离,再和半径比较大小。
答:在直线与直线的方程这一节里,我们先把两直线的方程联立解方程组。
在思考直线和圆的位置关系时,我们可类似地把直线和圆的方程联立解方程组。
二、例题讲解:
1、让学生先自学例1并回答下列问题:
(1)第二小题中,消去x的步骤怎样?如何判断方程组有没有解?
(2)你认为这两种方法哪一种较简单,为什么?
(2)方法一较简单,因为方法二在求交点坐标时仍要解方程组。
圆的切线l,求切线l的方程。
4、练习:课本第83页练习1、2。
问题1涉及初中知识,可使得学生比较容易上手。
问题2体现了将几何问题代数化的思想。
问题3以前一章知识做类比,有利于培养学生类比归纳的能力。
通过前面对知识的分析,例题1对学生来说应该比较容易,又通过两个问题检查学生的理解程度。
例3该例题有利于培养学生全面考虑问题的良好思维习惯。
课堂小结。
作业布置。
课本p86,a组4、6、b组1。
一、复习回顾。
例1。
例2。
例3。
九年级数学直线与圆的位置关系说课稿篇六
已知直线都是正数)与圆相切,则以为三边长的三角形是________三角形.
三、解答题。
当为何值时,直线与圆有两个公共点?有一个公共点?无公共点?
四、填空题。
若直线与圆相切,则实数的值等于________.
圆心为且与直线相切的圆的方程为________.
直线与圆相切,则实数等于________.
直线与圆相切,则________.
过点作圆的切线,且直线与平行,则与间的距离是________.
过点,作圆的切线,则切线的条数为________条.
过点的圆与直线相切于点,则圆的方程为________.
五、解答题。
过点作圆的切线,求此切线的方程.。
圆与直线相切于点,且与直线也相切,求圆的方程.。
六、填空题。
由直线上的一点向圆引切线,则切线长的最小值为_____________.
七、解答题。
求满足下列条件的圆的切线方程:
(1)经过点;
(2)斜率为;
(3)过点.。
已知圆的方程为,求过的圆的切线方程.。
八、填空题。
直线被圆截得的弦长等于________.
直线被圆截得的弦长等于________.
直线被圆所截得的弦长为________.
圆截直线所得弦的长度为4,则实数的值是________.
设直线与圆相交于两点,若,则圆的面积为________.
直线被圆截得的弦长为________.
直线被圆所截得的弦长为________.
圆心坐标为的圆在直线上截得的弦长为,那么这个圆的方程为________.
过点的直线被圆截得的弦长为,则直线的斜率为________.
过原点的直线与圆相交所得弦的长为2,则该直线的方程为________.
九、解答题。
圆心在直线上,圆过点,且截直线所得弦长为,求圆的方程.。
十、填空题。
过点作圆的弦,其中最短弦的长为________.
十一、解答题。
已知圆,直线.
(1)求证:对,直线与圆总有两个不同的交点;
(2)若直线与圆交于两点,当时,求的值.。
设圆上的点关于直线的对称点仍在圆上,且直线被圆截得的弦长为,求圆的方程.。
已知圆,直线.。
证明:不论取什么实数,直线与圆恒交于两点。
求直线被圆截得的弦长最小时的方程,并求此时的弦长。
十二、填空题。
圆上到直线的距离等于1的点有________个.
在平面直角坐标系中,已知圆上有且仅有四个点到直线的距离为1,则实数的取值范围是________.
设圆上有且仅有两个点到直线的距离等于1,则圆半径的取值范围是________.
直线与曲线有且只有一个公共点,则b的取值范围是_________。
若直线与圆恒有两个交点,则实数的取值范围为________.
已知点满足,则的取值范围是________.
若过点的直线与曲线有公共点,则直线的斜率的取值范围为。
九年级数学直线与圆的位置关系说课稿篇七
本节课是学生在已掌握了直线和圆的位置关系等知识的基础上,进一步研究平面上两圆的位置关系。是学生对圆的知识应用的基础,也为今后到高中继续研究平面与球的位置关系,球与球的位置关系打下坚实的基础。因此本节课的内容是至关重要的,它对知识起到了承上启下的作用。
根据本节的教学内容及学生现有的实际水平和认知能力,我把两圆相对运动产生“交点个数”的形成过程及两圆的半径与圆心距的数量关系作为教学重点;教学难点是通过学生动手操作和互相交流探索出圆和圆之间的几种位置关系;及其两圆圆心距d,半径r和r数量关系的过程。
二、教学目标。
根据上述教材分析,考虑到学生已有的认知结构,心理特征,制定如下教学目标。
(一)知识目标:
2、了解两圆的`位置关系与两圆圆心距d,半径r和r的数量关系之间的联系。
(2)能力目标:模似“日食”活动,经历观察、抽象类比、交流、想象、应用等过程,学会提炼圆与圆的位置关系,培养学生分类的数学思想。
(二)情感目标。
1、通过本节探索,体验数学活动充满着探索与创造。
2、经历探究过程,丰富对现实空间及图形的认识,发展形象思维。
三、教材处理与教材教法。
1、引课更直观,模拟“日食”活动,用电脑演示两圆在平面内的动态过程,动中取静,清楚展示两圆的位置变化。
2、通过学生动手“移圆”活动,探索两圆的不同交点个数及位置关系,使学生更深入了解两圆的位置关系。
3、自己设计例题及练习,使知识反馈更快,更直接,弥补了教材中的例题和习题的不足。
4、在教学中增加外离、内含、相交中蕴涵的数量关系的探索,使知识体系更趋于完整,完善学生的认知结构。
四、教学过程设计。
九年级数学直线与圆的位置关系说课稿篇八
1、圆的定义:
到定点的距离等于定长的点的集合。
在圆内、在圆上、在圆外(由点和圆心的距离与圆的半径大小来确定)。
3、弦、直径、孤、弓形、半圆、同心圆、等圆、等孤等概念。
等弧一定要强调要在同圆或等圆中;半圆不包括直径。
4、过三点的圆(三角形的外心)。
经过三角形三个顶点的圆叫三角形外接圆;外接圆的圆心叫三角形的外心;三角形的外心是三条边中垂线的交点,到三个顶点距离相等;直角三角形外心在斜边上、锐角三角心外心在三角形内、钝角三角形外心在三角形外。
5、垂径定理及其推论:
定理及推论1:直线过圆心、垂直弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧这五要素中用其中两个要素做条件就能推导出其它三个要素都成立。若用过圆心、平分弦做条件时要强调被平分的弦不是直径。
推论2:平行弦所夹的弧相等。
6、圆心角、弦、弦心距、弧的关系:
圆心角、弧、弦、弦心距之间的相等关系必须要在同圆或等圆中才能成立;
弧的度数就等于它所对圆心角的度数。
7、圆周角定理及推论:
圆周角的定义:顶点在圆上,角的两边都与圆相交。
圆周角的定理:圆周角等于同弧所对圆心角的一半。
推论1、在同圆或等圆中,同弧或等弧所对的圆周角相等,圆周角相等,它所对的弧也相等。
推论2:直径和半圆所对的'圆周角等于90度,90度的圆周角所对的弦是直径,所对的弧是半圆。
推论3、三角形一边的中线等于这一边的一半时,这个三角形是直角三角形。
8、圆内接四边形:
定义:四个顶点都在圆上的四边形。
定理:圆内接四边形对角互补。
推论:圆内接四边形的外角等于它的内对角。
相交、相切、相离(由公共点个数或圆心到直线距离和圆的半径大小来确定)。
10、切线的判定和性质:
定义:与圆只有一个公共点的直线。
判定定理:经过半径的外端且垂直于半径的直线是圆的切线。
性质定理:经过切点的半径必垂直于切线。
推论1:经过切点且垂直于切线的直线必经过圆心。
推论2:经过圆心且垂直于切线的直线必经过切点。
11、三角形内切圆:
定义:与三角形三边都相切的圆叫三角形内切圆、内切圆的圆心叫三角形内心。内心是三角形三条角平分线的交点,到三角形三边距离相等。
12、切线长定理:
定理:圆外一点到圆的两条切线的长相等,这个点与圆心的连线要平分两条切线的夹角。
(圆内切四边形对边相加相等)。
13、弦切角:
定义:一条边是圆的切线,顶点是切点,另一条边与圆相交的角;
定理:弦切角等于它所夹弧对的圆周角。
推论:两个弦切角所夹的弧相等,这两个弦切角相等。
14、和圆有关的比例线段:
相交弦定理及推论、切割线定理及推论。
九年级数学直线与圆的位置关系说课稿篇九
教学目标:
1.使学生理解直线和圆的相交、相切、相离的概念。
2.掌握直线与圆的位置关系的性质与判定并能够灵活运用来解决实际问题。
3.培养学生把实际问题转化为数学问题的能力及分类和化归的能力。
重点难点:
2.难点:运用直线与圆的位置关系的性质及判定解决相关的问题。
教学过程:
一.复习引入。
(目的:让学生将点和圆的位置关系与直线和圆的位置关系进行类比,以便更好的掌握直线和圆的位置关系)。
二.定义、性质和判定。
1.结合关于日出的三幅图形,通过学生讨论,给出直线与圆的三种位置关系的定义。
(1)线和圆有两个公共点时,叫做直线和圆相交。这时直线叫做圆的割线。
(2)直线和圆有唯一的公点时,叫做直线和圆相切。这时直线叫做圆的切线。唯一的公共点叫做切点。
(3)直线和圆没有公共点时,叫做直线和圆相离。
九年级数学直线与圆的位置关系说课稿篇十
地位和作用。
学生在初中的学习中已经了解直线与圆的位置关系,并知道可以利用直线与圆的焦点的个数以及圆心与直线的距离d与半径r的关系判断直线与圆的位置关系。但是,在初中学习时,利用圆心与直线的距离d与半径r的关系判断直线与圆的位置关系的方法却以结论性的形式呈现。在高一学习了解析几何后,要考虑的问题是如何掌握由直线和圆的方程判断直线与圆的位置关系的方法。解决问题的方法主要是几何法和代数法。其中几何法应该是在初中学习的基础上,结合高中所学的点到直线的距离公式求出圆心与直线的距离d后,比较与半径r的关系。从而作出判断,适可而止第引进用联立方程组转化为二次方程判别根的“纯代数判别法”,并与“几何法”欣赏比较,以决优劣,从而也深化了基本的“几何法”。含参数的问题、简单的弦的问题、切线问题等综合问题作为进一步的拓展提高或综合应用,也适度第引入课堂教学中,但以深化“判定直线与圆的位置关系”为目的,要控制难度。虽然学生学习解析几何了,但是把几何问题代数化无论是思维习惯还是具体转化方法,学生仍是似懂非懂,因此应不断强化,逐渐内化为学生的习惯和基本素质。
二、目标分析。
(一)、教学目标。
1、知识与技能。
利用平面直角坐标系中点到直线的距离公式求圆心到直线的距离;。
2、过程与方法。
设直线l:ax+by+c=o,圆c:x2+y2+dx+ey+f=0,圆的半径为r,圆心(-,-)到直线的距离为d,则判别直线与圆的位置关系的'根据有以下几点:
当dr时,直线l与圆c相离;。
当d=r时,直线l与圆c相切;。
当d。
3、情态与价值观。
让学生通过观察图形,理解并掌握直线与圆的位置关系,培养学生数形结合的思想。
(二)、教学重点与难点。
三、教法学法分析。
(一)、教法。
教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法:
1、启发引导学生思考、分析、实验、探索、归纳。
2、采用“从特殊到一般”、“从具体到抽象”的方法。
3、体现“对比联系”、“数形结合”及“分类讨论”的思想方法。
4、投影仪演示法。
在整个过程中,应以学生看,学生想,学生议,学生练为主体,教师在学生仔细观察、类比、想象的基础上通过问题串的形式加以引导点拨,对照,归纳,整理,只有这样,才能唤起学生对原有知识的回忆,自觉地找到新旧知识的联系,使新学知识更牢固,理解更深刻。
(二)、学法。
建构主义学习理论认为,学习是学生积极主动地建构知识的过程,学习应该与学生熟悉的背景相联系。在教学中,让学生在问题情境中,经历知识的形成和发展,通过观察、操作、归纳、探索、交流、反思参与学习,认识和理解数学知识,学会学习,发展能力。
四、教学过程分析。
(一)、教学过程设计。
问题设计意图师生活动。
生:看图,并说出自己的看法。
生:学生观察图形,利用类比,归纳的思想,总结直线与圆的位置关。
种方法吗?使学生回忆初中的数学知识,培养抽象的概括能力。
师:引导学生从集合的角度判断直线与圆的方法。
生:利用图形,寻求两种方法的数学思路。
生:阅读教材书上的例1,并完成教材书上的136页的练习题2。
生:交流自己总结的步骤。
生:阅读教材书上的例2,并完成137的练习题。
生:通过分析,抽象,归纳,得出相交弦的运算方法。
生:互相讨论交流,完成练习题。
10、课堂小结。
教师提出下列问题让学生思考。
如何求直线与圆的相交弦长?
(二)、作业设计。
作业分为必做题和选择题,必做题是对本节课学生知识水平的反馈,选择题是对本节课内容的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生的自主发展、合作探究的学习氛围的形成。
我设计了以下作业:
必做题:课后习题a1,2,3;。
选择题:课后习题b1,2,3;。
(三)、板书设计。
板书要基本体现课堂的内容和方法,体现课堂进程,能简明扼要反映知识结构及其相互关系:能指导教师的教学进程、引导学生探索知识;通过使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。
五、评价分析。
学生学习的结果评价固然重要,但是更重要的是学生学习的过程评价。我采用了及时点评、延时点评与学生互评相结合,全面考查学生在知识、思想、能力等方面的发展情况,在质疑探究的过程中,评价学生是否有积极的情感态度和顽强的理性精神,在概念反思过程中评价学生的归纳猜想能力是否得到发展,通过巩固练习考查学生对本节是否有一个完整的集训,并进行及时的调整和补充。
以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正。
九年级数学直线与圆的位置关系说课稿篇十一
5、过程与方法。
理解直线和圆的三种位置关系,感受直线和圆的位置与它们的方程所组成的二元二次方程组的解的对应关系;体验通过比较圆心到直线的距离和半径之间的大小及通过方程组的解的个数判断直线与圆的位置关系,能用直线和圆的方程解决一些条件下圆的切线问题;领会数形结合的数学思想方法,提高发现问题、分析问题、解决问题的能力。
6、情感态度与价值观。
通过对本节课知识的探究活动,加深学生对解析法解决几何问题的认识,从而领悟其中所蕴涵的数学思想,体验探索中成功的喜悦,激发学习热情,养成良好的学习习惯和品质。
教法学法为了实现上述教学目标,本节课采取以下教学方法:
(1)恰当的利用多媒体课件,通过学生熟悉的实际生活问题引入课题,拉近数学与现实的距离,激发学生的问题意识和求知欲,调动学生主体参与的积极性。
(2)采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,站在学生思维的最近发展区上启发诱导。
(3)在整个数学教学过程中,既要体现学生的主体地位,更要强调教师的主导地位,在科学讲授的同时教会学生清晰的思维和严谨的推理。
在学法上注重以下几点:
(2)在用代数法解决直线与圆的位置关系时,要能够明确运算方向,把握关键步骤,正确的处理较为复杂数据。
课堂结构设计:
整个教学过程是四步组成,自主学习,合作探究,老师辅导、课堂展示。共分为八个环节,复习、独立训练、相互探讨、老师参与、形成结论、课堂展示、评价(互评师评)、反思。
教学过程设计:
通过问题情境,激发学生的学习兴趣,使学生找到要学的与以学知识之间的联系;问题串的设置可让学生主动参与到学习中来;在判断方法的形成与应用的探究中,师生的相互沟通调动学生的积极性,培养团队精神;知识的生成和问题的解决,培养学生独立思考的能力,激发学生的创新思维;通过练习检测学生对知识的掌握情况;根据学生在课堂小结中的表现和课后作业情况,查缺补漏,以便调控教学。
回顾反思,拓展延伸:
九年级数学直线与圆的位置关系说课稿篇十二
一、教学目标设计:
(一)方法与过程。
1.探索直线和圆的位置关系及圆心到直线的距离d和圆的半径r之间的数量关系,体验数学活动充满着探索性和挑战性。
2.经过自主探索和合作交流、敢于发表自己的观点,能从交流中获益。
3.会运用本节知识解决有关问题,提高观察、探究、归纳、概括的能力。
(二)知识与技能。
理解直线和圆的'三种位置关系,掌握直线和圆的位置关系的性质和判定方法。
(三)情感态度与价值观。
通过观察、类比,体会事物间相互联系和运动变化的辨证统一思想;培养实事求是的科学态度和协同合作研究问题的精神。
二、教学准备:
1.教师准备:在校园网的web教室里为学生搭建教学平台。利用《几何。
画板》制作探索直线和圆位置关系的几何课件;为学生提供多媒体资源库及测试题库;开放专题站,延伸学生的课后挑战。
2.学生准备:复习点和圆的位置关系,预习本课知识。
三、自主学习设计:
学习是获取知识的过程,建构主义认为:知识不是通过教师传授得到,而是学习者在一定情境即社会文化背景下,借助其他人(包括教师和学习伙伴)的帮助,利用必要的学习资料,通过意义建构的方式而获得。
在此理论基础上,本节采用其中的“支架式教学方法”。首先为学生搭建探究问题的平台,学生通过类比点和圆的位置关系,通过探索、实验来获取直线和圆的位置关系及其判定方法。
(一)学习内容和学习任务的说明。
重点:直线和圆的位置关系及圆心到直线的距离与圆的半径之间的数量关系,尤其是相切的情况。
难点:探索直线和圆的位置关系与圆心到直线的距离、半径之间的数量关系,并能用之解决有关问题。
(二)学习者特征分析。
初中学生,思维活跃,有强烈的好奇心理。他们求新求异,勇于大胆的尝试,乐于动手体验,易于接受新挑战。但鉴于知识层次的限制,他们的抽象思维能力欠佳。因此教学中需要老师搭建操作平台,让学生在亲身体验中感受获取知识的乐趣。
四、教学设计思路:
1.教学思路:本课通过类比点和圆的位置关系及其研究问题的方式,让学生自己动手在网络环境下操作教师搭建的《几何画板》平台,探索预测直线和圆的位置关系及其判定方法。
2.教学多媒体设计:
九年级数学直线与圆的位置关系说课稿篇十三
圆柱的表面积这课,我把探索圆柱侧面积的计算方法作为学习的重点。为什么呢?因为在学习长方体和正方体的表面积时,学生已经理解了表面积的含义,这是圆柱表面积的学习基础。圆柱的表面是由两个相同的底面和一个侧面构成的,计算圆柱底面面积就是计算圆面积,对于学生来说也不是新知识了。探索圆柱侧面积的计算方法,在本课的学习中,我通过圆柱侧面展开图的探索过程,以及侧面展开图的长和宽与圆柱有关量的关系这两个环节来体现。下面就我这节课的目标达成情况和自己教学的得与失简单说一说。
一、操作与思考、想象相融合,在具体情境中探索圆柱侧面积的计算方法。
“学习任何知识的最佳途径是自己去发现。”因为这种发现理解最深,也最容易掌握其中的内在规律、性质、和联系。学生独立思考,相互讨论,辩论澄清的过程,就是自己发现或创造的过程。让学生先想象圆柱展开后的形状,然后用自己的办法加以说明,拓展空间,将学生进一步置身于探索者、发现者的角色,引导学生用自己的办法发现圆柱展开后的形状,并和同学进行交流,给学生充分的思考时间,对问题进行独立探索、尝试、讨论、交流,学生充分展示自己的思维过程,在想象、猜想的基础上进行验证,在操作过程中体验图形变化的思想和方法。课堂中,学生有很多自己的办法,而且探索出圆柱侧面展开后可以是长方形、平行四边形、不规则图形等。另一方面,我又借助多媒体,演示圆柱侧面的展开。学生在操作过程中体验图形变化的思想和方法。学接下来我精心设疑:想一想,能否将这个曲面转化为我们学过的平面图形,从中发现它们侧面积计算方法呢?在我启发下,学生与小组内同学合作交流,并辅以电脑动态演示,最后探究出侧面积的计算方法。学生在操作过程中体验图形变化的思想和方法。学生经历探求圆柱侧面积计算的过程,培养了探索精神和学习的自信心。
二、创设情境,让学生产生计算圆柱表面积的需要,解决生活中的实际问题,体会到数学与生活的紧密联系。
数学来源于生活,生活中到处有数学。从学生的生活实际,创设数学问题,这是激发学生学习数学兴趣和调动学生积极性参与的有效方法。本节课中,首先以现实生活问题引入,创设设计制作饮料罐的情境,让学生产生计算圆柱表面积的需要。
三、在教学时对时间没有把握好,探索圆柱侧面展开时耗时过多,影响后面教学环节的达成。
九年级数学直线与圆的位置关系说课稿篇十四
各位评委、老师,大家晚上好!我说课的题目是《直线与圆的位置关系》,我将通过以下五方面对本节课进行解说。分别是教材分析、学情分析、教法分析、学法分析、过程分析。
一、教材分析。
本节课位于高中数学人教a版必修二第四章第二节(第一课时),它是在学生初中已经学习了直线与圆的位置关系的基础上,通过直线方程和圆的方程,利用坐标法对直线与圆的位置关系的进一步研究与探讨。是从初等数学过渡到高等数学的开始和阶梯。同时,这节课的方法和思想也为今后解决圆与圆的位置关系,以及圆锥曲线等几何问题奠定了基础。它起到了承前启后的作用。
2.教学目标。
知识与技能:理解直线与圆的位置关系;学会利用几何法和代数法解决直线和圆的有关问题。
过程与方法:通过直线与圆位置关系的探究活动,经历知识的建构过程,培养学生独立思考、自主探究、动手实践、合作交流的学习方式。强化学生用坐标法解决几何问题的意识,培养学生分析问题和灵活解决问题的能力。
情感、态度与价值观:通过学生的自主探究、小组讨论合作,培养学生的团队精神和主动学习的良好习惯。
3.教学重、难点。
难点:把实际问题转化为数学问题,建立相应的数学模型;灵活地运用“数形结合”、解析法来解决直线与圆的相关问题。
二、学情分析。
学生在初中已经学习了直线与圆的位置关系,在高中又学习了直线方程与圆的方程,并会用坐标法解决简单几何问题。这些都有助于学生进一步学习直线与圆的位置关系。而我们的学生已经具备了独立思考和探究学习的能力,但又欠缺空间想象和实际应用能力。
三、教法分析。
根据以上分析,本节依据布鲁纳发现教学法,要学生通过建立模型、方法探究、合作交流、归纳总结的学习方式,以活动为主线,体现学生的主体地位。教师在本环节中作为问题的设计者、组织者、引导者、合作者,体现其主导地位。
四、学法分析。
问题是数学的核心,教师在学生思维发展的最近区,通过不断地设问,为学生创设情景,搭建平台,提供一个自主探究,合作交流的环境,让学生通过不断地发现问题、分析问题、解决问题,以培养学生的思维能力。
五、教学过程。
教学就像一条河流,如何让学生到达知识的彼岸,教师在这一过程中的设计与引导起到了至关重要的作用。而本节课我将从六个方面根据学生的实际情况进行一个设计。
(一)情境设计,铺垫导入(三分钟)。
教育的艺术在于创设恰当的情景。本节课创设的情景是以钓鱼岛问题导入(本环节大约三分钟)。一艘日本渔船企图非法登陆我国钓鱼岛,我国舰艇此刻正在附近海域巡逻。它们三者之间的位置关系如下:我国舰艇的雷达扫描半径为30km,如果日本渔船不改变航线,我国舰艇能否通过雷达扫描发现它呢?情景一设计的目的在于让学生构建恰当的数学模型,本质在于探究“直线与圆的位置关系”引出了课题,让学生从数学角度看待日常生活中的问题,增强学习的趣味性,使爱国热情转化为探索和学习的动力。
问题作为引导的核心,在这个问题上,我设计了如下问题:问题1:你能利用已有的平面几何知识建立适当的数学模型,来解决这一问题吗?目的在于引导学生主动回忆初中所学的“直线与圆的三种位置关系”。并能说明这三种位置关系中公共点的个数以及圆心到直线的距离与半径的大小关系。通过旧知识的回顾使学生发现新的问题,也使新的知识在原有的知识结构中找到伸展点,而这个伸展点就是问题2.(二)切入主题、提出课题(2分钟)。
问题2:如何用直线方程和圆的方程来判断它们之间的关系呢?
问题2切入了本节的中心议题,让学生用自主探究的学习方式,引导学生用方程思想解决几何的问题。
在此教师不用急于让学生回答这个问题,而是通过一个具体的问题来进行解答。这一具体问题我选择了课本的例1,之所以选择例1是因为例1直间给出了直线与圆的方程。学生只需要思考能用几种方法来解决和判断直线与圆的位置关系。引出了本节的重点。而第二问还要求学生求出交点坐标,目的在于让学生进一步认识方程组解得意义。
(三)探索研究、解决问题(10分钟)。
通过例1这一具体问题之后,可以让学生尝试归纳判断直线与圆的位置关系的方法,在此我设置了两个活动。活动二:要学生通过合作交流的方式将全班分成小组进行合作交流探究。活动三:要学生通过归纳小结的学习方法,将各小组的成果进行分享,最后进行归纳总结。教师在这一过程中只需要做好引导者和组织者的作用。目的是让学生主动的参与课堂,通过分析问题、解决问题培养学生的能力。而这种由特殊例子到一般方法的归纳,也符合学生的认知结构。让学生在交流、探讨和归纳的过程中理解和掌握本节课的重点。即直线与圆的位置关系的判断方法。这里的方法可由学生归纳得出。第一种,几何法,第二种,代数发。这两种方法都体现了数学的思想,并且代数法对于今后解析几何的方法应用较多,也为后面解决圆锥曲线问题提供了方法依据。
(四)新知应用、深化理解(20分钟)。
掌握了方法接下来就是应用,请学生利用“几何法”和“代数法”解决情景一中的问题,达到学以致用,巩固方法的目的。在此教师可以让两名学生通过不同的方法在黑板上演练,再让其他学生进行点评,教师在进行小结即可。
例2是本节的难点,如何突破难点呢?我将从例1的一个变式引出。求直线l被圆c截得的弦长ab.在此教师可以作适当的点拨,求弦长的方法很多,如两点间距离公式,弦长公式以及圆心到直线的距离与半径构建直角三角形利用勾股定理进行求解。通过一题多变,一题多解,不仅体现了新课标的要求,还让学生在练习中拓展思维、活用方法,为接下来解决例2这一难点突破奠定基础。
例2通过刚才的变式,由浅入深,引入例2,环环相扣,让学生体会利用“几何法”和“代数法”解决直线和圆相交时有关弦长的问题,突破本节难点。
掌握本节重点,突破难点之后,可以让学生根据情景做适当的延伸。情景二:若我国舰艇雷达扫描半径为rkm,此时日本非法渔船航线刚好和我国舰艇雷达扫描的圆形区域的边缘相切,计算雷达扫描的半径r的值。
情景二研究的是直线与圆相切的情况,同时是含有参数的问题,引导学生从运动变化的角度来看待问题,提高了思维的梯度。
情景三:对于同样的情景,你还能根据“直线与圆的位置关系”设置出哪些问题呢?
这一问题,目的在于培养学生的创新意识,可以作为课后的拓展题,让学生通过小组探究来完成。实际上学生创设问题的过程就是检验我们教学成果的过程。
(五)总结提升、形成方法(5分钟)。
在课后总结中,让学生通过三个方面进行总结。第一,方法总结,在直线与圆的位置关系中,你掌握了哪些方法呢?学会了哪些应用呢?你自己的思想上又得到了哪些提升呢?目的在于以自我小结的形式,对本节课进行简单的回顾与梳理,也是对所学内容的再次巩固与提升。
(六)课后作业,巩固提高在课后训练中,针对学生不同层次,我设计了这三种题型:1.巩固题,2.提高题,探究题。目的在于尊重学生的个体差异性,调动学生的积极性,使每一个学生在教学中都能够有所发展。
(七)板书设计。
这是我的板书设计,本节课以多媒体演示为主,板书设计以简洁明了为主,左边主要罗列了主要的方法和应用。右边作为例题演示和学生演练。
教学反思。
作为教育工作者,目的在于授之以渔。而教学过程意在于把科学知识作为培养学生思维能力的一个阶梯。
本节课,以活动为主线,问题为载体,通过钓鱼岛问题导入,由浅入深,环环相扣,一个情景,两种方法,三种问题,一气呵成,这节课的重难点也得以突破。另外本节课还有许多不足,如合作学习没达到预想的效果,组长没能起到应有的作用。教师对有些知识强调、点评不到位等。
我的说课到此结束,不妥之处,敬请各位老师批评指正,谢谢!
九年级数学直线与圆的位置关系说课稿篇十五
尊敬的各位评委,亲爱的各位同行,大家好!今天我的说课内容是人教版九年级上册第二十四章第二节第二课时的直线与圆的位置关系。下面我将以教什么、怎么样教、为什么这样教为思路从教材分析、学情分析、教学目标、学法教法、教学过程和板书设计六个方面对本课进行说明。
一、教材分析。
教材的地位和作用。
圆在平面几何中占有重要地位,它被安排在初中数学第二十四章,属于一个提高阶段。而直线和圆的位置关系又是本章的一个中心内容。从知识体系上看:它有着承上启下的作用,既是对点与圆的位置关系的延续与提高,又是后面学习切线的性质和判定、圆和圆的位置关系及高中继续学习几何知识的基础。从数学思想方法层面上看:它运用运动变化的观点揭示了知识的发生过程以及相关知识间的内在联系,渗透了数形结合、分类讨论、类比等数学思想方法,有助于提高学生的数学思维品质。
二、学情分析。
在此之前学生已经学习了点和圆的位置关系,对圆有了一定的感性和理性认识,但在某种程度上特别是平面几何问题上,学生还是依靠事物的具体直观形象。加之九年级学生好奇心强,活泼好动,注意力易分散,认知水平大都停留在表面现象,对亲身体验的事物容易激发求知的渴望,因此要想方设法,引导学生深入思考、主动探究、主动获取新知识。
三、教学目标:
根据学生已有的认知基础及本课的教材的地位、作用,结合数学课程标准我将确定如下的教学目标:
(2)通过观察、实验、合作交流等数学活动使学生了解探索问题的一般方法;
陪养学生观察、分析和概括的能力;
(4)体会事物间的相互渗透,感受数学思维的严谨性,并在合作学习中体验成功的喜悦。
教学的重难点:
九年级数学直线与圆的位置关系说课稿篇十六
在本届贵阳市中青年教师教学研讨会中,修文中学提出打造有自己特色的“良知高效课堂”,整个课堂进程分四步八环节。本人承担的是直线与圆的位置关系这一堂课与大家交流,有不足之外请老师们批评指正。
1、教材地位。
从知识结构来看,直线与圆的位置关系是对圆的方程应用的延续和拓展,又是后续研究圆与圆的位置关系和直线与圆锥曲线的位置关系等内容的基础。在直线与圆的位置关系的判断方法的建立过程中蕴涵着诸多的数学思想方法,这对于进一步探索、研究后续内容有很强的启发与示范作用。
2、学生情况。
对于直线和圆,学生已经非常熟悉,并且知道直线与圆有三种位置关系:相离,相切和相交。从直线与圆的直观感受上,学生懂得从圆心到直线的距离与圆的半径相比较来研究直线与圆的位置关系。本节课,学生将进一步挖掘直线与圆的位置关系中的“数”的关系,学会从不同角度分析思考问题,为后续学习打下基础。另外学生在探究问题的能力,合作交流的意识及反思总结等方面有待加强。
3、教学目标。
新课程标准的要求是能根据直线与圆的方程判断其位置关系(相交、相切、相离),体会用代数方法处理几何问题的思想,感受“形”与“数”的对立和统一;初步掌握数形结合的思想方法在研究数学问题中的应用。
根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,本节课教学应实现如下教学目标:
4、知识与技能。
九年级数学直线与圆的位置关系说课稿篇十七
这一节主要学习了圆和圆的位置关系,通过新的教学改革,学生分组学习的积极性提高了,学案的运用学生慢慢适应,并且起到了很好的作用。
通过预习学案,学生提前预习,然后结合实际生活中的例子,包括两圆外离、内含、相交、外切、内切、同心圆等不同情况,让学生对于两圆的位置关系有直观感受,然后探究和发现图形的位置关系与圆的半径、圆心距的大小有关,并完成学案的部分填表和习题,从而加深对三种不同位置的理解。
但是,对于我班的实际情况,基础差得同学很多,有几个学生甚至放弃了数学,针对这种情况,设计了一些适合他们的练习题,让他们找回学数学的信心,好些的同学做些难度大些的题着重让学生通过一定量的训练,应用所学的.知识解决问题,从而加深理解课堂上所学的重难点。学生的学习积极性大大的提高了,并且大部分学生当堂达标,效果很好。
以后应好好总结经验,继续加强这方面的训练,相信一定会有好的效果。
九年级数学直线与圆的位置关系说课稿篇十八
《圆和圆的位置关系》是义务教育课程标准实验教材人教版第二十四章第二节的内容,是在学生学完《点和圆的位置关系》、《直线和圆的位置关系》之后,运用类比、对比的方法,通过动手操作实践,自主探究、观察分析、猜想证明而获取新知的。本节重点是探索并了解圆和圆的位置关系,难点是探索圆和圆的位置关系中两圆圆心距与两圆半径间的数量关系,特别是两圆相交时的数量关系。
为突破教学难点,在学生通过动手操作、自主探究、合作交流,从“形”上了解圆和圆的位置关系后,我设置了一个探究题:“圆和圆的几种位置关系的轴对称性”,目的是让学生探究“两圆相切时,切点与对称轴有什么位置关系”。进而通过猜测度量不难完成两圆相切时圆心距与两圆半径间的数量关系,而对于两圆相交时的数量关系,运用三角形三边关系极易解决,从而突破本节教学的难点。
课后反思:本节教学在突破教学难点方面,我大胆地重组教材顺序,将探究“圆和圆几种位置关系的轴对称性”提前在探究“两圆圆心距与两圆半径间的数量关系”之前,这样做便于学生猜测度量结果,易于突破教学难点。
教材不是十全十美的圣径。教书是用教材教,而不是只教教材。只要是符合学生的年龄特征及认知规律,并与教材知识密切相关的,不是不可以提前,不是不可以增删,而是可根据需要改造重组。
【本文地址:http://www.xuefen.com.cn/zuowen/15150657.html】