读后感是读完一本书之后,根据个人的理解和感受,对书中内容进行总结和反思的一种写作形式。读后感可以帮助我们更好地理解书中的思想和观点,同时也可以促使我们思考自身的成长和发展。最近读完一本好书,让我深受启发,我觉得有必要写一篇读后感了。读后感是我与书中主人公对话的一次机会,希望通过写作能够更深入地理解书中的内涵。读后感是我与作者交流的一种方式,通过写作能够将自己的想法和感受传达给他人。在写读后感时,我们可以对自己与故事中的人物或情节产生共鸣的原因进行分析。以下是小编为大家收集的读后感范文,仅供参考,大家一起来看看吧。读后感是从读书的角度出发,将自己的感受和思考分享给他人,希望能够给其他读者带来一些启示和思考。读完一本书后,写一篇读后感是一种对书籍内容的回顾和总结,同时也是对自己阅读能力的提升和思维能力的训练。读后感可以激发我们的阅读兴趣,增加对书中情节的了解,帮助我们更好地理解书中的主题和思想。所以,读书后写读后感是非常有必要的,也是对书中内容的一种沉淀和思考。读后感不仅仅是对作者的致敬,更是对自己思想的释放和表达。阅读给予我们很多启示和思考,通过写读后感,可以帮助我们更好地汲取书中的营养,提高自己的阅读理解能力和表达能力。读后感是我们对书中内容的一种思考和总结,它不仅仅是对作者的致敬,更是对自己思想的释放和表达。
数学与猜想读后感篇一
《数学与猜想》这是美国g·波利亚写的,由李心灿翻译而来的一本书。书的英文名字叫做《mathematics·and·plausible·reasoning》,也可以译作《数学与合情推理》,译者为了更加通俗一点直接是把本书译作《数学与猜想》,当然合情推理本质就是猜想。这是第一次看这本书,全书不仅涉及到了数学的很多方面,同时还有部分物理数学,古今中外,旁征博引,通俗易懂。
读了这本书,对我来说有两个启示,首先,要树立正确的归纳的态度,其次,要关注学生的合情推理。
先来说说归纳的态度。因为这种非常独特、不同一般的态度可以在教学中渗透给学生,从而潜移默化的影响学生的实际生活以及学习,甚至在未来成长的道路上给学生带来巨大的帮助。在归纳的态度中,有三点比较重要:第一,我们应当随时准备修正我们的任何一个信念;第二,如果有一种理由非使我们改变信念不可,我们就应当改变这一信念;第三,如果没有某种充分的理由,我们不应当轻率地改变一个信念。
数学与猜想读后感篇二
要判断一个理论(或者说法)是否正确,首先要分析它的陈述是否科学。如果它对概念的定义以及它作出的结论模棱两可,你就没有办法针对其定义和结论进行反驳或验证。用卡尔·波普尔的话说,这样的理论就是不科学的(不可验证,不可证伪,不可反驳)。
例如古希腊时期有一个著名的预言。公元前547年,吕底亚国王克罗索斯想对波斯发动攻势,就派使者去希腊德尔斐阿波罗神殿请求神谕。女巫回复说有一个帝国将会陷落。克罗索斯断定是波斯帝国将陷落,于是便挥军向波斯发起攻击。结果,灭亡的不是波斯帝国,而是吕底亚自己。这个预言在陈述上就是不科学的,因为它作出的结论模棱两可。当战争结果出来之后,你无法指出它的预言究竟是正确的还是错误的。
假如女巫预言:“波斯帝国将陷落。”那么这个预言作出的结论就是明确的,具有可检验性,可证伪性和可反驳性。按照卡尔·波普尔的划分,这样的预言在陈述上就是科学的,因为你可以对其进行验证,证伪和反驳。当战争结果出来之后,你可以肯定的指出它的预言是正确的还是错误的。
只有陈述清晰明确的理论才是可验证和可证伪的理论。陈述不清不楚、模棱两可的理论都是不可验证和不可证伪的理论,这样的理论都是用来愚弄傻子的。遗憾的是,这个世界上大量的理论都是不清不楚模棱两可的,宗教领域尤其如此(基督教和犹太教除外)。可以不夸张的说,宗教领域(基督教和犹太教除外)绝对是愚弄傻子的天然乐园。
数学与猜想读后感篇三
浅谈数学教学中的猜想教学科学家牛顿有句名言:“没有大胆的猜想,就不可能有伟大的发明和发现。”将猜想引入数学教学之中,将有助于学生开阔视野、活跃思维、培养创新意识、促进能力的提高。因此,著名的数学家波利亚说:“数学既要教证明,又要教猜想。”在数学教学中如何教学生展开猜想,这里谈一下我的具体做法:一、问――诱发猜想数学课教学中,导入新课时教师如果能提出有探索性、挑战性的问题,就可以诱发学生的猜想,激发学生的求知欲。例如:在教学圆面积计算公式时,我从已学的平面图形如长方形、正方形、三角形等的面积公式导入,问:你还记得这些平面图形的面积公式的推导方法吗?既然圆也是平面图形,我们能否也利用转化的方式,化圆为方,依据数学“化生为熟”的原则,将它转化为已学过的平面图形来推导面积公式呢?问题一提出,学生们立刻活跃起来。有的说,我们能否将圆变成近似的长方形来求面积;有的说,可不可以把圆拼成近似的三角形呢?还有的说,我认为把圆割补为近似的平行四边形好一些……猜想是数学发展的动力,它可以激发学生的求知欲望,使他们不断探索。当学生发现自己的猜想与课本上基本一致时,他们会感受到猜想的乐趣,享受到成功的喜悦,就会以更大的热情投入到对新知的探求中去。二、导――验证猜想数学知识的抽象性与儿童思维的形象性是一对矛盾,解决这一矛盾的有效途径之一就是操作。在学生有了初步的猜想后,教师要积极鼓励学生开阔思维,给学生营造一种宽松的、和谐的良好猜想氛围,不限制学生的思维疆域,鼓励学生积极的寻找猜想的依据,索求猜想的合理性和准确性,不迷信已有的结论,不满足现成的答案,要通过自己的实践操作,来检验猜想的真伪。例如:三角形的内角和是180度。这是一个十分重要的概念。在教学中我让学生自己动手操作,自己寻求:三角形内角和的答案。这时有的学生将三角形的三个角分别剪下来,拼在一起是一个平角;有的学生剪下三角形的两个角后,再与第三个角拼在一起同样可以得出结论;还有的学生则用量角器分别量出每个角的度数,把三个角度数相加。通过这样的亲身实践,学生对知识从感性认识上升到理性记忆。在猜想中探索出正确的答案,在实践中验证了猜想的准确性,从而加深了对知识发生过程的理解。三、说――完善猜想说是学生把感性的知识通过理性表现的一种有效途径,也是完善认知和猜想的必要过程。猜想是人们依据事实,凭借直觉所做出的合理推测,是一种创造性的思维活动。儿童想象力丰富,猜想也是百花齐放,教师要给他们创造表现自我的机会,让他们把自己的猜想依据、实践过程以及得到的`结论说出来,使其认识更加明确、思维更加完善。例如:在复习近平面图形的周长和面积时,我出了一道这样的题目:我有一根绳子,你想一想,用它围成的哪种平面图形的面积最大?学生们各抒己见,结论正确的同学,不仅要阐述自己依据什么旧知来推测新知,还要详细地叙述论证的过程。猜想不合理的同学也要能说出自己的理论依据和实验过程,并且要告诉大家自己的猜想失败的原因。通过对猜想过程的回顾、总结和反思,使成功的经验明朗化并巩固下来,也使失误成为教训,学生获得的远比得到一个答案要多得多。四、练――运用猜想学生沉浸于猜想成功的兴奋状态时,教师不失时机地给学生设计灵活、开放性的练习,让他们用猜想的结论去解决实际问题,使学生已有的知识得到巩固、深化和发展,有利于调动学生的思维,激发学生的学习兴趣,培养学生运用知识的能力。波利亚指出:“教学必须为发明作准备,或者至少给一点发明的尝试,无论如何,教学不应该压抑学生中间的发明萌芽。”让我们和学生一起来猜想吧!
数学与猜想读后感篇四
最近我看了《不知道的世界》丛书的其中一本《数学猜想》。
书的作者是李毓佩,我还读过他的《探索形状奥秘》等好几本书。书的主要内容是数学中的一系列迷案,反映了人们在解迷中作出的努力和遭遇的障碍,介绍了各种有代表性的假说、猜想和目前达到的研究水平,并指出了可能的途径。
我很喜欢这本书。这本书让我懂得了许多以前不懂的东西。以前我只知道哥德巴赫猜想这个名字,现在我知道了是怎么个猜想法,目前处在领先地位的是我国数学家陈景润,他证明了哥德巴赫猜想的(1+2),剩下的(1+1)也就等待我来证明了。我还知道了费马猜想、梅根猜想等等。这些猜想都让我觉得很难、伤透脑筋,但又觉得很有趣。
我以后要解哥德巴赫猜想成为全世界都知道的数学家。
数学与猜想读后感篇五
全国白酒一线品牌,致力于定位高端品牌形象,主攻中国白酒高端市场。具有行业领袖风范的中国白酒品牌三甲茅台、五粮液、泸州老窖,总是能高瞻远瞩地适时调整企业发展战略,冷静、积极应对新形势下的新变化。
20发生的许多事件,如“限制三公消费”政策,反腐力度加大,抑制通货膨胀,经济大环境走势平稳放缓等等待,影响到了一线品牌高端酒的销售增长,尤其是对飞天茅台产品影响较大。高端白酒年年高走,走到,发现了“天花板”。
另有一些事件也在悄悄影响着一线品牌企业的发展,如全国二线品牌、区域强势品牌努力抢占中高端、中端白酒市场,纷纷“拍案而起”的酱酒区域品牌,开始全国化征程,力图先行一步,争抢“中高端、中端酱酒领导品牌”地位等等,都在挤压一线品牌市场空间。
全国一线品牌面临的处境,打个比喻就是在一栋楼里,身处三层的一线品牌原本不太关注一层、二层被谁占位,于是全国二线品牌、区域强势品牌占据了二层,区域品牌占据了一层;这时,一线品牌发现三楼的空间在缩小,同时还发现,这栋楼没有四层。
于是,20的茅台集团,冷静应对新变化,积极开展战略调整,强势实施“立体化”战略思路。所谓“立体化”战略,就是“品牌立体化,产品立体化,市场立体化”,一言而概之,就是――每一个市场,都要有我的成功产品!
茅台集团有众多子品牌,2012年,飞天茅台品牌在固守国内高端白酒市场的同时,倾向于国际市场的推广与开拓;紧接着,茅台集团重磅推广“习酒”子品牌,其目标直指中高端、中端白酒市场;几乎同时,茅台集团白金酱酒以茅台集团酱香型白酒的身份上市,主打中端市场,主攻中高端的汉酱,和主攻中端的酱香型迎宾酒产品,亦出现在全国市场。
白酒立体化战略,不同于跨酒种的多元化战略,由于是在同一酒种内的经营,不存在多元化所产生的不利因素。
白酒立体化战略,又不同于多贴牌战略,它是由企业直接并具体掌控、管理、规划的子品牌、子产品的资源融合,所以也不存在多贴牌战略所产生的各种弊端。
白酒立体化战略,更不同于简单的“产品线完善”,产品与产品之间只有价位不同,缺乏清晰的产品差异化诉求,也缺乏明确的渠道分工、目标市场分工、目标消费群体分工。
白酒立体化战略,是全国一线品牌、知名品牌的品牌价值深度挖掘,是一个品牌经过多年成长、推广才能拥有的影响力体现,品牌价值越高,品牌影响力与知名度越高,实施立体化战略的成功率也就越高,所以,这是二线品牌、区域品牌要慎重考虑与选择的战略。
2012年,全国一线品牌都在积极探索战略调整的方向与思路。寻求更多的市场,是他们的方向,有的品牌战略调整,令业界眼前一亮、充满信心,而有的品牌战略调整,却业界褒贬不一、心生忧虑。
白酒二线品牌:中国好声音。
2012年沱牌舍得酒业的“生态之旅”,被业界和消费者誉为“绿色之旅”。2012年12月,经历塑化剂**的白酒行业尚处于伤痛期时。从中最快恢复过来的竟是全国二线品牌沱牌舍得。12月17日,沱牌舍得午后封住涨停板;18日,又以5.23%的涨幅,成为白酒板块的领涨标杆。表面观察,这是股民和消费者对沱牌舍得的信心与支持;深入分析,不难发现,在举国上下关注食品安全、关注绿色健康消费的2012年,在“放大镜之下”的白酒行业,沱牌舍得生态酒的“生态”酿酒理念,无疑为白酒行业指明了一个方向。
沱牌舍得生态酒的意义,不仅是开创了一个崭新的“生态白酒”品类,还为白酒行业的生产企业的未来发展指明了一个方向:不论是冠名“生态”二字,还是没有冠名“生态”二字的,企业的生产过程都应该是生态的、环保的、节能的;其产品都应该是生态的,绿色的,健康的;生态白酒,应该是每一款白酒产品最基本的质量要求、最核心的产品竞争力。
生态白酒,是白酒行业的“中国好声音”,也是全国二线品牌未来发展的“好声音”。在全国二线阵营里,有的品牌力推生态酿酒理念,成为了行业“正能量”,而有的品牌却背道行之,成为了行业“负面教材”。
白酒区域品牌:谁的百亿不是梦。
相比而言,2012年的白酒区域品牌,日子还算好过,因为市场发展的趋势是中端产品主流化,区域品牌主攻的中端价位区间的市场空间越来越大,前景光明。作为区域品牌,其战略变化灵活,可攻可守,也可攻防结合;可继续实施全国化战略,也可重点防守,精耕细作根据地市场。
百亿目标,不仅是全国二线品牌的期待,也是许多区域品牌的热望;2012年,百亿作为区域品牌阵营的一个热词,成为了一些区域品牌具体的战略目标。
同样是百亿目标,有的品牌提出来,赢得业界赞声一片;可是有的品牌提出来,却收获了“板砖”和“鸡蛋”,引起业界质疑声声。
高端白酒:下行。
受经济形势和相关政策影响,2012年终端售价1000元以上的高端白酒全年销售形势不容乐观。三公消费政策对高端白酒的下行趋势贡献“颇大”,未来高端白酒仍将受此类政策的影响,并且打压程度会进一步加深。
主要原因是新一届中央领导人加大反腐力度,从《中央军委加强自身作风建设十项规定》的内容就可见一斑,因此高端白酒公务消费的渠道进一步变窄。但是这并不代表高端白酒毫无市场可言,只是其消费群体将会随着消费升级而以商务群体和个人为主。
一方面是销量下降,一方面是企业向经销商发出的“保价令”,于是形成了高端白酒在渠道环节的库存积压,所以年节期间、白酒销售旺季,没有出现涨价、断货等现象。
数学与猜想读后感篇六
我想刘一胜利的可能性应该很大,第一:他很会打架。第二:他的嘴很臭,会把人熏死的!
果然高中优秀作文原创分享作文人网,刘一胜利了,我问王兆雨他是怎样胜利的.,王兆雨说:我快要被熏死了!
这时,我知道了,还不是被那张大臭嘴熏的嘛!我猜想的好准哟!我太有才了!!呵呵!
数学与猜想读后感篇七
g・波利亚,数学家、教育家,曾任美国国家科学院、美国艺术与科学学院院士,匈牙利科学院荣誉院士,伦敦数学会、瑞士数学会、美国工业数学与应用数学学会荣誉会员,法国巴黎科学院通讯院士。出生于匈牙利布达佩斯,1942年移居美国。获布达佩斯eotvoslorand大学数学博士学位。著有《数学的发现》、《数学分析中的问题和定理》、《数学物理中的等周不等式》等。
著名数学家g・波利亚撰写的一部经典名著―《数学与猜想》,书中讨论的是自然科学、特别是数学领域中与严密的论证推理完全不同的一种推理方法――合情推理(即猜想)。通过许多古代著名的猜想,讨论了论证方法,阐述了作者的观点:不但要学习论证推理,也要学习合情推理,以丰富人们的科学思想,提高辩证思维能力,书中的例子不仅涉及数学各学科,也涉及到物理学,全书内容丰富,谈古论今,叙述生动,能使人看到数学中真正的奥妙。
本书将数学中的推理模式与生活中的实例相联系,论述深入浅出,读来令人兴味盎然。全书有大量习题,书末附有习题解答。
读完《数学与猜想》后,我明白猜想是可贵的,它既是一种创造性的思维方式,也是一种良好的心理品质。因此,应积极主张达成两者之间的合作和统一。
猜想是人们的一种重要思维活动,它是在已有知识和事实的基础上,对未知的事物及其规律做出某种假定或提出预测的看法。牛顿看到苹果落地,猜想出万有引力;门捷列夫根据化学元素数量的不断增多,认为元素的质量和化学性质之间一定存在着某种联系,猜想出元素周期律;魏格纳在观察地图时,猜想出大陆漂移说……日内瓦大学做过一个调查,发现众多科学家都是受到突然的启示,从猜想中得到帮助。从这个角度讲,也可以说,科学史是一部“猜想史”。
猜想不必真。因为直觉思维并不排斥逻辑思维,猜想出的结论是否正确,需要通过实践的验证或逻辑的论证才能确定。科学史证明,每一个伟大的科学猜想,都是经过一个曲折、反复、长期的试验、实践或考察的研究过程才成为科学。古希腊科学家亚里士多德关于自由落体理论的.猜想统治了两千多年,但最终被意大利科学家伽利略否定。而英国人f・格思里提出的“四色猜想”,至今对于四色猜想是否解答了,数学家们的意见还是莫衷一是。
猜想是科学。科学猜想并非是凭空臆构、胡思乱想。猜想是为了对一定的经验事实引出理解,是以知识为基础的。猜想能激发学习兴趣,有利于提高教学效率。
正如我们所知,猜想具有跳跃性,它不需要有充足的理由,对事物的认识可以忽略细节,可以跨越常规思维的若干小步进程,径直地得出结论。应该说,这符合学生生活中的思维习惯。如果教师恰当地加以引导猜想,能激发学生浓厚的学习兴趣,调动学生原有的知识和经验去探索新知识。
猜想有利于培养学生在学习中的的创新能力和开拓精神。
中国在世界数学领域中有很多了不起的地方,如数学家陈景润在数论方面独领风骚,为国争了光。但有人说:“陈景润研究哥德巴―赫猜想是厉害,而生于十七世纪的哥德巴―赫(1690~1764)则更厉害。”因此,在教学中,教师要经常善于引导学生大胆提出猜想或假说,一定会收到意想不到的效果。
大自然往往把一些深刻的东西隐藏起来,只让人们见到表面或局部的现象,有时甚至只给一点暗示,只能从中得到部分的不完全的信息。善于猜测的人,仅凭借于部分的消息,加上经验、学识和想像,居然可以找出问题正确或近于正确的答案,使人不能不承认,这是一种才华的表现。大自然是一部巨大的谜书,这些谜是永远猜不完的,猜出得越多,涌现的新谜也就越多。科学家的任务是要发现自然之谜(相当于制谜)和猜出自然之谜,第一,用类比法培养学生的猜想能力。这是把某一或几个方面彼此一致的新旧事物放在一起相比较,让学生由旧事物的已知属性去猜测新事物也具有相同或类似属性的一种方法。在数学领域中,用这种方法常可由对象条件的相似去猜想结论的相似,由问题形式的相似去猜想求解方法的相似。如将分数与除法相类比,学生可猜想出分数的基本性质;将推导圆柱体积公式与推导圆面积公式相类比,学生可猜想出推导圆柱体积公式也可用“割补法”。
第三,用分析法培养学生的猜想能力。这是“由果测因”的猜想方式,即从问题的结论出发,逆推而回,去猜测其成立的条件。在数学教学中,常用这种猜想去探求解题的思路。例如这样一道思考题:已知扇形的半径是6厘米,如下图所示,求阴影部分面积。
通过观察不难得出,求图1中阴影部分的面积,也就是求图2中阴影部分面积的一半,而图2中阴影部分面积即为圆面积的四分之一减去等腰直角三角形aob的面积。这样分析后,问题也就一目了然了。
第四,用直观法培养学生的猜想能力。这种方式可通过实验、演示推测出结论。如教学“射线与角”这个内容时,大多数学生对“角的大小与两边长短无关”很难理解,可让学生通过动手操作,猜想出结论。如图所示,一个直角的两边虽说增长了,但直角还是直角,没有变化,由此可推出“角的大小与两边长短无关”。
猜想是可贵的,它既是一种创造性的思维方式,也是一种良好的心理品质。在数学中,如果能正确运用,效果一定很理想。但愿我的课堂中多一些学生的猜想与印证!
数学与猜想读后感篇八
我在无意中看见了掉落在角落的纸页,被皮筋捆成一摞,有。
字典。
一般厚。我把这一摞纸页小心翼翼地拿出来,然后如饥似渴地开始在这些纸页上咬文嚼字,纸张很薄,有点类似于那种纸钱,早已泛黄,爸爸恰好从书房出来,看见了我正在看这一摞纸,就说:“孩子,你不知道吧。这是我一个作家朋友的手稿,看看或许对你有益,但是对我来说是毫无用处了。”我低头看看这份手稿,充满了疑虑,于是我带着好奇一口气读完了手稿。
这是看似像是讲述宇宙的猜想并且通过实验得出的结论,其实与其说是一篇精彩的百科知识,不如说是一部杂文,我从作家的语言中读出他并非是想要讲述宇宙,而是要通过宇宙去说明旧社会的封闭与现实生活的低贱。爸爸说:“这份手稿叫《普林(作家朋友的名字)猜想》。”由此看得出,这位热爱写作的人是个想象力十分丰富的先生。
不多说废话,我来谈谈这份手稿。我最喜欢里面的人物,被普林先生描绘得有血有肉,我喜欢柯丽丽,她虽然自尊心很强,但是她拥有探索精神。我们就应该像柯丽丽学习,什么事情都要钻研到底,不可以放弃。就像大海里的礁石一样,无论海浪有多么大,都会坚持地站在那里。我佩服阿斯达教授的智慧,他研究出了宝藏的根源还挖掘了海底的资源,和他的小组成员去宇宙探索,与外星人交流,使我不得不佩服他的智慧。是啊我们面对困难如果想要迎刃而解就得有智慧,想要有智慧就得多观察多思考。
读完了这本书,思绪连篇……。
数学与猜想读后感篇九
这个暑假,我读了《数学王国探秘》这一本书,这本书让我了解到数学的历史以及一些数学知识,逸事。让我有了很深的感触。
数学是起源于生活,也应用于生活。人们创造数目的最早的动机便是想知道一堆物体具体的数目。在数学的发展中,出现了一个智慧的迷宫,那就是幻方。这个游戏是给定1,2……n2。这些数字要求它们排列成n×n的方阵,并要使每一行,每一列,每一条对角线上的所有数字之和相等。每条直线上的数字之和叫做幻方常数。但有一个问题如何快速解决标准幻方,即从1按自然数顺序依次填到n2,这首先就要确定幻方常数例如三阶幻方常数是15,四阶幻方常数是34,那么n阶幻方的常数m是多少呢。我们可以先把n阶幻方的所有数的之和求出,得s=1+2+3+……+(n2―1)+n2=(1+n2)+(2+n2-1)+(3+n2―2)+……=n2/2(1+n2)再除n得m=1/n×n2/2(1+n2)=n/2(1+n2)所以标准幻方均可用m=n/2(1+n2)。
而幻方的的排法也是异常的多,五阶幻方超过2亿,七阶幻方超过3亿,让我也不得不感叹数学的灵活多变。
书中让我另一处感触最深的一个便是巧算勾股数,在学习勾股定理的时候我们便会注意到整勾股数的问题也就是x2+y2=z2的正整数解组,简称勾股数,例如(3,4,5)所以如果a,b,c都是勾股数并具有(a2+b2=c2)那么a,b,c就称为一组勾股数那么,只需要将他们同时乘以正整数k,其结果(ka,kb,kc)也是一组勾股数。所以只要考虑a,b,c两两互素的勾股数,并把它称为基本勾股数组。那么怎么创造出一组勾股数来呢?毕达哥拉斯提出的一组在课本里出现过,便是设m是任意大于或等于2的正整数,则(m2―1,2m,m2+1)一定是一个勾股数,因为这组是两两互素,是基本勾股数组。但无法给出所有勾股数组。我国的数学名著《九章数论》给出了更妙的方法:若给两个数m,n那么,1/2(m2―n2)、mn、1/2就是一组勾股数每次给的m,n不同所得勾股数也不同。并且如果m,n互素,这个公式便能套出所有两两互素的勾股数组。因此这个公式叫做x2+y2=z2的通解公式。
数学的奇妙我只领略一二,以后还有更长的数学道路需要我去体味。
数学与猜想读后感篇十
《黄爱华与活的数学课堂》这本书是我在学校图书室偶然间看到的,一看内容写的是活的数学课堂,我就把这本书借了出来,认真的翻阅它,我感觉到它真是一本好书,书页间飘散的墨香中,每每嗅出它那深藏的思想,也触发自己心底的思绪。读了黄爱华老师的书后,他的嗜书如命、执著追求以及精彩智慧的课堂深深打动了我,吸引着我,鼓舞着我。
黄爱华老师“活”的数学课堂艺术特色是“趣”、“实”、“活”。“趣”,让学生们感到新鲜有趣、富有吸引力;、“实”,在知识点教学的关键下真功夫,重点特出;“活”,在教学过程中对教材的灵活处理,应变自如、驾轻就熟、左右逢源。
《黄爱华与活的数学课堂》一书告诉我们:数学课堂教学要在多元智能理论的指导下,树立尊重个性的教育观;为学生创设自主探索的问题情境,提供充分的感性材料,让学生多种感官参与实践活动,致力改变学生的学习方式,使学生在自己动手操作、独立思考、观察讨论、合作交流、自主探究的过程中感受、理解数学知识,在经历掌握数学知识的过程中,培养了学生分析、比较、概括等逻辑思维能力,使他们在知、情、意诸方面和谐发展;数学课堂让儿童在再创造的过程中同化和顺应,以此不断丰富和完善知识结构,这样的课堂才是适合儿童发展的数学课堂,才是高效的课堂。
黄爱华老师是营造现实而富有吸引力学习背景的高手,善于根据实际创设现实的、有趣的、探究性的、开放的和新奇的及喻理的问题情境。这些良好的问题情境深深地吸引学生,唤起学生的求知欲望,燃起学生智慧的火花,有效地发展了学生的数学思维。
揣摩黄爱华老师的课堂案例,几乎每节课都有大量的学生动手操作的内容;黄老师善于引导学生在操作中独立思考,在自主探索中产生交流的需要;他鼓励和引导学生在小组交流中,既要正确表达自己的想法,又要倾听别人的意见,有效地增进合作交流的“涵养”;班级交流中,往往会呈现多样的学生思考方法和多种解决问题的策略,促使每个学生在数学上都有新的发展。
“问渠哪得清如水,为有源头活水来”。营造和谐、灵动的课堂,毫无疑问教师自身的素质是决定性的因素。我相信,只要坚持不懈的学习、实践和思考,这样美妙的数学课堂离我们一线教师不会太远!
数学与猜想读后感篇十一
数学真是这样吗?当然不是,那小学数学是什么?什么是有价值的数学?数学教师首先应该关注的是数学还是学生的心灵?如何建构生命课堂?……董文华老师《让小学生恋上数学》一书给出了回答。
基于以上的思考,董老师把关注“教师如何教”转变为为关注“学生如何学”。她力求把课设计得更“朴实”,更“体贴”,让课堂更贴近学生的已有知识经验和生活经验这两层“厚土”。上课前,她努力把课堂向前延伸,围绕着学生的认知困难来设计教学;课堂上,她努力构建一个师生情感交融、共同成长的生命场,怀着极大的耐心,尊重、启发、引领、关注每一个学生,尤其是那些弱势群体,让学生在“心理安全、心灵自由”的教学氛围中去经历、体验、尝试和控究,让“先学后教,少教多学,以学定教”的理念在课堂中得到最大的体现;课堂40分钟结束了,并不意味着教学课程的结束,不代表数学学习的停止,课后,她会让孩子们精心设计一些弹性作业,比如,写数学日记,开展课后小实践、小调查等活动,让学生学习数学的视角延伸到生活这个大课堂中来,努力拓展数学的宽度和厚度,实现“大数学”的教育观。
董老师的课堂,那些冰冷的符号和规则都能闪耀学生智慧的光芒,学生能在课堂上享受到思维的大餐,感受到数学的丰富和神奇,体验到“征服”数学、应用数学的乐趣;她的课堂能给学生一双数学的眼睛,一对善于倾听的耳朵,一个思考的头脑;每个孩子都能在她的课堂中记住一些属于自己的东西。事实也证明,学生们学习数学的激情一旦被激发出来,他们就会用各种各样的方式来表达学数学、用数学的热情。他们乐此不疲地记录贴近生活的小实践、小调查,写下了大量的数学日记和学习数学的心灵体验。那些数字、符号、概念都带着鲜活的体温,赋予了生命的色彩。
透过文字,让我这个阅读者也感受到了学生学习数学的喜怒哀乐,触摸到学生思维跳动的脉博,也能品尝到数学在促进学生发展中显示出的强大力量。这样的数学,师生就像一个生命的共同体,是一对共同成长的伙伴,在老师的引领下行走其中,向课堂的更深处漫溯。
数学与猜想读后感篇十二
数学比较抽象、枯燥、严谨,而音乐则比较丰富、有趣、充满着情感及幻想。但两者却有着千丝万缕的联系,音乐虽然旋律多变,但都由七个音符组成,数字1~7在音乐中是神奇的数字;音乐中的节奏、强弱等都存在着数学中量的差异。因此,在组织数学活动中,将抽象的数学知识和生动的音乐紧密结合起来,充分发挥音乐的魅力,为数学活动注入新的生命力。
西尔威斯特说过:“难道不可以把音乐描述为感觉的数学,把数学描述为理智的音乐吗?”无锡市惠山区实验幼儿园针对音乐与数学领域的互补作了研究,从三个视角反映多个镜头:
镜头一:小班学习方位词。创编小老鼠捉迷藏的动作情节,学习方位词。
镜头二:中班学习序数。改编歌曲《打电话》的部分歌词为方位词。
镜头一:大班学习数的组成。选用音乐游戏《开汽车》,1名幼儿当司机,听着音乐开汽车,当音乐停,司机去邀请一位小朋友,教师告诉幼儿:1天上1是2,2里面有2个1,从而明白,1和1合起来是2。
镜头二:中班比较数的多少。玩音乐游戏《抢椅子》当音乐停,会有一位或者几位幼儿没有抢到椅子,引导幼儿用一一对应的方法比较,感知几比几少,几比几多,少多少,多多少。
镜头一:音乐游戏《蝴蝶找花》,当音乐开始,幼儿分别扮演蝴蝶在花丛中飞舞,按要求寻找花朵,如花的数量、大小、颜色等来排列。
镜头二:学习5的组成。改编音乐游戏《钓鱼》。现在音乐声中钓鱼,当钓到5条鱼后,音乐停止,把5条鱼放在两个盆中,边分鱼边记录。
从以上一个实例,认为两个领域内容在整合的过程中要注意三个问题:
1.挖掘音乐材料本身蕴含的数学关系。
在众多歌曲中,有些有明显的数学关系,如“数高楼”、“我的朋友在哪里”、“十个小矮人”等。又如“逛公园”和“拔萝卜”游戏存在着按高矮大小差异排序的`内容。
2.在幼儿熟悉的音乐中渗透数学内容。“找朋友”游戏幼儿很熟悉。幼儿在愉快的氛围中边唱边跳,寻找与自己数量相等、颜色或形状相同的朋友,思维辨别能力明显加强。使得数学方法纳入认知结构中,内化经验,形成新知识。
3.音乐游戏中应具有让幼儿独立思考的成分。
阅读文章再反思,认为两个领域的整个是双向双线相互渗透的。通过音乐材料的直观性帮助幼儿学习抽象的数学,化难为易。在音乐活动中渗透数学概念,丰富音乐的内容,深化游戏的玩法,体现游戏的可玩性和延续性。数学是一门基础性的学科,存在于生活的每一个环节,也可以称实用科学。它可以渗透在许多的领域中。比如,数学与健康的组合。数学与科学的组合,数学与美术的结合等等。仔细回顾和搜集我们平时的教学能采撷不少精彩的案例,在这些案例中,数学的渗透有时以活动难点呈现、有时则为解决难点的一种策略,总之,数学概念的整合能进一步深化有效教学。
数学与猜想读后感篇十三
观察和理性都不是权威。理智的直觉和想象极端重要,但它们并不可靠:它们可能非常清晰地向我们显示事物,但他们也可能把我们引向错误。它们作为我们理论的主要源泉是必不可少的;但我们的理论大都是虚假的。观察、推理甚至直觉和想象的最重要功能,是帮助我们批判考察那些大胆的猜想,我们凭借这些猜想探索未知。
对一个问题的每一种解决都引出新的未解决的问题;原初的问题越是深刻,它的解决越是大胆,就越是这样。我们学到的关于这世界的知识越多,我们的学识越深刻,我们对我们所不知道的东西的认识以及对我们的无知的认识就将越是自觉、具体,越有发言权。因为,这实际上是我们无知的主要源泉——事实上我们的知识只能是有限的,而我们的无知必定是无限的。
科学不同于伪科学或者形而上学的地方,是它的经验方法;这主要就是归纳方法,是从观察或实验出发的。1919年有一次我向他报告一个病例,我觉得这个病例似乎并不特别符合于阿德勤学说,可是他却感到不难用他的自卑感理论来加以分析,虽然他甚至没有见过这个孩子。我略感吃惊,问他怎么会这样有把握。他回答说:“因为我有上千次的经验”;因此我不得不说:“我料想,由于这个新病例,你现在有了一千零一次经验。”我在想,他以前的观察可能并不比这个新的观察更可靠多少;可是每个观察都用“以前的经验”加以解释,同时本身又成了补充的确证。
我不把我们指望规则性的倾向解释为重复的结果,而建议把我们认为的重复解释为我们指望和寻找规则性倾向的结果。我们不是被动地等待重复把规则性印在或强加在我们头脑里,而是主动地企图把规则性强加给世界。我们企图在世界中发现相似性,并用我们发明的规律来解释世界。我们不等待前提就跳到结论。这个结论如果被观察证明是错的,以后就得放弃。这就是试探错误的方法——猜想和这就是试探错误的方法——猜想和反驳的学说。这使我们可以懂得为什么我们把解释强加于世界的企图在逻辑上先于相似性的观察。由于这种程序有逻辑理由的支持,我觉得这种程序也可以应用到科学领域里来;科学理论并不是观察的汇总,而是我们的发明——大胆提出来准备加以试探的猜想,如果和观察不合就清除掉;而观察很少是随便的观察,通常按一定目的进行,旨在尽可能获得明确的反驳根据以检验理论。
人都帶有一種期望去觀察或思考現實,這必然導致扭曲現實:诚然,我们选择的任何特殊假设在它前面都将有过一些观察——诸如它打算解释的一些观察。但是这些观察反转来又预先假定已经采纳了一种参考框架,一种期望的框架,一种理论的框架。如果这些观察是值得注意的,如果这些观察需要加以解释,因而导致人们发明一种假设,那是因为这些观察不能在旧的理论框架、旧的期望水平上加以说明。这里并没有无穷倒退的危险。如果追溯到越来越原始的理论和神话,我们最后将找到无意识的、天生的期望。所以我们生来就有期望,生来就有“知识”,这些知识虽则不是先天地正确的,在心理学上或遗传学上却是先天的,即是说,先于一切的观察经验。这些期望里面最重要的一个,就是期望找到规则性。它和指望规则性的天生倾向,或者和寻找规则性的需要连在一起,这一点我们可以从婴儿满足了这种需要的快乐上看出来。
ai:为了把对休谟的归纳心理学进行的这个逻辑批判总结一下,我们可以考虑建造一台归纳机的设想。当这样一台机器放在一个简化的“世界”(例如颜色计数器的某种程序)之中时,它能通过重复而“学会”甚至“提出”在它的“世界”中有效的相继定律。如果能够建造这样一台机器(我不怀疑这种可能性),那末可以证明我的理论必定是错误的;如果一台机器能够根据重复进行归纳,就没有逻辑理由阻止我们自己这样做。
right:信念”一词用来指我们对科学理论的批判接受——尝试性地接受,同时渴望,如果我们成功地设计出该理论经受不住的一种检验,就修正这一理论。假定我们自觉规定我们的任务是:生活在这个未知世界之中,使我们自己尽可能适应它;利用我们可能从中找到的机会;如有可能(不必假定真是这样),则尽可能借助于规律和解释性理论来解释世界。如果我们以此为我们的任务,那末,就没有比试探和除错——猜想和反驳的方法更加理性的程序。这种方法就是大胆地提出理论,竭尽我们所能表明它们的错误;如果我们的批判努力失败了,那就试探地加以接受。当然,试错法并不简单等同于科学的、批判的方法——猜想和反驳的方法。不仅爱因斯坦用试错法,变形虫阿米巴也用试错法,然而它是以比较教条的方式用。二者的差别与其说在于试探,不如说在于对错误采取批判的建设性的态度;科学家有意识地、审慎地试图发现错误,以搜寻论据驳倒其理论,包括诉诸他以自己的理论和才智设计的最严格的实验检验。
照维特根斯坦的说法,它的真正性质不是一种理论,而是一种活动。一切真正哲学的任务是揭露哲学的胡说八道,并教导人们如何谈论有意义的东西。
数学与猜想读后感篇十四
这本书给我带来了极大的震撼,虽然由于没有哲学知识的基础,只看懂了五成。但是我不妨碍从中找到一些共鸣。全书一共600页,看到两百多页,便忍不住先写点东西下来。
读中学那会儿,我一直是老师比较头疼的学生。这不是说我是那种爱捣乱的学生。而是我的怀疑特别多,尤其是物理和化学。我想老师不愿意回答,或许的确是因为他们回答不出。因为当寻根究底为什么到了最后,就上升到了哲学层面。这不是老师专业范围内能解决的。我是一个爱执着于怀疑的人,因为不仅我自己痛苦还把这种痛苦顺带捎给了老师。
为什么是这样的啊?原子那么小,我又看不到。因为道理很简单,其实这些都是只是猜想而已。而老师不能说这些都是猜想,一个是没这个水平,另一个是他们的意识中这些都是正确的不容置疑的真理。
还有就是我们能知道什么错的,却很难说明什么是对的?这个在我遇上选择题的时候,真是深有同感。那一排的选择题来看看,尼玛全是错的么。尤其是语文和政治的选择题。有些语言表述不清,这个时候就特别痛苦。你能怪我做错题目么?明明是你没有表述清楚。然后解决这个问题的办法就是去买本标准答案来背。
我一直觉得我从小到大所经历的教育,其实磨灭了我们的想象力。其实很多人都知道这一点,但是说来说去也说不出原因。我觉得原因就是,一直以来学校爱告诉你什么是对的,教科书列出的都是真理。广大教师,甚至不惜用人身攻击来教育你什么是好的。爱之深责之切,在高尚的目的之下,一切的伤害似乎都只是必要的。但是,如果说有人能告诉你什么是真理,那你还用思考做什么。只要乖乖地接受这一切便是了。然后你每天所需要做的便是,不断地重复记忆这些真理。从这个角度来说,义务教育和邪教没什么区别。
数学与猜想读后感篇十五
阅读了《特别要命的数学》这本书,我发现,数学真奇妙!
这本书以有趣的漫画、详细的文字和精彩的小故事把我们带入了一个有趣的数学世界里。比如,《有趣的方格》中,几何老师芬迪施教授告诉我们,骨牌有很多类型,也能拼成很多块。再比如,《水池问题》里,买护栏、买地砖和买优质池水。它告诉我们这三个问题要有不同的条件才能买到合适这个水池的材料。
我最喜欢那篇关于三维世界的解释文。里面说,二维世界里可以看到一维世界里的人,三维世界里的人可以看到二维世界里的人。同样,生活中竟然有能看到我们(三维世界的人)的四维世界的人!我感到不可思议!
数学是奇妙的,它的一些秘密我们人类也许还不知道。虽然如此,但这本书已经带我领略了部分数学的奥秘。我很开心,因为它让我感到数学奇幻的魅力。
【本文地址:http://www.xuefen.com.cn/zuowen/15148121.html】