圆柱体的表面积教学设计大全(18篇)

格式:DOC 上传日期:2023-11-25 22:37:04
圆柱体的表面积教学设计大全(18篇)
时间:2023-11-25 22:37:04     小编:雁落霞

增加阅读量,培养阅读兴趣和提升阅读素养。完美的总结应该具备清晰明了的段落和句子,不论读者是谁都能轻松理解。接下来是一些总结写作的案例,供您参考和学习,希望能帮助到您。

圆柱体的表面积教学设计篇一

本节内容是学生学习了长方体与正方体的表面积后,在充分理解了表面积的含义的基础上展开的。圆柱的表面积是它的侧面积与两个底面面积的和,其中侧面积是新知识,底面积(即圆的面积)是学生学过的。教材选用了来自现实生活中的问题,通过想象和操作活动,使学生知道圆柱的侧面沿着高展开后可以是一个长方形(或正方形),从而探索出圆柱侧面积的计算方法。在研究展开后长方形的长、宽与圆柱的关系时,通过让学生在侧面展开成长方形和长方形卷成侧面的活动中,发现长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高。从长方形的面积计算公式,推导出圆柱侧面积的计算方法。在探索圆柱侧面积算法的过程中,学生把曲面转化成平面,开展了一系列的推理活动,空间观念和思维能力能够得到锻炼。

教学目标:

1、使学生理解和掌握圆柱体侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积。

2、培养学生观察、操作、概括的能力和利用所学知识合理灵活地分析、解决实际问题的能力。

3、培养学生的合作意识和主动探求知识的学习品质和实践能力。教学重点:圆柱表面积的计算。

教学难点:圆柱体侧面积计算方法的推导。

教法运用:本节课我采用操作和演示、讲练相结合的教学方法。通过直观演示和实际操作,引导学生观察、思考和探索圆柱侧面积的计算方法;同时通过多媒体的辅助教学,发挥互联网搜索引擎功能,使新授和练习有机地融为一体,做到讲练结合,较好地突出教学重点、突破教学难点。

学法指导:采取引导-放手-引导的方法,鼓励学生积极、主动地探求新知,运用化曲为平的方法推理发现侧面积的计算方法。

教具准备:圆柱体教具、多媒体课件。学具准备:圆柱形纸筒、茶叶桶。教学过程:

一、检查复习,引入新课。

师:圆柱是由平面和曲面围成的立体图形。圆柱上下两个圆形的平面叫圆柱的什么?它们的关系怎样?两底面之间的距离叫什么?这个曲面叫什么?(学生回答后课件动画闪烁各部分名称)。

-1备材料时往往会比计算结果多一些,因为在具体操作时,尤其是在剪圆的时候会产生浪费现象,这是不可避免的。

三、解决问题,强化认知。

(一)(多媒体出示圆柱形的油漆桶,无盖水桶、烟筒实物图)引导学生观察思考:计算制作这些物体所用的铁皮的面积,各是求哪些面的总面积?通过回答让学生感知圆柱表面积在实际生活中应用的意义。

(二)根据要求练习。

1、一个圆柱形油桶,底面直径是8分米,高是12分米,它的占地面积有多大?(只列式不计算)。

2、一台压路机的滚筒宽1.2米,直径为8分米。如果它滚动1周,压路的面积是多少平方米?(只列式不计算)(课件呈现压路机压路情景)。

3、做一个无盖的圆柱形铁皮水桶,高是5分米。底面直径4分米,至少需要多大面积的铁皮?(结果保留整数)。

根据学生的计算结果,教学用“进一法”取近似值。

小结:计算圆柱的表面积要具体情况具体分析。要学会运用所学的知识合理灵活地解决生活中的实际问题。

(三)操作练习。

测量:借助工具测量出需要的数据(取整厘米数),并做好记录。计算:根据量得的数据,列出相应的算式并算出结果。

四、课堂回顾,总结提升。

1、本节课你有何收获?

-3思考,最终都探讨出了侧面积的计算方法。在组织学生合作学习中,较好地培养了学生的合作能力。新课程提出:“使学生初步学会运用所学的数学知识和方法解决一些简单的实际问题。”所以在课的最后,我设计了一个操作练习:小组合作测量计算制作所带的圆柱形实物的用料面积。根据练习要求,组织学生在讨论的基础上动手测量,最后算出结果。学生在动手实践中做到了有目的、有计划、有步骤。并且根据实物的特点想出了很多测量所需数据的方法,既合理又灵活。在合作学习中不仅达到了学以致用的目的,而且培养了实践能力,体现了新课程标准的要求。

四、合理利用现代化教学手段辅助教学。

围绕课的重难点及学生能力的培养,在教学中,我适时利用了多媒体课件辅助教学,取得了较好的效果。在教学圆柱表面积含义时动画闪烁圆柱各部分的名称,测量并计算圆柱底面积时动画闪烁圆内直径的测量方法,求圆柱茶叶罐侧面积时呈现茶叶罐侧面包装纸,利用圆柱表面积解决生活中的实际问题时,课件呈现圆柱应用的实物图等等,形象直观,加深了学生对表面积实际计算意义的直观认识和理解,也使学生感受到了数学与现实生活的密切联系。

圆柱体的表面积教学设计篇二

2、掌握表面积的计算方法,能正确运用公式计算圆柱的表面积.。

3、培养学生观察、操作、概括的能力和利用所学知识解决实际问题的能力.。

重点:认识圆柱的表面积,理解圆柱表面积的含义.。

难点:掌握表面积的计算方法,能正确运用公式计算圆柱的表面积.教具准备:

2、学生每人准备圆柱形模型两个;剪刀;教学过程:

一、复习引入。

1、圆柱有哪些特征?它各部分名称叫什么?

2、学生回答后,让学生拿出自己做的模型,指出哪一部分是侧面.。

3、引入新课。

二、新课教学。

(一)出示学习目标:

2、掌握圆柱的侧面积和表面积的计算方法,并能正确计算。

3、认识取近似值的进一法。

4、学习推导方法。

1、出示自学提示:

(1)、认真观察自己手中的长方形,思考这个长方形与圆柱体的哪一部分有关系?

小组合作注意:组长负责发言次序,同学之间尊重他人,懂得谦让,互相帮助。

2、学生汇报交流。

出示教具,说明把表面全部展开,看一看得到什么图形,和大家说的对不对。揭下圆柱表面的纸,贴在黑板上,再与圆柱对比说明各个部分,明确圆柱表面包括一个侧面和两个相等的圆。

3、推导公式。

侧面积=底面周长×高。

4、口答。

把直圆柱体侧面展开得到一个()形,这个()形的长等于圆柱体的(),宽等于圆柱体的(),因为长方形的面积等于(),所以圆柱体的侧面积等于()。

小组合作注意:组长负责发言次序,同学之间尊重他人,懂得谦让,互相帮助。

2、学生汇报交流。

3、推导公式。

(三)运用公式计算。

1、求下面各圆柱体的侧面积。(只列式不计算)(1)、底面周长1.6米,高是0.7米。(2)、底面半径是3.2分米,高是5分米。(3)、底面直径是10厘米,高是25厘米。

3、出示例3学生独立完成.指名板演,然后小组内交流。

三、课堂小结。

大家回顾一下今天我们学了什么内容?计算时要注意什么?《圆柱的表面积》教学反思。

屏南实验小学韦斌。

整个教学过程,学生学习兴趣浓厚,学得主动积极。我认为教学成功的关键在于关注了学生的学习过程,创设了一个有利于学生生动活泼,主动发展的教育氛围。片通过学生动手动脑,来突破难点;引导学生在应用中加深认识,形成能力。

动手实践,主动探索和合作学习是小学生学习数学的重要方式。而在儿童的精神世界中,这种需要特别强烈。因此,数学教学要努力创建有利于学生主动探索的数学学习环境,关注学生的自主探索和合作学习,使学生在获取作为一个现代公民所必需的基本数学知识和技能的同时,在情感、态度和价值观等方面得到充分发展。

本节课,教师通过让学生动手制作圆柱体模型,让学生“自由结合”进行探索,这便是给学生提供主动发展的时间和空间。人各有其个性,有的爱独立思考,有的爱互相讨论,有的爱听听别人怎么说。于是,有的独立思考,有的同桌讨论,有的由几个人组合,一个生动活泼的学习形式油然而生,使每个学生达到了“既竭我才,欲罢不能”的地步,在主动探索中意识和感觉到自己的智慧和力量,再互相交流启发,自然就获得了成功。

教师为学生提供了基本题以及多向思维的材料,引导学生善于联想所学的知识,从不同的角度、不同层次、不同方法分析问题,使学生开阔思路,思维灵活,从而敏捷地解决问题。使不同的学生都能获得学到知识的满足感,体会到学习数学的快乐,对于未获得成功者,教师决不能简单地批评、指责,教师应尽量发现其错误中的正确成份,给以肯定,并启发学生自己发现,纠正错误。即使彻底错了,教师也要循循善诱,启发引导,给予机会让他争取成功,从而增强学生学好数学的自信心,使他们获得人的尊严,享受成功的快乐,教师也因此而分享快乐。

总之,学生在以上学习过程中,探索意识和发现能力得以展示,知识获取和能力提高相辅相成,大大有利于整体素质的提高。

学习目标:

2、掌握圆柱的侧面积和表面积的计算方法,并能正确计算。

3、认识取近似值的进一法。

4、学习推导方法。

自学提示:

1、认真观察自己手中的长方形,思考这个长方形与圆柱体的哪一部分有关系?

2、推导出圆柱体侧面积的计算公式。小组合作注意:组长负责发言次序,同学之间尊重他人,懂得谦让,互相帮助。

把直圆柱体侧面展开得到一个()形,这个()形的长等于圆柱体的(),宽等于圆柱体的(),因为长方形的面积等于(),所以圆柱体的侧面积等于()。

自学提示:

2、讨论:求圆柱体的表面积需要知道哪些数据?小组合作注意:组长负责发言次序,同学之间尊重他人,懂得谦让,互相帮助。

1、底面周长1.6米,高是0.7米。

2、底面半径是3.2分米,高是5分米。

3、底面直径是10厘米,高是25厘米。

目标检测:

(得数保留整百平方厘米)。

拓展题:

一个圆柱体的侧面展开是一个边长为25.12厘米的正方形,求这个圆柱体的表面积。

给下面的物体分类。

(1)。

(2)。

(3)。

(4)。

(7)。

(5)。

(8)。

(6)。

(9)。

圆柱体的表面积教学设计篇三

本节课的教学采用操作和演示,讲解和尝试练习相结合的方法,使新课教学与练习巩固有机地融为一体,使学生做到动手与动脑相结合,使课堂做到讲与练相结合。为了让学生能更好地掌握本节教学内容,我认真地分析了教材的教学目标要求与学生的实际数学水平之后,并结合学生现有的数学基础,在教学时,着重注意做好以下几个方面:

1、把握重点,突破难点,合理利用教材。

对于圆柱体侧面面积计算公式的推导,严格遵循主体性原则,让学生动手操作、观察、发现,促进知识的迁移,使学生轻松地理解掌握圆柱侧面面积的计算方法,较好地突破难点。

2、直观演示和实际操作相结合。

3、让学生自主学习,探究圆柱的侧面积和表面积的计算方法。

让学生自主学习,对培养学生的学习兴趣和学习能力有较大的帮助,使学生在学习过程中获得数学知识,并感受学习的快乐与成功感。

4、讲解与练习相结合。

本节课,改变了传统的先讲后练的教学模式,做到讲、练结合,贯穿教学的始终,使练习随着讲解由易到难,层层深入。在练习表面积的实际应用时,又很自然地进行了“进一法”的教学,使讲、练,真正做到了有机结合,学生学习的知识是有效的、实用的.,同时也激发了学生学习数学和运用解决实际问题的兴趣,培养了学生的应用意识。

为了让学生能正确地计算圆柱体的表面积,我要求学生先用分部算式计算,并写清s侧=和s表=,以便学生分清自己每一个算式计算的是哪部分的面积。

在这方面的练习题中,学生往往对题意理解不够,不知道是计算哪些部分的面积,通风管的材料,有不少学生加上两个底的面积。为了让学生发展空间想象能力,我提示学生在解决问题前,一定要弄清题意,并尽量回忆一上实物的结构,自己没有见过的,应通过日常应用知识来想一想、画一画,看看它应是个什么样了的,再作解答。学生中出现的共性问题,教师再集中讲一讲。这样一来,就大大地提高了学生灵活运用知识解决问题的能力。

圆柱体的表面积教学设计篇四

一、教学目标:。

1、知识与技能目标:理解和掌握圆柱体侧面积和表面积的计算方法,能正确计算圆柱的侧面积和表面积。

2、过程与方法目标:操作活动中,使学生经历认识圆柱的侧面积和表面积的过程,掌握它们的特征。

3、情感态度目标:通过观察、想象、操作等活动,让学生体验到数学知识的广泛性、挑战性,体会数学与生活的联系。

二、教学重难点。

三、新授课。

(一)、温故引新巧妙入境。

2、哦,仅仅通过一节课的学习,大家就掌握了这么多关于圆柱的知识,真了不起!

今天,我们学校前面的加工厂接了一桩大生意,让我们一起来看看!(电脑出示)。

(二)、情境探究引出主题(1)、出示产品订货单产品类型:薯片盒。

(三)、动手操作结合课件理解重难点。

以前我们学过长方体和正方体的表面积,想一想,圆柱的表面积应该指什么?(一生边指边说)。

那你能用一个等式来表示圆柱的表面积吗?圆柱的侧面积加上两个底面的面积就是圆柱的表面积。现在一边指着薯片盒一边把刚才的发现说两遍!(生说师板书)指着式子问:我们已经会求什么了?难点是什么?所以这节课,我们就重点研究圆柱的侧面积。

b、转化后的图形与圆柱的哪部分有关系?有什么关系?你能推导出圆柱侧面积的计算公式吗?)。

先自己思考,然后再小组内讨论。

汇报各组的发现。预设:学生可能在探究的过程中转换成不同的图形,重点感受圆柱体侧面沿高剪开后是一个长方形。

真的像同学们说的这样吗?请看大屏幕!

看到这里,你能根据长方形的面积公式推导出圆柱侧面的面积公式吗?你是怎样推导的?小组内说一说,一会儿看谁能到黑板上把自己的推导过程清晰地写出来?(有的学生可能把圆柱的侧面转化成其他图形,让学生说说自己的想法。然后电脑动画演示这些图形都能转化成长方形)。

(四)、巩固应用拓展提高。

1、基本练习。

2、变式练习。

a现在,你能帮助加工店的老板解决问题了么?思考:

要求下列圆柱形物体用料的面积,应计算哪些面的总面积?油桶、笔筒、下水管、通风管。

通过这道题,你想提醒提醒大家什么?b想想,在练习本上做下面的题。

(1)、一个圆柱形铁桶(无盖),高5分米,底面半径是2分米,做一个这样的铁桶,至少需要多少铁皮?(得数保留一位小数)。

课堂小结:通过本节课你有哪些收获?布置作业:

圆柱体的表面积教学设计篇五

圆柱体的认识这一知识学生掌握得好,都知道由三个面组成,上下两个完全一样的两个圆和一个曲面。在学习新的知识前先回忆一下以前我们是怎样学习长方形、正方形的表面积的,学生思考后举手回答,然后教师进行小结,这就是所谓的温故而知新。

圆柱体表面积这一教学内容是教学中的一大难点,表面上看学生易懂,可作业时问题挺多,经反思、总结,悟出一个原因,忽略了操作能力的培养。师生互动、反复操作,把感性知识上升为理性知识,这才是解决问题的关键所在。

一、抓住特征形成感知建立概念。

通过课前的温习,让学生在头脑中建立表面积的.概念,教学新的内容时,重点是通过制作圆柱体模型,观察实物图形的演变,让学生自己获取圆柱体表面积是由一个曲面和两个圆组成的,通过学生动手操作真正建立起了表面积的概念。

二、师生互动寻找途径突破难点。

寻找圆柱体表面积的计算方法是这一教学的难点,侧面是一个曲面(此时教师再一次出示圆柱体模型教具,变指出侧面部分,让学生摸一摸,感知曲面),由例题进入具体情境,展示圆柱的侧面展开图,沿着高将侧面展开后学生观察是什么图形?这就叫“化曲为直”。抓住联系,曲面展开是一个长方形,此时让学生边演练边观察找出它们之间的联系,于是得出:长方形的长=圆柱的底面周长,宽=圆柱的高,通过操作学生切实探索出了两者之间的联系,攻克了难点。

三、弄清实质理清思路探索新知。

学生更进一步弄清了表面积这一概念,圆柱的表面积=侧面+2个底面,怎样使学生能正确地解决问题,必须先理清思路,根据已知条件灵活求解。把学习新知的内容交给学生,通过学生自主的探索大家总结出:圆柱体的表面积就是圆面积加一个侧面积,作答时根据给出的条件去解决问题就可以了。

教学时要帮助学生抓住重点,突破难点是解决问题的根本所在,教学时要着力培养学生的思维能力、想象力、动手操作能力,只有这样,教学才会收到良好的效果。

圆柱体的表面积教学设计篇六

1.让学生经历操作、观察、比较和推理,理解圆柱侧面积和表面积的含义,探究并掌握圆柱侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积相关的一些简单实际问题。

2.让学生在学习活动中进一步积累空间与图形的学习经验,培养创新意识及合作精神,以及抽象、概括能力,进一步发展学生的空间观念。

3.让学生进一步体会图形与实际生活的联系,感受立体图形学习的价值,提高数学学习的兴趣和学好数学的信心。

理解圆柱侧面积、表面积的意义,正确计算圆柱侧面积和表面积。

圆柱侧面积计算公式的推导过程。

茶叶盒,剪刀,计算器。

一、创设情境,导入新课。

师:在前面的学习中,我们认识了圆柱,并且知道生活中有很多物体的形状是圆柱。大家看,这些圆柱形状的物体。(课件出示)这些圆柱的制作都需要一定的材料。(课件出示一个茶叶盒)请同学们想一想,要求“制作一个茶叶盒需要多少材料”,实际上求的是圆柱的什么?(让学生边演示边说)。

二、动手操作,探究新知。

师:要求“制作一个茶叶盒需要多少材料”,实际上是求圆柱的侧面面积和2个底面面积。(边指边说)我们把圆柱侧面的面积叫做圆柱的侧面积,把圆柱底面的面积叫做圆柱的底面积,圆柱的侧面积加上两个底面的面积叫做圆柱的表面积。(让学生互相说一说“什么是圆柱的表面积”。)。

2.创疑激趣。

3.小组合作探究。

师:请同学们想一想,我们能不能把圆柱的侧面转化成所学过的图形求出它的.面积呢?(小组合作探究,出示要求,结合圆柱的特征,用剪一剪、比一比等方法进行研究。)。

4.小组汇报。

5.教师小结,课件演示。

师:刚才同学们把圆柱的侧面沿高剪开,展开后是一个长方形,利用长方形面积公式推导出了圆柱的侧面积的计算方法,下面我们便结合电脑演示,进一步加深理解。

师:我们已经会求圆柱的侧面积,你现在会求圆柱的表面积了吗?(让学生回答,并口头列式,教师板书求表面积的算式,并板书课题“圆柱的表面积”。)。

三、运用知识,解决问题。

师:下面我们便利用学过的知识解决一些问题。

1.只列式不计算。订正时,让学生说想法。

2.完整解答下面各题。

让学生独立审题。问:要求“制作笔筒需要多少材料”,实际是求圆柱的什么?(让学生列综合算式,集体订正。)。

四、知识拓展。

将一个底面直径是8分米,高是10分米的圆柱沿底面直径垂直切开,它的表面积增加()平方分米。

师:增加了几个面?是怎样的两个面?

(课件演示)。

五、全课总结。

师:通过本节课的学习,你有什么收获?

圆柱体的表面积教学设计篇七

教学要求:

1、使学生理解和掌握圆柱体侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积。

2、培养学生观察、操作、概括的能力和利用所学知识合理灵活地分析、解决实际问题的能力。

3、培养学生的合作意识和主动探求知识的学习品质和实践能力。

教学难点:圆柱体侧面积计算方法的推导。

教法运用:本节课采用操作和演示、讲练相结合的教学方法。通过直观演示和实际操作,引导学生观察、思考和探求圆柱侧面积的计算方法;同时通过多媒体的辅助教学,使新授与练习有机地融为一体,做到讲练结合,较好地突出教学重点、突破教学难点。

学法指导:采取引导放手引导的方法,鼓励学生积极、主动地探求新知,运用化曲为平的方法推理发现侧面积的计算方法。

教具:圆柱体教具、多媒体课件。

学具:圆柱形纸筒、茶叶桶。

教学过程:

一、检查复习,引入新课。

师:上节课,我们认识了一个新的几何形体――圆柱。知道它是由平面和曲面围成的立体图形。

引入:两个底面和侧面合在一起就是圆柱的表面。这节课,我们就一起来学习圆柱的表面积。

二、引导探究,学习新知。

设疑:长方体6个面的总面积,叫做它的表面积。哪些面的总面积是圆柱体的表面积呢?

板书:底面积×2+侧面积=表面积。

要求圆柱的表面积,首先应该计算它的底面积和侧面积。

(二)根据条件,计算圆柱的底面积。

圆柱的底面是圆形,同学们会求它的面积吗?

(多媒体逐一出示圆柱及条件,求它的底面积,并记录结果。)。

条件:(厘米)r=3d=4c=6.28。

底面积(平方厘米)28.2612.563.14。

(2)小组合作探究。(剪圆柱形纸筒)。

(3)汇报交流研究结果,多媒体课件展示。

(4)小结:同学们会动脑,会思考,巧妙地运用了把曲面转化为平面的方法,探讨发现了圆柱体侧面积正好等于它的底面周长与高的乘积。

多媒体回到前面三个圆柱,逐一给出三个圆柱的高,求它的侧面积。并把结果记录下来。

条件(厘米)h=5h=8h=10。

侧面积(平方厘米)94.2100.4862.8。

1、设疑:学会了计算圆柱的底面积和侧面积,怎样计算它的表面积?

2、学生根据数据进行计算?

3、汇报计算方法及结果,媒体出示结果进行验证。

表面积(平方厘米)150.72125.669.08。

三、练习巩固,灵活运用。

(二)根据要求练习。

1、用铁皮制作圆柱形的通风管10节,每节长8分米,底面周长是3.4分米。至少需要铁皮多少平方分米?(只列式不计算)。

2、砌一个圆柱形的水池,底面直径2米,深3米,在池的周围与底面抹上水泥,抹水泥的部分面积是多少平方米?(只列式不计算)。

3、用铁皮制一个圆柱形的油桶,底面半径3分米,高12分米。制这个油桶至少要用铁皮多少平方分米?(得数保留整十平方分米)根据学生的计算结果,教学用“进一法”取近似值。

小结:计算圆柱的表面积要具体情况具体分析。要学会运用所学的知识合理灵活地解决生活中的实际问题。

(三)操作练习。

根据练习要求,小组合作测量计算制作所带的圆柱形实物的用料面积。

练习要求:(多媒体出示)。

测量:借助工具测量出需要的数据(取整厘米数),并做好记录。

计算:根据量得的数据,列出相应的算式并算出结果。

教学反思:

一、合理灵活地组织和利用教材。

“圆柱的表面积”这部分教学内容包括:圆柱的侧面积、表面积的计算,表面积在实际计算中的应用以及用进一步取近似值。教材共安排了三道例题,分两课时进行教学。教学时,我打破了传统的教学程序,将这些内容重新组织,合理灵活地利用教材在一课时内完成了两课时的教学任务。将侧面积计算方法的推导作为教学的难点来突破;将表面积的计算作为重点来教学;将表面积的实际应用作为重点来练习;将用进一法取近似值作为一个知识点在练习中理解和掌握。四者有机结合、相互联系,多而不乱。教学设计和安排既源于教材,又不同于教材。三道例题没有做专门的教学,但其指导思想和目的要求分别在练习过程中得以体现。整个一节课,增加容量但又学得轻松,极大提高了调堂教学效率。

二、较好地体现了教师主导与学生主体作用的统一。

本节课在教学上采用了引导、放手、引导的方法,通过教师的“导”,鼓励学生积极、主动地探究新知。

1、直观演示和实际操作相结合。

新课开始,教师通过圆柱教具直观演示,引导学生复习圆柱体的特征,进而理解圆柱表面积的意义。在教学侧面积的计算时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?想一想,能否将这个曲面转化为我们学过的平面图形,从中思考和发现它的侧面积该怎样计算呢?在老师的启发下,学生以小组为单位,用圆柱形纸筒进行实际操作,最后探究出侧面积的计算方法。

2、讲练结合。

整个教学过程中,教师讲解和学生练习相结合,培养了学生们的合作意识和实践能力.

圆柱体的表面积教学设计篇八

青岛版教材五四分段五年级下册第三单元第二个信息窗圆柱的表面积。

1.让学生经历操作、观察、比较和推理,理解圆柱侧面积和表面积的含义,探究并掌握圆柱侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积相关的一些简单实际问题。

2.让学生在学习活动中进一步积累空间与图形的学习经验,培养创新意识及合作精神,以及抽象、概括能力,进一步发展学生的空间观念。

3.让学生进一步体会图形与实际生活的联系,感受立体图形学习的价值,提高数学学习的兴趣和学好数学的信心。

理解圆柱侧面积、表面积的意义,正确计算圆柱侧面积和表面积。

圆柱侧面积计算公式的推导过程。

茶叶盒,剪刀,计算器。

师:在前面的学习中,我们认识了圆柱,并且知道生活中有很多物体的形状是圆柱。大家看,这些圆柱形状的物体。(课件出示)这些圆柱的制作都需要一定的材料。(课件出示一个茶叶盒)请同学们想一想,要求“制作一个茶叶盒需要多少材料”,实际上求的是圆柱的什么?(让学生边演示边说)。

师:要求“制作一个茶叶盒需要多少材料”,实际上是求圆柱的侧面面积和2个底面面积。(边指边说)我们把圆柱侧面的面积叫做圆柱的侧面积,把圆柱底面的面积叫做圆柱的底面积,圆柱的侧面积加上两个底面的面积叫做圆柱的表面积。(让学生互相说一说“什么是圆柱的表面积”。)。

师:请同学们想一想,我们能不能把圆柱的侧面转化成所学过的图形求出它的面积呢?(小组合作探究,出示要求,结合圆柱的特征,用剪一剪、比一比等方法进行研究。)。

师:刚才同学们把圆柱的侧面沿高剪开,展开后是一个长方形,利用长方形面积公式推导出了圆柱的侧面积的计算方法,下面我们便结合电脑演示,进一步加深理解。

师:我们已经会求圆柱的侧面积,你现在会求圆柱的表面积了吗?(让学生回答,并口头列式,教师板书求表面积的算式,并板书课题“圆柱的表面积”。)。

师:下面我们便利用学过的知识解决一些问题。

1.只列式不计算。订正时,让学生说想法。

2.完整解答下面各题。

将一个底面直径是8分米,高是10分米的圆柱沿底面直径垂直切开,它的表面积增加()平方分米。

师:增加了几个面?是怎样的两个面?

(课件演示)。

师:通过本节课的学习,你有什么收获?

圆柱体的表面积教学设计篇九

1、知识目标:理解、掌握圆柱的体积公式的推导过程,能利用圆柱的体积计算公式解决问题。

2、能力目标:经历圆柱的体积公式的推导过程,学会运用转化的思想解决一些具体问题。

3、情感目标:感受圆柱的体积的计算与生活密不可分,激发学生学习数学的热情。

1、重点:理解、掌握圆柱的体积公式的推导过程。

2、难点:圆柱体积公式的推导过程。

多媒体课件。

一创设情境、生成问题。

师:前面我们学过长方体和正方体的体积计算方法,你还记得是怎么计算的吗?(课件出示一个长方体和一个正方体)。

师:这位同学回答的非常好,今天这节课我们就一起来研究圆柱体的体积计算方法。

板书:圆柱的体积(课件)。

二探索交流、解决问题。

1、猜想。

(生自由猜想,并讨论交流)师适当板书记录。

(课件出示两组图片,第一组两个圆柱等底不等高,第二组两个圆柱等高不等底)。

师:第一组图片中的两个圆柱有什么特征?

生:底面一样,但是高度却不一样,体积也不一样。

师:第二组图片中的两个圆柱有什么特征?

生:这组图片中的两个圆柱高度一样,但是底面却不一样,体积也不一样。

师:那么通过刚才两个同学的回答,你能得出什么结论呢?

小结:圆柱的体积的大小取决于圆柱底面的大小和高度的大小。

师:那么你能大胆的猜想一下圆柱的体积是如何计算的吗?

生猜想......

师:我们的猜想对不对,还是要用实验去证明。

(课件出示作业纸)对应和公式推导。

选取小组的作业纸进行展示,有其他同学进行评定。

课件演示结果。

小结:通过转化的数学思想我们将圆柱的体积转化成已经学过的长方体的体积,圆柱的体积计算公式是底面积乘高。

另外,圆柱的底面积、直径、半径和周长四个数据中的任意一个和圆柱的高两个数据就可以求出圆柱的体积。

三巩固应用、内化提高。

2、

3、下面这个杯子能不能装下这袋奶?(杯子的数据是从里面测量得到的)。

8cm。

8cm。

498ml。

498ml。

10cm。

10cm。

四回顾整理、反思提升。

今天这节课你有什么新的收获说出来和大家一起分享吧!

圆柱体的表面积教学设计篇十

长方体的表面积应该怎么要求?你是怎么样做的?各位,我们看看下面的圆柱体的表面积练习题吧!

一、填空。

1、正方体是由()个完全相同的()围成的立体图形,正方体有()条棱,它们的长度都(),正方体有()个顶点。

2、因为正方体是长、宽、高都()的长方体,所以正方体是()的长方体。

3、一个正方体的棱长为a,棱长之和是(),当a=6厘米时,这个正方体的棱长总和是()厘米。

4、相交于一个顶点的()条棱,分别叫做长方体的()、()、()。

5、一根长96厘米的铁丝围成一个正方体,这个正方体的棱长是()厘米。

6、一个长方体的棱长总和是80厘米,长10厘米,宽是7厘米。高是()厘米。

7、至少需要()厘米长的铁丝,才能做一个底面周长是18厘米,高3厘米的长方体框架。

8、一个长方体的长、宽、高都扩大2倍,它的表面积就()。

9、一个长方体最多可以有()个面是正方形,最多可以有()条棱长度相等。

二、应用题。

1、一个面的面积是36平方米的正方体,它所有的棱长的和是多少厘米?

4、把棱长12厘米的正方体切割成棱长是3厘米的小正方体,可以切割成多少块?

5、一种长方体硬纸盒,长10厘米,宽6厘米,高5厘米,有2平方米的硬纸板210张,可以做这样的硬纸盒多少个?(不计接口)。

14、楼房外壁用于流水的水管是长方体。如果每节长15分米,横截面是一个长方形,长1分米,宽0.6分米。做一节水管,至少要用铁皮多少平方分米。

解方程。

4x+2.1=8.548.34-3.2x=4.5。

下面的解方程对吗?把不对的改正过来。

4x-4=4×65x+0.5×3=8.5。

解:3x=24解:5x+1.5=8.5。

x=85x=8.5+1.5。

5x=10。

x=2。

三、列方程解应用题。

1、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒?

3食堂运来150千克大米,比运来的面粉的3倍少30千克。食堂运来面粉多少千克?

4、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵。平均每行梨树有多少棵?

5、一块三角形地的面积是840平方米,底是140米,高是多少米?

2、3年前母亲岁数是女儿的6倍,今年母亲33岁,女儿今年几岁?

将本文的word文档下载到电脑,方便收藏和打印。

圆柱体的表面积教学设计篇十一

教学内容:

小学数学第十二册教材p33~p34。

教学目标:

1、使学生理解圆柱表面积的含义,掌握表面积的计算方法。

2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。

教学媒体:

圆柱形物体、学具、多媒体课件。

教学重点:

教学过程:

一、猜测面积大小,激发情趣导入。

1、用你们手上的a4纸做一个尽量大的圆柱?(出现两种情况:一种是以长方形的长为底面周长的圆柱,另一种以长方形的宽为底面周长的圆柱。)。

2、这两个圆柱谁的侧面积谁大?为什么?

3、复习:圆柱的侧面积=底面周长×高。

刚才的环节中,用现成的练习纸,以动手操作的形式做一个圆柱体,充分调动了学生的学习兴趣;在“做、比、评”中唤起对圆柱侧面积知识的回忆。

二、组织动手实践,探究圆柱表面积。

1、我们把做好的圆柱加上两个底面后,这时候圆柱的表面积由哪些部分组成呢?(侧面积和两个底面面积)。

2、你们觉得这两个圆柱谁的表面积大?为什么?

生:因为两个圆柱的侧面积一样大,只要看他们的底面积谁大那么这个圆柱的表面积就大。

3、刚才我们是从直观的比较知道了谁的表面积大,如果要知道大多少,那怎么办呢?

生:计算的方法。

圆柱的表面积=侧面积+两个底面的面积(板书)。

4、那现在你们就算算这两个圆柱的表面积是多少?

生:(不知所措)没有数字怎么算啊?

师:哦!那你们想知道哪些数字呢?知道了这些数字后你打算怎么计算?

生1:我想知道圆柱体的底面半径和高。

生2:我想知道圆柱体的底面直径和高。

生3:我想知道圆柱体的底面周长和高。

师:老师现在告诉你的数字是这张纸的长是31.4厘米。宽是18.84厘米。那你们会算吗?怎样算,如果独立思考有困难的话可以小组讨论来共同完成。

5、汇报展示:

情况一:半径:31.4÷3.14÷2=5(cm)。

底面积:3.14×5×5=78.5(平方厘米)。

侧面积:31.4×18.84=591.576(平方厘米)。

表面积:591.576+78.5×2=748.576(平方厘米)。

情况二:半径:18.84÷3.14÷2=3(cm)。

底面积:3.14×3×3=28.26(平方厘米)。

侧面积:31.4×18.84=591.576(平方厘米)。

表面积:591.576+28.26×2=648.096(平方厘米)。

师:通过我们计算验证了我们刚才的判断是正确的。

接下来我们打开书翻到33页自学例2,从这个例题中你学到什么?

生:分三步来算,先算侧面积再算底面积然后把侧面积和两个底面积加起来。

生2:这样做挺麻烦的有没有更简单一点的方法呢?

6、好!我们一起来找一找有没有更简单的方法。(补充第二种方法)。

教具的演示:把圆柱体的侧面展开得到一个长方形,然后把圆柱体的两个底面通过剪拼成一个近似的长方形。

问:这个近似的长方形的长和宽分别是圆柱体的哪一部分?(底面周长,也就是圆柱体的侧面展开得到的长方形的长。宽是圆柱体底面半径)。

所以圆柱体表面积=长方形面积=底面周长×(高+半径)。

用字母表示:s=c×(h+r)。

我们用这个方法来验证一下我们的例2看是不是比原来简单?

汇报:大部分学生都认为比原来的方法简单。(说一说认为简单的原因)。

那么今天我们学习了圆柱体的表面积的计算方法(出示课题),你们学会了吗?(会)那老师也得做几题验证一下你们掌握得怎么样。

本环节通过提出一个实际问题,以小组合作的形式探究出:不同条件下用不同方法可以解决相同的问题。逐渐培养学生用多种途径解决实际问题的能力。

三、分组闯关练习。

1、多媒体出示题目。

第一关(填空)。

沿圆柱体的高剪开,侧面展开后会得到一个形,长是圆柱的(),宽是圆柱的(),因此圆柱的侧面积=()×()。

第二关。

一个圆柱的底面直径是2分米,高是45分米,它的侧面积是()平方分米,它的底面积是()平方分米,它的表面积是()平方分米。

第三关(用你喜欢的方法完成下面各题)。

一个圆柱,它的底面半径是2厘米,它的高是15厘米,求它的表面积?

2、汇报结果,给予评价。

我本着“重基础、验能力、拓思维”的原则,设计了以上几个层次的练习题。整个习题,虽然题量不大,但却涵盖了本节课的所有知识点,而且练习题排列遵循由易到难的原则,层层深入。有效的培养了学生创新意识和解决问题的能力。

四、质疑(同学们还有什么疑问吗?)。

五、反馈小结:

教学反思。

1、自主探究,体验学习乐趣。

以解决问题为主线,打破了“例题――习题”的教学模式,给学生创设探究的舞台(也就是提出贯穿整节课的一个问题)。在解决这个问题的过程中,学生的认知冲突层层深入,思维碰撞时时激起,学生在学习知识的同时也体验到学习乐趣。

2、合作交流,加深对知识的理解深度。

给学生提供一个合作交流的平台,在相互的交流中大胆发表不同的见解,从而达到共识、共享、共进,共同归纳出计算圆柱表面积常用的三种形式,从而加深了对知识的理解深度。

圆柱体的表面积教学设计篇十二

冀教版小学数学六年级下册第32—34页。

知识和技能:经历认识圆柱体积,探索圆柱体积计算公式及简单应用的过程。

过程与方法:让学生经历观察、猜想、证明等数学活动过程。探索并掌握圆柱体积公式,能计算圆柱的体积。

情感、态度和价值观:在探索圆柱体积的过程中,培养学生应用已有知识解决问题的能力,进一步体会转化的数学思想,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和结论的确定性。

探索并掌握圆柱体积公式,能计算圆柱的体积。

圆柱体积公式的推导过程及简单应用。

两个不易直观比较体积大小的圆柱桶,探索体积的课件

一课时

一、情景导入

1.出示“亮亮和爷爷过生日”的情境图。学生观察,说说发现了什么?想到了哪些问题?

2.学生观察思考后回答。

生:亮亮和爷爷的生日蛋糕都是圆柱形的。

生:生日蛋糕大,就是蛋糕的体积大;生日蛋糕小,就是蛋糕的体积小。

3.出示两个圆柱体,学生观察、猜想。

师:是啊,有时我们观察到的大小不一定准确,我们还是通过计算比较大小更准确些。今天我们就一起学习“圆柱的体积”

3.揭示并板书课题:圆柱的体积

(设计意图:创设情境导入激趣,通过观察让学生对圆柱体体积有了初步的认识,充分调动学生的求知欲,同时又为学生探索新知做好准备。)

二、合作探究

(一)引导回忆

1.设疑:看到课题你能想到哪些有关数学知识?你还想知道什么数学知识?

2.学生回忆后回答。

师:同学们知道的可真不少,对以前学过的知识掌握得很扎实,那么怎样才能知道一个物体的体积有多大呢?现在我们就共同研究圆柱体积的计算方法。

(设计意图:通过创设问题情境,可以引导学生运用已有的.生活经验和就知识积极思考,形成任务驱动的探究氛围。

(二)推导、论证“圆柱的体积”

1.引发思考猜想

师:我们以前学过学过了长方体和正方体的体积,我们知道了物体所占空间的大小叫做物体的体积。那么怎样计算圆柱的体积呢?请同学们猜想一下。

生:我们是不是象学过的长方体和正方体体积一样用“底面积×高”呢?

师:同学猜想的很有道理。

师:再回顾我们以前探索圆面积公式时是把圆转化成哪种图形来计算的?(课件演示:圆面积公式的推导)生:我们可以按照这样的方法把圆柱体转化为已经学过的长方体或正方体推导出圆柱体体积。

2.师生合作推导验证

教师用课件演示,学生观察思考。

生:相同点是都可以拼成一个近似的长方体。

生:不同点是等分的份数不同,等分的份数越多,拼成的图形就越接近一个近似的长方体。

4.小组同学讨论后汇报结果,同时板书。

生:(1)把圆柱拼成长方体后,形状变了,体积不变。

板书:长方体的体积=圆柱的体积

(2)拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。

师:(1)配合回答,演示课件,闪烁相应的部位,并板书相应的内容。

板书:圆柱的体积=底面积×高

用字母表示v=sh

师:让学生书空,再次让学生巩固圆柱体积公式的推导过程。(设计意图:再探究圆柱体积计算的过程中,进一步体会转化的数学思想,体验数学问题的探索性和挑战性,感受数学结论的稳定性。

1.学生读题试算。

2.集体订正。

四、应用与拓展

1.完成教材第34“试一试”。

(1)学生仔细看图,明确题意。

(2)学生自主完成后,全班交流。

五、课堂总结

本节课你有什么收获?还有什么疑问?附:板书

圆柱的体积

长方体的体积=底面积×高

圆柱的体积=底面积×高

本节课的教学体现了:

一、利用迁移规律引入新课,为学生创设良好的学习情境;

三、正确处理两主关系,充分发挥学生的主体作用,注意学生学习的参与过程及知识的获取过程,学生积极性高,学习效果好,达到预期效果。不足之处学生讨论时间控制太少,课后作业个别学生还是对公式不会灵活应用。

圆柱体的表面积教学设计篇十三

教学内容:p21-22页例3-例4,完成“做一做”及练习四的部分习题。

教学目标:

1、在初步认识圆柱的基础上理解圆柱表面积的含义,掌握圆柱表面积的计算方法,会正确计算圆柱表面积,能解决一些有关实际生活的问题。

2、培养学生良好的空间观念和解决简单的实际问题的.能力。

3、通过实践操作,在学生理解圆柱侧面积和表面的含义的同时,培养学生的理解能力和探索意识。

教学难点:运用所学的知识解决简单的实际问题。

教法:启发引导法。

学法:自主探究法。

教具:课件。

教学过程:

一、定向导学(5分)。

(一)导学。

1.指名学生说出圆柱的特征.。

2.口头回答下面问题.。

(1)怎样求圆的周长与面积?

(2)怎样求圆柱的侧面积?

3、导入课题。

(二)定向。

揭示学习目标。

2、会正确计算圆柱表面积,能解决一些有关实际生活的问题。

二、自主探究(10分)。

(一)填空。

1、因为圆柱体有两个()和一个(),所以。

圆柱体的表面积教学设计篇十四

【教学目的】:

1、使学生理解和掌握求圆柱的侧面积和表面积的计算方法。

2、培养学生分析推理,解决实际问题的能力。

3、通过学生学习讨论,运用知识的迁移类推,培养学生的自主能动性。

4、在计算机操作中培养学生的信息素养。

【教学重点】:

使学生理解和掌握求圆柱的侧面积和表面积的计算方法。

【教学难点】:

在计算机操作中培养学生的信息素养。

【教具准备】:

计算机辅助教学课件一套。

【教学过程】:

一、创设情境,提出问题。

1、电脑显示:给一个圆柱形罐盒加外包装纸,包装纸要裁多大,应依什么大小来判断?(配有一幅圆柱形罐头盒图)。

2、点击鼠标,显示下一页:圆柱的侧面积和表面积计算(课题)。

二、自由选择,自学新知。

1、电脑显示:自学新知a自学新知b。

说明:在学习新的'知识点中,老师给大家提供了两个学习方案,自学新知a形象直观,容易理解,自学新知b相对理解较难,请大家根据自己的学习情况,自由选择相应的学习方案。

2、学生选择好后,调整座位,把选择相同学习方案的学生分坐在一起后,进入自学。

(展开侧面)。

自学新知a:

圆柱体的表面积教学设计篇十五

掌握圆柱的体积计算公式,能够正确计算圆柱的体积。

【过程与方法】。

通过观察、类比、分析的过程,提高分析问题、解决问题的能力,发展空间观念。

【情感态度价值观】。

感受数学与生活的联系,激发学习兴趣,提高学习数学的自信心。

【教学重点】。

【教学难点】。

(一)引入新课。

提问:长方体和正方体的体积公式是什么?

(正方体)体积=底面积×高。今天我们再来研究另一个熟悉的几何图形,圆柱的体积公式。从而引出本节课题《圆柱的体积》。

(二)探索新知。

在大屏幕出示底面积和高都相等的长方体、正方体和圆柱。

提问:长方体和正方体的体积相等吗?

预设:根据长方体(正方体)体积=底面积×高,所以长方体和正方体体积相等。

预设:圆柱的体积和底面积、高有关,圆柱的体积公式=底面积×高。

预设:可以把圆柱转换成长方体。

预设:学生分一分,拼一拼,组合成近似长方体的图形。此时教师应借助多媒体设备展示把圆柱等份分成32份,64份甚至更多份的情境,随着等份分割的份数越多,拼成的图形就越接近长方体。

组织学生进行小组讨论:观察拼成的长方体和原来的圆柱具有怎样的关系?5分钟后请小组代表进行回答。

预设:长方体的底面积、高和体积分别等于原来圆柱的底面积、高和体积。

提问:圆柱的体积公式是什么?

用大写字母v表示圆柱的体积,s表示底面积,h表示圆柱的高,用字母表示圆柱的体积公式。

预设:v=sh。

教师强调字母v、s是大写,h是小写。

追问:回顾探究圆柱体积公式的过程,有哪些心得体会?

预设1:可以用长方体体积公式推导出圆柱体体积公式;

预设2:把圆柱转化成长方体,与探索圆面积的方法类似;

预设3:计算长方体、正方体、圆柱的体积都可以用底面积乘高。

(三)课堂练习。

试一试。

一个圆柱形零件,底面半径是5厘米,高是8厘米。这个零件的体积是多少立方厘米?

(四)小结作业。

提问:通过本节课的学习有什么收获?

课后作业:找找生活当中的圆柱物体,量一量底面积和高,算一算物体体积。

圆柱体的表面积教学设计篇十六

学情分析:

根据六年级的教学情况来看,班中绝大部分同学都能跟上现有的进度,通过本节课教学要使灵活运用圆柱体积的计算方法解决生活中一些简单的问题,通过想象、操作等活动,理解圆柱体体积公式的推导过程,掌握计算公式;会运用公式计算圆柱的体积。

教学目标:

1.通过切割圆柱体,拼成近似的长方体,从而推导出圆柱的体积公式这一教学过程,向学生渗透转化思想。

2.通过圆柱体体积公式的推导,培养学生的分析推理能力。

3.理解圆柱体体积公式的推导过程,掌握计算公式;会运用公式计算圆柱的体积。

教学重点:

教学难点:

教学用具:

教学过程:

一、复习引新。

1.求下面各圆的面积(回答)。

(1)r=1厘米;(2)d=4分米;(3)c=6.28米。

要求说出解题思路。

2.提问:什么叫体积?常用的体积单位有哪些?

3.已知长方体的底面积s和高h,怎样计算长方体的体积?(板书:长方体的体积=底面积×高)。

二、探索新知。

1、根据学过的体积概念,说说什么是圆柱的体积。(板书课题)。

2、公式推导。(有条件的可分小组进行)。

(1)请同学指出圆柱体的底面积和高。

(2)回顾圆面积公式的推导。(切拼转化)。

3、回顾了圆的面积公式推导,你有什么启发?

生答:把圆柱转化成长方体计算体积。

4、动手操作。

请2位同学上台用教具来演示,边演示边讲解。

把圆柱的底面平均分成16份,切开后把它拼成一个近似地长方体。

多请几组同学上台讲解,完善语言。

提问:为什么用“近似”这个词?

5、教师演示。

把圆柱拼成了一个近似的长方体。

6、如果把圆柱的底面平均分成32份、64份……切开后拼成的物体会有什么变化?

生答:拼成的物体越来越接近长方体。

追问:为什么?

生答:平均分的份数越多,每份就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体。

7、刚才我们通过动手操作,把圆柱切拼成一个近似的长方体。

师:拼成的长方体和原来的圆柱有什么联系?请与同学们进行交流?

出示讨论题。

(1)、拼成的长方体的底面积与原来圆柱的底面积有什么关系?为什么是相等的?

(2)、拼成的长方体的高与原来圆柱的高有什么关系?为什么是相等的?

(3)、拼成的长方体的体积与原来圆柱的体积有什么关系?为什么?

板书:

长方体体积底面积高。

8、根据上面的实验和讨论,想一想,可以怎样求圆柱的体积?

生答:把圆柱切拼成一个近似的长方体,拼成的长方体的底面积等于圆柱的底面积,拼成长方体的高等于圆柱的高,因为长方体体积=底面积×高,所以圆柱体积=底面积×高。

9、用字母如何表示。

v=sh。

10、小结。

圆柱的体积是怎样推导出来的?计算圆柱的体积必须知道哪些条件?

11、教学算一算。

审题。提问:你能独立完成这题吗?指名一同学板演,其余学生做在练习本上。集体订正:列式依据是什么?应注意哪些问题?最后结果用体积单位)。

12、教学“试一试”

小结:求圆柱的体积,必须知道底面积和高。如果不知道底面积,只知道半径r,通过什么途径求出圆柱的体积?如果知道d呢?知道c呢?知道r、d、c,都要先求出底面积再求体积。

三、巩固练习。

课后“练一练”里的练习题。

四、课堂小结。

这节课学习了什么内容?圆柱的体积怎样计算,这个公式是怎样得到的?指出:这节课,我们通过转化,把圆柱体切拼转化成长方体,(在课题下板书:圆柱转化长方体)得出了圆柱体的体积计算公式v=sh。

圆柱体的表面积教学设计篇十七

1、理解圆柱体积公式的推导过程。

2、能够初步地学会运用体积公式解决简单的实际问题。

3、进一步提高学生解决问题的能力。

1、理解圆柱体积公式的推导过程。

2、能够初步地学会运用体积公式解决简单的实际问题。

3、理解圆柱体积公式的推导过程。

圆柱切割组合模具、小黑板。

一、创设情境,生成问题。

1、什么是体积?(物体所占空间的大小叫做物体的体积。)。

2、长方体的体积该怎样计算?归纳到底面积乘高上来。

3、圆的面积怎样计算?

二、探索交流,解决问题。

(启发学生思考。)。

2、把圆柱的底面分成许多相等的扇形(16等分),然后把圆柱沿高切开,可能会拼成怎样的图形?教师演示,引导学生进行观察。

3、思考:

(1)圆柱切开后可以拼成一个什么形体?(长方体)。

(2)通过实验你发现了什么?小组讨论:实验前后,什么变了?什么没变?讨论后,整理出来,再进行汇报。

(拼成的近似长方体体积大小没变,形状变了,拼成的近似长方体和圆柱相比,底面形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。近似长方形的高就是圆柱的高,没有变化。)。

小组讨论:怎样计算圆柱的体积?

学生汇报讨论结果。

长方体的体积可以用底面积乘高来计算,而在推导过程中,长方体的底面积就是圆柱的底面积,高就是圆柱的高,所以圆柱的体积也可以用底面积乘高来计算。

师:圆柱的体积怎样计算?用字母公式,怎样表示?

板书:v=sh。

5、算一算:已知一根柱子的底面半径为米,高为5米。你能算出它的体积吗?

三、巩固应用练习。

四:课堂小结:

通过这节课你学会了哪些知识,有什么收获?

五:课后作业:

教材第9页,练一练第1、3、4、题。

圆柱体的表面积教学设计篇十八

3.会正确计算圆柱的侧面积和表面积。

教学重点。

理解求表面积、侧面积的计算方法,并能正确进行计算。

教学难点。

能灵活运用表面积、侧面积的有关知识解决实际问题。

教学过程。

一、复习准备。

(一)口答下列各题(只列式不计算)。

1.圆的半径是5厘米,周长是多少?面积是多少?

2.圆的直径是3分米,周长是多少?面积是多少?

(二)长方形的面积计算公式是什么?

(三)回忆圆柱体的特征。

二、探究新知。

1.学生讨论:圆柱的侧面展开图(是长方形)的长、宽和圆柱底面周长、高的关系。

2.小结:因为长方形的面积等于长乘宽,而这个长方形的长等于圆柱的底面周长,宽等于圆柱的高,长方形的面积就是圆柱的侧面积,所以圆柱的侧面积等于底面周长乘高。

(二)教学例1.

1.出示例1。

例1.一个圆柱,底面的直径是0.5米,高是1.8米,求它的侧面积。(得数保留两位小数)。

2.学生独立解答。

教师板书:3.140.51.8。

=1.75l.8。

2.83(平方米)。

答:它的侧面积约是2.83平方米。

3.反馈练习:一个圆柱,底面周长是94.2厘米,高是25厘米,求它的侧面积。

1.教师说明:圆柱的侧面积加上两个底面积就是圆柱的表面积。

圆柱的表面积是指圆柱表面的面积,是侧面积加上两个底面积,而侧面积是指圆柱侧面的面积;表面积包含着侧面积。

(四)教学例2.

1.出示例2。

例2.一个圆柱的高是15厘米,底面半径是5厘米,它的.表面积是多少?

2.学生独立解答。

侧面积:23.14515=471(平方厘米)。

底面积:3.14=78.5(平方厘米)。

表面积:471+78.52=628(平方厘米)。

答:它的表面积是628平方厘米。

3.反馈练习:一个圆柱,底面直径是2分米,高是45分米,求它的表面积。

(五)教学例3.

1.出示例3。

例3.一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米)。

2.教师提问:解答这道题应注意什么?

这道题是求做这个水桶要用铁皮多少平方厘米。实际上是求这个圆柱形水桶的表面积。题里告诉我们的一个没有盖的圆柱形铁皮水桶,计算时就是用侧面积加上一个底面积。

3.学生解答,教师板书。

水桶的侧面积:3.142024=1507.2(平方厘米)。

水桶的底面积:3.14。

=3.14。

=3.14100。

=314(平方厘米)。

需要铁皮:1507.2+314=1821.21900(平方厘米)。

答:做这个水桶要用1900平方厘米。

4.教师说明:这里不能用四舍五入法取近似值。在实际中,使用的材料都要比计算得到的结果多一些。因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1.这种取近似值的方法叫做进一法。

5.四舍五入法与进一法有什么不同。

(1)四舍五入法在取近似值时,看要保留位数的后一位,是5或比5大的舍去尾数后向前一位进一,是4或比4小的舍去。

(2)进一法看要保留位数的后一位,是4或比4小的舍去尾数后都向前一位进一。

三、课堂小结。

归纳:圆柱的表面积,在实际应用时,要根据实际需要计算各部分的面积,必须灵活掌握。如油桶的表面积是侧面积加上两个底面积;无盖的水桶的表面积是侧面积加上一个底面积;烟筒的表面积只求侧面积。另外,在生产中备料多少,一般采用进一法,就是为了保证原材料够用。

四、巩固练习。

(一)求出下面各圆柱的侧面积。

1.底面周长是1.6米,高是0.7米。

2.底面半径是3.2分米,高是5分米。

(二)计算下面各圆柱的表面积。(单位:厘米)。

(三)拿一个茶叶桶,实际量一下底面直径和高,算出它的表面积。(有盖和无盖两种)。

五、课后作业。

(二)一个圆柱的侧面积是188.4平方分米,底面半径是2分米,它的高是多少分米?

【本文地址:http://www.xuefen.com.cn/zuowen/15093141.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档