总结是一个人成长过程中不可或缺的一环。结合实际情况,我们可以借鉴一些优秀的总结经验。接下来,就请大家跟随小编一起来看看以下是小编为大家收集的总结范文,仅供参考。
分割等腰三角形的说课稿篇一
本节课教学设计较为简单,有利于学生掌握新知识。思路清晰,语言流畅,具有亲和力,课堂教学节奏合理,快慢结合,注意顺应学生的思维。知识回顾中用变换图形位置复习旧知识,有助于学生对旧知识的巩固,为本节课作铺垫。学生在教学中思考的时间较多,教师做到了以学生为主,教师为辅,将课堂交还给学生。学生积极性很高,生生互动很多。教学设计中设计了剪折图的活动,引导学生动手探究,体现了新课标中引导学生动手操作探究问题的要求。
建议。
1、要明确教学目标,教学设计要美观才有利于学生的学习。
2、给教学设计给听课教师而不是学生的学案。
3、时间的调控上要把握好。
4、要注重点明命题证明的步骤:审题、画图、写已知、写求证、证明。
分割等腰三角形的说课稿篇二
作为一名为他人授业解惑的教育工作者,时常要开展说课稿准备工作,说课稿有利于教学水平的提高,有助于教研活动的开展。优秀的说课稿都具备一些什么特点呢?以下是小编整理的七年级数学《分割等腰三角形》说课稿,仅供参考,欢迎大家阅读。
七年级下学期的学生,从年龄特点看:他们好奇心强,思维活跃,喜欢动手操作,厌倦枯燥乏味的传统教学;从知识储备上看:他们已经掌握了三角形、等腰三角形有关知识,如三角形内角和、等腰三角形的性质、等腰三角形的判定等等;从技能水平上看:他们已经初步具有自主探索能力、合作交流能力。
1、经历可以分割成两个等腰三角形的条件的探索过程,培养探索精神和合情推理能力;
2、在活动中,体会知识的运用和数学思考的方法;
3、通过探索条件的实践过程,体会数学推理的乐趣,增强合作交流意识。
1、创设情境,激发兴趣。
2、小组活动,探求新知。
3、梳理概括,形成结构。
4、布置作业拓展延伸。
授人以鱼,不如“授人以渔”整节课中我始终贯彻“自主参与,自主探究,合作交流,自主构建”的教育理念,采用“探,疑、研,悟”等环节主体探究。让学生在自主,合作,探究的浓厚氛围中掌握知识,形成技能,培养感情。充分体现科学性和人文性的统一。
1、创设情境,激发兴趣。
情景一、学生阅读第120页的《阅读理解》。
这样设计:可以让学生通过阅读理解,初步认识图形分割的意义,培养数学阅读的兴趣和方法。也为后面的如何分割做了复习。
情景二:在动听的音乐声中,大屏幕上循环播放生活中有关的等腰三角形的图片。图片最后出现等腰三角形花坛。
这样设计:一是用他们熟悉或感兴趣的问题情境引出学习主题,激发了学生探究知识的欲望,能够较好地调动学生的学习兴趣。二是进一步体味数学就在我们身边,生活中处处都有数学。
学生上台演示。这时,教师可以引导学生有两种分割方法:一种是分割线经过顶角顶点;一种是分割线经过底角顶点。
这样设计:为后面的.分类讨论思想打下铺垫。
2、小组活动,探求新知。
合作:小组合作设计两个三角形,使这两个三角形都可以被分割成两个等腰三角形。
学生展示图片,讲解分割思路。(教师反问:为何不从顶角的顶点分割?)。
归纳小结:当顶角小于底角时,分割线经过底角的顶点,反之,顶角大于底角时,分割线经过顶角的顶点。
这样设计:从特殊的三角形出发,加上学生对这个三角形比较熟悉,学生比较好操作,再到一般三角形,从而产生质疑:不是所有的等腰三角形都可以分成两个等腰三角形,起了承上启下的作用。
第二部分:探索能分割成两个等腰三角形的这个等腰三角形每个内角的关系?
学生动手画顶角分别是锐角、直角、钝角的等腰三角。
这样设计:让学生感知等腰三角形的多样性,为分类讨论思想打下铺垫。
设底角为x度,小组合作作图,并求出顶角的度数(x的代数式表示):第一、二组研究分割线经过顶角的顶点的情况,后两组研究分割线经过底角的顶点的情况。
这样设计:是让学生亲历科学发现的全过程,初步掌握研究性学习的学习方法。
通过作图求解,学生可以求出:顶角是底角的2倍、3倍、倍。对于倍,教师适当引导。
第三部分:探索能分割成两个等腰三角形的这个等腰三角形每个内角是几度?学生根据内角和180度,求出角度。
3、梳理概括,形成结构。
知识:分割成两个等腰三角形的条件和方法;体验:探究活动中的感悟。教师适当引导补充,并对学生的表现适当评价,给予鼓励。
4、布置作业拓展延伸。
分层作业:必做题:把一个角为36°的等腰三角形分成4个等腰三角形。
选做题:把角度分别20°、20°、140°等腰三角形分成三个等腰三角形。
这样设计:一是想以动手操作开始,再以动手操作结束,使课堂教学浑然一体;二是让学习从课上走到课下,让一种学法得以构建,让一种思想得以延续。
我努力给学生创造自主探索、合作交流的舞台,无论环节设计,还是作业的安排,都关注了学生的个体差异,注重了学生的数学体验。通过操作、观察、质疑、验证、深化等自主探索活动。丰富知识、提升能力、获得体验。使学生初步具有自主学习之法、终身学习之愿、快乐学习之情。
分割等腰三角形的说课稿篇三
本周三下午第三节,我们全体数学组成员及教研处王主任共同学习了由数学教研组长x老师执教的《等腰三角形》一课。听后,颇受启发及教育。
首先,我觉得x老师很用心的在准备这节课,讲这节课。因为是上学期小组汇报课讲过的“熟课”,不仅学生学过,而且老师们都听过。如果没有新意,很容易使学生及听课老师产生感官疲劳。但x老师匠心独具的是,在课堂导入的环节,巧妙地安排了一场“爱因斯坦的智商”智力游戏,使学生“惊喜”的发现,自己居然和爱因斯坦的智商同样高,自信心无比高涨,后又借机对学生进行具备了爱因斯坦的智商,还要有勤奋学习不说空话的态度,激发了学生的学习动力。
其次,课堂教学中,x老师始终面带微笑,语速不急不缓,使学生如沐春风,在轻松愉快的氛围中完成了整堂课教学。另外,在课堂练习的环节,设计了积分制的回答方式,调动了学生认真思考及回答问题的积极性,效果甚好。
整堂课的设计条理清晰,层次分明,注重学生动手操作,合作探究。既使学生理解并掌握了等腰三角形的性质,同时又培养了学生动手操作勇于探索的能力。
美中稍显不足的是,课件有些简单,背景色调有点刺眼,可以做些改进。课堂习题学生已在上次听课时做过,对答案很熟悉,新鲜感稍差。可在习题设计上做些改动,变换方式和数据,效果会更好的。
总之,我觉得这是一堂很成功的课。也使我体会到要想讲好一堂课,必须要以无比敬业的态度认真去准备,多方搜索,积极探索,不断反思总结改进。
3篇1本周三下午第三节,我们全体数学组成员及教研处王主任共同学习了由数学教研组长x老师执教的《等腰三角形》一课。听后,颇受启发及教育。......
分割等腰三角形的说课稿篇四
《等腰三角形的判定》是初中数学的一个重要定理,也是本章的重点内容。本节内容是在学生已有的平行线性质、命题以及等腰三角形的性质等知识基础上进一步研究的问题。特点之一是它揭示了同一个三角形的边、角关系;特点之二是它与等腰三角形的性质定理互为逆定理;特点之三是它为我们提供了证明两条线段相等的新方法,为以后的学习提供了证明和计算依据,有助于培养学生思维的灵活性和广阔性。所以本段教材具有承上启下、至关重要的作用。
在中考题中属于一个考点知识。因此,本节课我主要采用的教法是引导探索法:在数学教学中,作为教师应善于引导学生去观察、去分析、去归纳、去总结,从而培养学生主动求知的探索精神。
本节课按照质疑、猜想、验证、推理的学习过程,遵循学生的认知规律,让学生感受由实践到理论再到实践的学习过程,使学生通过“会学”最终达到“学会”。
教学一开始,学生通过回顾总结等腰三角形的性质为学习等腰三角形的判定做了知识铺垫。之后我将本节课的教学目标展示给学生,让学生做到心中有数,让学生带着问题看书,加强自主探索的能力。通过学生观察、思考例题,自然地渗透分类讨论的数学解题思想。
通过课堂小结,让学生归纳比较等腰三角形的性质和判定的区别,同时将等腰三角形的性质定理与判定定理有机的结合起来,重在培养学生对两个知识点的综合运用,鼓励学生积极思考。整节课的目标基本实现,重点难点落实得比较到位,为以欠缺的是时间有点紧,课堂小结比较仓促。
分割等腰三角形的说课稿篇五
上周五下午参加了在“一课两讲”教研活动,两位老师以过硬的教学功底向我们展示了精彩的课堂教学,下面是我们备课组对两位上课老师的评课记录:
仙村中学的江老师,由于是自己学生缘故,老师在上课过程中显示得比较轻松,学生能够积极配合,能够合理有序的完成课堂教学任务,使学生在轻松愉快中学到知识。在练习的设计上也是以简单的基础练习为主,题量适中,能让大部分学生都能够完成。
实验中学的姚老师,教学设计的较好,先是对之前学习的知识点进行复习,然后用一个剪纸的数学活动引出本节课的内容,激发学生的学习积极性。在课堂练习中,能够让学生自己去编写题目,一方面让学生了解考点,另一方面让学生体验到成功的感觉。但姚老师在上课过程中,也许不是自己的学生对学生不够了解的缘故,以至于整节课在前面的时间较松,在后面的时间显得比较紧。
分割等腰三角形的说课稿篇六
今天我聆听了林**老师的公开课,让我学习的地方很多,不只是老师的设计以及上课的感染力吸引我,更多的是看到她的设计以及课堂的驾驭能力,如教学设计内容的取舍,教师的启发引导,课堂生成资源的利用,课堂小结与归纳等。下面我就林老师的《等腰三角形的判定定理》这节课谈谈自己的几点感受:
1.我们知道,数学学习是连贯的,每节课都起到承上启下的作用。林文娟老师首先复习回顾了等腰三角形的性质,然后通过合作学习让学生动笔作图,思考线段ab与ac相等吗?从而引出课题。这种以旧引新的方式符合学生认知特点,也符合数学新课程标准提出的“动手操作-----建立模型----解释与应用模型”的课堂模式。
2.在课堂教学中,提炼方法,结论成为课堂的一个亮点,往往这些是学生缺的东西,而当我们学习新知识后,教师要引导学生善于将新知识纳入到旧的体系中,形成新的知识体系。培养学生善于总结反思的习惯。达到知识,方法迁移,触类旁通的效果。这节课对判定定理的大前提“在同一个三角形中”分析的很到位,成为本节可的亮点。
3.数学课堂是培养学生思维的主阵地,思维是数学的灵魂,是形成数学能力、意识的桥梁.但是,数学思维具有高度抽象性,学生往往不易理解.特别是初中学生,从具体思维向抽象思维过度的时期,往往会受到阻碍。教学中教师如何通过启发诱导开启学生受阻的思维很见功底。
本课教学中,林老师在证明判定定理时,有启发学生通过添加辅助线构造等腰三角形“三线合一”,层层诱导,通过问题串的形式启发:1.添加怎样的辅助线?2过a作一条辅助线,有没有什么要求?(预设:四种添法,有高线,角平分线,中线,随意一条线)3.辅助线如何书写,4.如何应用。
1.新课的引入问题。本课的引入如果能用几何画板展示,效果应该会更好。
2.定理得出后,应该给出几何语言。教师准确而规范的例题示范是本节课甚至整个基础教育数学教学最最关键的环节。
(1)多媒体的使用问题:数学课不能整课使用多媒体,而只是某些重点难点的突破和例题的题目可以使用,其他环节应该取消。也就是把多媒体用成数学中的“微课”,如果声光电一起上,推导、演绎、结论啪啪啪的响,学生下课以后什么都没有,甚至连书写的规范都没有。思维训练等于0,长久后,学生得不到数学学习的乐趣,这也是导致高年级或者高中数学差生很多很多的主要原因。
(2)数学教师要学好几何画板。几何画板在课堂中就是微课使用10分钟以内,随时可以形成动画,能写成文本,能形成思维流。
(3)什么是数学好课?我觉得掌声、笑声、辩论声都在一节课出现就是好课,成功的课。只有掌声的课肤浅且做作,只有笑声的课庸俗,只有辩论声的课没有生命的意义。
分割等腰三角形的说课稿篇七
(2)等边三角形每条边上的中线、高线和角平分线互相重合。(三线合一)。
(3)等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或角的平分线所在的直线。
(5)等边三角形内任意一点到三边的距离之和为定值。(等于其高)。
(6)等边三角形拥有等腰三角形的一切性质。(因为等边三角形是特殊的等腰三角形)。
分割等腰三角形的说课稿篇八
等腰三角形是在学习了轴对称之后编排的,是轴对称知识的延伸和应用。等腰三角形的性质及判定是探究线段相等、角相等及两条直线互相垂直的重要工具,在教材中起着承上启下的作用。
2、教学重点和难点。
本着新课程标准,在吃透教材基础上,我把探索等腰三角形的性质定为本节课的重点,通过创设问题和解决问题来突出重点。把等腰三角形性质的建立定为本课的难点,通过折纸实验和小组合作探究来突破难点。
二、说教学目标。
1、学情分析。
我所教的学生,从认知的特点来看,好奇爱问,求知欲强,想象力丰富;并已初步具有对数学问题进行合作探究的能力。
2、三维目标。
根据教材结构和内容分析,考虑到学生已有的认知结构、心理特征,我制定如下目标:
知识与技能目标:
了解等腰三角形的概念,探索并掌握等腰三角形的性质,并会进行有关的论证和计算,以及运用所学的知识去解决实际问题。
过程与方法目标:
通过对性质的探究活动和例题的分析,培养学生多角度思考问题的习惯,提高学生分析问题和解决问题的能力;使学生进一步了解发现真理的方法(探究——猜想——归纳——论证)。
情感态度与价值观目标:
通过对等腰三角形的观察、试验、归纳,体验数学活动充满着探索性和创造性,数学就在我们身边。在操作活动中,培养学生的合作精神,在独立思考的同时能够认同他人.感受合作交流带来的成功感,树立自信心。
三、说教法与学法。
1、教法。
根据教材分析和目标分析,我确定本课主要的教法为探究发现法。采用“问题情境—探索交流—猜想验证——建立模型”的模式安排教学,并在各个环节进行分层施教。
2、学法。
我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中我特别重视学法的指导。本课采用小组合作的学习方式,让学生遵循“观察——猜想——归纳——验证——反馈——实践”的主线进行学习。
四、说教学流程。
《数学课程标准》强调,教师应发扬教学民主,成为学生数学学习活动的组织者、引导者、合作者。因此本节课我分以下六个环节组织教学。
(一)创设情境,激发兴趣。
1、多媒体展示房屋人字架、艾佛尔铁塔、龙塔、香港中国银行大厦的图片,问:你认识图片中的建筑物吗?图片中存在哪些几何图形?(等腰三角形、四边形、梯形)。
(通过实例的电脑展示,唤起学生的好奇心,提出问题,引导学生进入新知识的学习,创造一种探索的情景。在学习中,只有调动学生的非智力因素,特别是内在动机,才能使他们产生强烈的求知欲和以饱满的热情来学习新知识。)。
(二)观察实物,形成概念。
活动1:学生通过观察自带的等腰三角形纸片认识等腰三角形的有关概念。
接着,我利用电脑演示等腰三角形定义的数学语言表达方式。
(让学生归纳定义增强学生的成就感,给出数学语言的表达,是为了培养学生文字语言、图形语言和符号语言的转化能力.同时也能培养学生正向思维和逆向思维的能力。)。
分割等腰三角形的说课稿篇九
本节课的重点是让学生在操作中发现等腰三角形和等边三角形的特征。我没有呈现几个不同类型的三角形,让学生通过测量边的长度从而发现他们的共同点,我在让学生观察常见的一副三角板,说说每个角的度数,然后再找出比较特殊的三角行,从而引出等腰三角形的。然后利用折纸这个活动,来进一步的体会等腰三角形的特点,先是引导学生看书上的图示,理解做的步骤,然后让学生自己动手去做,学生做得很好,接着我有让学生在探究本上试着画一个等腰三角形,使学生在画图的过程中进一理解特征。对于等边三角形的教学,基本上也就如此,但是,学生似乎不太理解折纸的方法,因此,我就作了示范,学生才勉强制作出了等边三角形。由于在这个部分,我留给学生的时间比较多,后来连书本上的“想想做做”都来不及解决,因此,我决定明天再增加一节练习课,做一个专项训练,看看学生对知识的综合运用情况。
今天教学了等腰三角形和等边三角形,其实学生通过动手操作对等腰三角形和等边三角形的概念还是很容易掌握的,关键在于灵活运用,所以,在练习的时候,我采取了一题多变的'形式。在“想想做做”中有这样一道题目:一根18厘米长的线,可以围成边长几厘米的等边三角形?这个问题很简单,学生很轻易就解决了,然后我又把题目改成:用一根18厘米长的线围成一个等腰三角形,腰是7厘米,底是多少厘米?用一根18厘米长的线围成一个等腰三角形,底是4厘米,腰是多少厘米?通过这两个问题的练习,学生对等腰三角形的性质有了更深的理解,在做《补充习题》的时候正确率高了不少。所以,书上的练习题还有很多值得我们挖掘的地方。
分割等腰三角形的说课稿篇十
在本节课中,首先,从学生熟悉的亲身经历的现实生活入手,符合学生原有认知结构,营造使学生亲自体验新知识的氛围,创设有利于引向数学问题本质的真实情境,引导学生发现问题、提出问题,激发学生学习兴趣及探究的欲望,显示实际生活中等腰三角形的广泛应用,引出研究等腰三角形的重要性。
其次,通过对折、测量等活动,培养学生的合作意识、探究意识和动手能力。引导学生自主探究、发现、猜想、验证等腰三角形的性质,体验数学的学习活动过程,发展合理推理能力,符合学生认知规律。然后,在学生经历“实验---发现---猜想---验证”的基础上,引导学生讨论交流,分别作出不同的辅助线,利用不同的方法证明,猜想,符合学生的原有知识结构,使学生逐步意识到,结论的正确性需要演绎推理的确认,把证明作为学生探索等腰三角形性质活动的自然延续和必要发展,发展演绎推理的能力,激发学生对数学证明的兴趣,提高学生思维的广阔性和灵活性。
最后,启发引导学生:要证明两个角相等,可以通过构造两个全等三角形进行证明。在学生独立思考后,引导学生讨论交流,分别作出不同的辅助线,用不同的思路、方法证明性质,教师对学生及时进行鼓励评价,归纳示范,形成定理,并揭示等腰三角形性质定理的实质,体会转化思想,同时帮助引导学生总结证明两个角相等的方法,开阔学生思路。
分割等腰三角形的说课稿篇十一
1.本小节内容安排在第十四章“轴对称”的第三节。等腰三角形是一种特殊的三角形,它是轴对称图形,可以借助轴对称变换来研究等腰三角形的一些特殊性质。这一节的主要内容是等腰三角形的性质与判定,以及等边三角形的相关知识,重点是等腰三角形的性质与判定,它是研究等边三角形,是证明线段相等角相等的重要依据,这也是全章的重点之一。
2.本节重在呈现一个动手操作得出概念、观察实验得出性质、推理证明论证性质的过程,学生通过学习,既体会到一个观察、实验、猜想、论证的研究几何图形问题的全过程,又能够运用等腰三角形的性质解决有关的问题,提高运用知识和技能解决问题的能力。
学情分析。
1.学生在此之前已接触过等腰三角形,具有运用全等三角形的判定及轴对称的知识和技能,本节教学要突出“自主探究”的特点,即教师引导学生通过观察、实验、猜想、论证,得出等腰三角形的性质,让学生做学习的主人,享受探求新知、获得新知的乐趣。
2.在与等腰三角形有关的一些命题的证明过程中,会遇到一些添加辅助线的问题,这会给学生的学习带来困难。另外,以前学生证明问题是习惯于找全等三角形,形成了依赖全等三角形的思维定势,对于可直接利用等腰三角形性质的问题,没有注意选择简便方法。
教学目标。
数学思考:1、观察等腰三角形的对称性,发展形象思维。
2、通过时间、观察、证明等腰三角形性质,发展学生合情推理能力和演绎推理能力。
情感态度:引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解决问题的活动中获取成功的体验,建立学习的自信心。
教学重点和难点。
将本文的word文档下载到电脑,方便收藏和打印。
分割等腰三角形的说课稿篇十二
等腰三角形是在学习了轴对称之后编排的,是轴对称知识的延伸和应用。等腰三角形的性质及判定是探究线段相等、角相等及两条直线互相垂直的重要工具,在教材中起着承上启下的作用。
2、教学重点和难点。
本着新课程标准,在吃透教材基础上,我把探索等腰三角形的性质定为本节课的重点,通过创设问题和解决问题来突出重点。把等腰三角形性质的建立定为本课的难点,通过折纸实验和小组合作探究来突破难点。
1、学情分析。
我所教的学生,从认知的特点来看,好奇爱问,求知欲强,想象力丰富;并已初步具有对数学问题进行合作探究的能力。
2、三维目标。
根据教材结构和内容分析,考虑到学生已有的认知结构、心理特征,我制定如下目标:
知识与技能目标:
了解等腰三角形的概念,探索并掌握等腰三角形的性质,并会进行有关的论证和计算,以及运用所学的知识去解决实际问题。
过程与方法目标:
通过对性质的探究活动和例题的分析,培养学生多角度思考问题的习惯,提高学生分析问题和解决问题的能力;使学生进一步了解发现真理的方法(探究-猜想-归纳-论证)。
情感态度与价值观目标:
通过对等腰三角形的观察、试验、归纳,体验数学活动充满着探索性和创造性,数学就在我们身边。在操作活动中,培养学生的合作精神,在独立思考的同时能够认同他人.感受合作交流带来的成功感,树立自信心.
1、教法。
根据教材分析和目标分析,我确定本课主要的教法为探究发现法。采用“问题情境—探索交流—猜想验证——建立模型”的模式安排教学,并在各个环节进行分层施教。
2、学法。
我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中我特别重视学法的指导。本课采用小组合作的学习方式,让学生遵循“观察——猜想——归纳——验证——反馈——实践”的主线进行学习。
《数学课程标准》强调,教师应发扬教学民主,成为学生数学学习活动的组织者、引导者、合作者。因此本节课我分以下六个环节组织教学。
(一)创设情境,激发兴趣。
1、多媒体展示房屋人字架、艾佛尔铁塔、龙塔、香港中国银行大厦的图片,问:你认识图片中的建筑物吗?图片中存在哪些几何图形?(等腰三角形、四边形、梯形)。
(通过实例的电脑展示,唤起学生的好奇心,提出问题,引导学生进入新知识的学习,创造一种探索的情景。在学习中,只有调动学生的非智力因素,特别是内在动机,才能使他们产生强烈的求知欲和以饱满的热情来学习新知识。)。
(二)观察实物,形成概念。
活动:学生通过观察自带的等腰三角形纸片认识等腰三角形的有关概念。
接着,我利用电脑演示等腰三角形定义的数学语言表达方式。
(让学生归纳定义增强学生的成就感,给出数学语言的表达,是为了培养学生文字语言、图形语言和符号语言的转化能力.同时也能培养学生正向思维和逆向思维的能力。)。
分割等腰三角形的说课稿篇十三
定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。
判定定理:在同一三角形中,如果两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。
除了以上两种基本方法以外,还有如下判定的方式:。
1.在一个三角形中,如果一个角的平分线与该角对边上的中线重合,那么这个三角形是等腰三角形,且该角为顶角。
2.在一个三角形中,如果一个角的平分线与该角对边上的高重合,那么这个三角形是等腰三角形,且该角为顶角。
3.在一个三角形中,如果一条边上的中线与该边上的高重合,那么这个三角形是等腰三角形,且该边为底边。显然,以上三条定理是“三线合一”的逆定理。
4.有两条角平分线(或中线,或高)相等的三角形是等腰三角形。
分割等腰三角形的说课稿篇十四
1、掌握证明的基本步骤和书写格式。
2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明直角三角形的有关性质定理和等边三角形的判定定理。
能够用综合法证明等边三角形的判定定理和直角三角形的性质定理。
教学后记。
教师活动学生活动。
一、定理:一个角等于60°的等腰三角形是等边三角形。
1、引导学生回忆上节课的内容,让学生思考:等腰三角形满足什么条件时便成为等边三角形?让学生对普遍联系和相互转化有一个感性的认识。
2、肯定学生的回答,并让学生进一步思考:有一个角是60°的`等腰三家形是等边三角形吗?组织学生交流自己的想法。渗透分类讨论的思维方法。
3、关注学生得出证明思路的过程,讲评。讲解定理:有一个角是60°的等腰三角形是等边三角形。
二、一种特殊直角三角形的性质。
1、让学生拼摆事先准备好的三角尺,提问:能拼成一个怎样的三角形?能否拼出一个等边三角形?并说明理由。
3、演示规范的证明步骤,同时引导学生意识到:通过实际操作探索出的结论还需要给予理论证明。
4、让学生准备一张正方形纸片,,按要求动手折叠。
5、讲解例题,应用定理。
6、布置学生做练习。
练习:课本随堂练习1。
三、课堂小结:
通过这节课的学习你学到了什么知识?了解了什么证明方法?
四、作业:同步练习。
1、积极地自主探索、思考等腰三角形成为等边三角形的条件。可能会从边和角两个角度给出答案。
2、积极思考,通过老师的点拨,分类讨论当这个角分别是底角和顶角的情况。
3、认真听讲,体会分类讨论的数学思维方法,理解定理。
1、积极动手操作,并很快得到结果:可以拼出等边三角形。
2、在拼摆的基础上继续探索,得出结论。并在探索的过程中得到证明的思路。
3、认真听讲,体会从探索和尝试中得到结论的过程和证明方法的步骤,掌握定理。
4、很有兴趣地折叠纸片,体会定理的应用。
5、听讲,体会定理的应用。
6、认真做练习。
(学生小结:掌握证明与等边三角形、直角三角形有关的性质定理和判定定理)。
【本文地址:http://www.xuefen.com.cn/zuowen/14973278.html】