教案是教师备课的重要工具,有助于教师更好地把握教学进度。教案中应该如何选择合适的教学方法和教学资源?请查看以下教案范文,了解如何编写一份优秀的教案。
初中七年级数学解一元一次方程教案篇一
1.会列二元一次方程组解简单的应用题并能检验结果的合理性。
2.提高分析问题、解决问题的.能力。
3.体会数学的应用价值。
1.找实际问题中的相等关系。
2.彻底理解题意。
探究:1.你能画线段表示本题的数量关系吗?
2.填空:(用含s、v的代数式表示)。
设小琴速度是v千米/时,她家与外祖母家相距s千米,第二天她走2小时趟的路程是______千米。此时她离家距离是______千米;她走5小时走的路程是______千米,此时她离家的距离是________千米2017年-2017学年七年级数学下册全册教案(人教版)教案。
3.列方程组。
4.解方程组。
5.检验写出答案。
讨论:本题是否还有其它解法?
1.建立方程模型。
2.p38练习第2题。
3.小组合作编应用题:两个写一方程组,另两人根据方程组编应用题。
本节课你有何收获?
初中七年级数学解一元一次方程教案篇二
2.在对实际问题情景的分析过程中感受方程模型的意义。
二、自主学习。
1、请同学们阅读p79至p80第4段,然后用算术方法解此问题,列算式为___________;然后用设未知数列方程的数学思想来解决此问题,设王家庄到翠湖的路程为千米,可列方程为:
像上面含有未知数的等式,叫__________(读三遍)。
2、自学p80例1至p81归纳部分,根据下列问题,设未知数并列出方程.
(1)用一根长20cm的铁丝围成一个正方形,正方形的边长是多少?
分析:设正方形的边长为(cm),那么周长为__________(cm),列方程:__________.
(2)某校女生占全体学生数的61℅,比男生多61个,这个学校有学生多少个?
(3)一台计算机已使用1200小时,预计每月再使用123小时,经过多少月这台计算机的使用时间达到规定的检修时间2612小时?(自主分析并列出方程)。
像上面(1)、(2)、(3)所列的方程,只含有一个__________数,并且未知数的次数都是__________,这样的方程叫做__________元__________次方程(读三遍)。
注意:“一元”是指一个未知数;“一次”是指未知数的指数是一次(理解)。
上面的分析过程归纳如下:
(1)分析实际问题中的__________关系,利用__________关系列出方程(一元一次方程),是用数学解决实际问题的一种方法。
(2)列方程经历的几个步骤。
a、设__________数;b、找出题中的__________关系;c、列出含有未知数的等式——()。
3、阅读p81,理解列方程是解决实际问题的一种重要方法,利用方程可以求出未知数。
当=6时,4值是24。这时,方程4=24等号左右两边相等,所以=6,叫做方程4=24的解;同样,当x=10时,2x+3=23,这时方程2x+3=23等号两边_______相等,所以,x=10叫做方程2x+3=23的_______;像这样,解方程就是求出使方程中等号左右两边_______的未知数的值,这个值就是方程的_______(读三遍)。
思考:x=4与x=3中,哪一个是方程7x+1=15的解?答:_______。
初中七年级数学解一元一次方程教案篇三
2、掌握等式的性质,理解掌握移项法则。
3、会用等式的性质解一元一次昂成(数字系数),掌握解一元一次方程的基本方法。
5、初步学会用方程的思想思考问题和解决问题的一些基本方法,学会用数学的方法观察、分析、归纳和总结现实情境中的实际问题。
难点重点:解方程、用方程解决实际问题。
难点:用方程解决实际问题。
师生活动时间复备标注。
二、典例回顾。
(1)。x=5(2)。x2+3x=2(3)。2x+3y=5。
判断下列x值是否为方程3x-5=6x+4的解。
(1)。x=3(2)x=3。
4、解决问题的基本步骤。
解:设先安排x人工作4小时。根据两段工作量之和应是总工作量,由此,列方程:
去分母,得4x+8(x+2)=40。
去括号,得4x+8x+16=40。
移项及合并,得12x=24。
系数化为1,得x=2。
答:应先安排2名工人工作4小时。
注意:工作量=人均效率人数时间。
本题的关键是要人均效率与人数和时间之间的数量关系。
三、基础训练:课本第113页第1.2.3题。
四、综合训练:课本113页至114页4.5.6.7.8。
五、达标训练:3.7。
课件出示问题明确知识要点。
学生练习基础上,教师点拨。
初中七年级数学解一元一次方程教案篇四
如在解方程30%x+70%(200-x)=200×70%中,在去分母时,方程两边都乘以100,化去%得:
30x+70(200-x)=200×70,有部分学生就提出疑问,为什么在200那里不乘以100?在(200-x)的里面又不乘以100呢?为了能让学生明白,我想是否要将原方程变形为,然后再各项乘以100,写成,最后化去分母。
又在解方程中,怎样去分母呢?最小公倍数是什么呢?学生是有疑惑的,当分母是小数时,找最小公倍数是困难的,我们要引导学生:
将本文的word文档下载到电脑,方便收藏和打印。
初中七年级数学解一元一次方程教案篇五
检验。
这是第一次比较完整地用框图反映实际问题与一元一次方程的关系。
让学生结合自己的解题过程概括整理,帮助理解,培养模型化的思想和应用数学于现实生活的意识。
小结与作业。
布置作业。
自我评价。
1、必做题:教科书82页习题2.2第2题。
2、一个两位数,个位数字是十位数字的3倍,如果把个位数字与十位数字对调,那么得到的新数比原数大54,求原来的两位数。
本课教育评注(课堂设计理念,实际教学效果及改进设想)。
课程改革的目的之一是促进学习方式的转变,加强学习的主动性和探究性,本章内容涉及大量的实际问题,丰富多彩的问题情境和解决实际问题的快乐更容易激起学生对数学的兴趣,在本节中,引导学生从身边的移动电话收费,旅游费用等问题展开探究,使学生在现实、富有挑战性的问题情境中经历多角度认识问题,多种策略思考问题,尝试解释答案的合性的活动,培养探索精神和创新意识。
在前面几节学习中,已经对利用一元一次方程解决问题的基本过程进行多次渗透,逐步细化,本节要求学生用框图概括,使学生对“应用一元一次方程解决实际问题”有较理性的认识,进一步体会模型化的思想。
初中七年级数学解一元一次方程教案篇六
(二)教材的重难点。
(一)知识技能目标。
1.目标内容。
(2)培养学生建立方程模型来分析、解决实际问题的能力以及探索精神、合作意识.。
2.目标分析。
(二)过程目标。
1.目标内容。
在活动中感受方程思想在数学中的作用,进一步增强应用意识.。
2.目标分析。
(三)情感目标。
1.目标内容。
2.目标分析。
初中七年级数学解一元一次方程教案篇七
1、知识与技能:会解含分母的一元一次方程,掌握解一元一次方程的基本步骤和方法,能根据方程的特点灵活地选择解法。
2、过程与方法:经历一元一次方程一般解法的探究过程,理解等式基本性质在解方程中的作用,学会通过观察,结合方程的特点选择合理的思考方向进行新知识探索。
3、情感、态度与价值观:通过尝试从不同角度寻求解决问题的`方法,体会解决问题策略的多样性;在解一元一次放的过程中,体验“化归”的思想。
初中七年级数学解一元一次方程教案篇八
请给同学们介绍纸草书(p95)。
数是多少?
并引入让同学运用设未知数的方法,列出相应的方程。
并回答:这个方程和我们以前学习的方程有什么不同?
同学们和老师一起完成解上述方程,并引入去分母。
例1、
例2、
活动:同学们,解一元一次方程的步骤有哪些?要注意哪些?
看一看你会不会错:
(1)解方程:
(2)解方程:
典型例题:解方程:
想一想:去分母时要注意什么问题?
(1)方程两边每一项都要乘以各分母的最小公倍数。
(2)去分母后如分子中含有两项,应将该分子添上括号。
选一选:
练一练:当m为何值时,整式和的值相等?
议一议:如何解方程:
注意区别:
1、把分母中的小数化为整数是利用分数的基本性质,是对单一的一个分数的分子分母同乘或除以一个不为0的数,而不是对于整个方程的左右两边同乘或除以一个不为0的数。
2、而去分母则是根据等式性质2,对方程的左右两边同乘或除以一个不为0的数,而不是对于一个单一的分数。
课堂小结:
(1)怎样去分母?应在方程的左右两边都乘以各分母的最小公倍数。
有没有疑问:不是最小公倍数行不行?
(2)去分母的依据是什么?
等式性质2。
(3)去分母的注意点是什么?
1、去分母时等式两边各项都要乘以最小公倍数,不可以漏乘。
2、如果分子是含有未知数的代数式,其分子为一个整体应加括号。
布置作业:p98,习题3.3第3题。
补充作业:解方程:
(1)。
(2)。
板书设计:
教学反思:
初中七年级数学解一元一次方程教案篇九
1.会列出二元一次方程组解简单应用题,并能检验结果的合理性。
2.知道二元一次方程组是反映现实世界量之间相等关系的一种有效的数学模型2017年-2017学年七年级数学下册全册教案(人教版)2017年-2017学年七年级数学下册全册教案(人教版)。
3.引导学生关注身边的数学,渗透将来未知转达化为已知的辩证思想。
2.彻底理解题意。
1.怎样设未知数?
2.找本题等量关系?从哪句话中找到的?
3.列方程组。
4.解方程组。
5.检验写答案。
思考:怎样用一元一次方程求解?
(1)甲、乙两数和是40差是6,求这两数。
(2)80班共有64名学生,其中男生比女生多8人,求这个班男生人数,女生人数。
(3)已知关于求x、y的方程,
2.p38练习第1题。
p42。习题2.3a组第1题。
后记:
初中七年级数学解一元一次方程教案篇十
教学目标。
1、经历由实际问题抽象为方程模型的过程,进一步体会模型化的思想。
2、通过探究实际问题与一元一次方程的关系,感受数学的应用价值,提高分析问题,解决问题的能力。
知识重点建立一元一次方程解决实际问题。
教学过程(师生活动)。
设计理念。
创设情境提出问题信息社会,人们沟通交流方式多样化,移动电话已很普及,选择经济实惠的收费方式很有理实意义。
出示教科书80页的例2;观察下列两种移动电话计费方式表:
全球通神州行。
月租费50元/月0。
本地通话费0.40元/分0.60元/分。
设计以下问题:
1、你能从中表中获得哪些信息,试用自己的话说说。
2、猜一猜,使用哪一种计费方式合算?
3、一个月内在本地通话200分和300分,按两种计费方式各需交费多少元?
4、对于某个本地通通话时间,会出现两种计费方式的收费一样的情况吗?本例是一道与生活相关的'移动电话收费的问题,让学生讨论选择经济实惠的收费方式很有现实意义。
理解问题是本身是列方程的基础,本例是通过表格形式给出已知数据的,通过设计问题1、2、3让学生展开讨论,帮助理解,培养学生的读题能力和收集信息的能力。
探索分析。
解决问题学生充分交流讨论、整理归纳。
解:1、用“全球通”每月收月租费50元,此外根据累计通话时间按0.40元/分加收通话费;用“神州行”不收月租费,根据累计通话时间按0.60元/分收通话费。
2、不一定,具体由当月累计通话时间决定。
3、全球通神州行。
200分130元120元。
300分170元180元。
0.6t=50+0.4t。
移项得0.6t-0.4t=50。
合并,得0.2t=50。
系数化为1,得t=250。
以表格的形式呈现数据,简单明了,易于比较。
通过探究实际问题与一元一次方程的关系,提高分析问题,解决问题的能力。
综合应用。
学生练习,教师巡视,指导,讨论解是否合理。
开放题。
课堂小结。
知识梳理小组讨论,试用框图概括“用一元一次方程分析和解决实际问题”的基本过程。
学生思考、讨论、整理。
实际问题题。
列方程。
初中七年级数学解一元一次方程教案篇十一
通过上节课学习后,学生已经掌握了用去括号、移项、合并同类项、把系数化为1这四个步骤解一元一次方程,接下来这一节课,我们要重点讨论是:
(1)解方程中的“去分母”。
(2)根据实际问题列方程。这样我们就掌握了解一元一次方程一般都采用的五步变形方法。
怎样解呢?学生困惑了,不知从何处下手了,此时,需要寻求一种新的变形方法来解它,求知的欲望出来了,想到了去分母,就是化去分母,把分数系数化为整数,使解方程中的计算方便些。
在解方程中去分母时,我们发现存在这样的一些问题:
(1)部分学生不会找各分母的最小公倍数,这点要适当指导。
(2)用各分母的最小公倍数乘以方程两边的项时,漏乘不含分母的项。
(3)当减式中分子是多项式且分母恰好为各分母的最小公倍数时,去分母后,分子没有作为一个整体加上括号,容易错符号。如解方程方程两边都乘以2后,得到2x—x+2=2,其中x+2没有加括号,弄错了符号。
初中七年级数学解一元一次方程教案篇十二
从学生的作业中反馈出:对去分母的第一步还存在较大的问题,是不是说明过程的叙述不太清楚,部分学生摸棱两可,真真自己做的时候就会暴露出不懂的,这也提醒我今后的`教学中在关键的知识点上要下“功夫”,切不可轻易的解决问题(想当然)。备课时应该多多思考学生的具体情况,然后再修改初备的教案,尽量完善,尽量完美。
1.去分母后原来的分子没有添加括号。
例1解方程:.
分析:分数线实际上包含括号的意思,去分母后原来的分子应该添上括号。
2.去分母时最小公倍数没有乘到每一项。
例2解方程:.
分析:去分母时最小公倍数没有乘到每一项,特别是不含有分数的项。
3.去括号导致错误。
4.运用乘法分配律时,漏乘括号里的项。
例3解方程:.
分析:去括号时没有把括号外的数分配到括号中的每一项。
初中七年级数学解一元一次方程教案篇十三
1.会列出二元一次方程组解简单应用题,并能检验结果的合理性。
2.知道二元一次方程组是反映现实世界量之间相等关系的一种有效的数学模型。
3.引导学生关注身边的数学,渗透将来未知转达化为已知的辩证思想。
1.列二元一次方程组解简单问题。
2.彻底理解题意
找等量关系列二元一次方程组。
1.怎样设未知数?
2.找本题等量关系?从哪句话中找到的?
3.列方程组。
4.解方程组。
5.检验写答案。
思考:怎样用一元一次方程求解?
比较用一元一次方程求解,用二元一次方程组求解谁更容易?
1.根据问题建立二元一次方程组。
(1)甲、乙两数和是40差是6,求这两数。
(2)80班共有64名学生,其中男生比女生多8人,求这个班男生人数,女生人数。
(3)已知关于求x、y的方程,
是二元一次方程。求a、b的值。
2.p38练习第1题。
小组讨论:列二元一次方程组解应用题有哪些基本步骤?
p42。习题2.3a组第1题。
后记:
2.3二元一次方程组的应用(2)
初中七年级数学解一元一次方程教案篇十四
本节课是人教版七年级上册第三章第一节的内容,主要的教学目标是使学生了解什么是方程,什么是一元一次方程;体会字母表示数的好处,体会从算式到方程是数学的一大进步;会将实际问题抽象为数学问题,通过找相等关系列方程解决问题。方程的概念在小学阶段已经出现过,如何让学生在已有的知识基础上更高一个层次认识方程、运用方程呢?我的教学策略是:第一步,创造一个问题情境引发学生的认知失衡。第二步,通过一个生活实例让学生进行思考、分析、总结归纳出新知识。第三步,介绍新知识的文化背景,对学生进行数学文化的渗透,同时为学习有关概念进行铺垫。第四步,通过讲练结合的方式突破本节课的难点——找相等关系列方程。
一、成功之处。
分层次设置练习题,逐步突破难点。初一学生在解应用题时,主要存在三个方面的困难:(1)抓不住相等关系;(2)找出相等关系后不会列方程;(3)习惯用算术解法,对用代数方法分析应用题不适应。其中,第一个方面是主要的,解决了它,另两个方面就都好解决了。为此我在“练一练”的环节里设置了a与b两组练习,a组练习的题目已经帮学生设定了未知数,重点训练学生找相等关系、列方程;b组练习的题目要求学生独立设未知数列方程,要求学生能突破用算术解法解应用题的思维定势,学会通过阅读题目、理解题意、进而找出等量关系、列出方程解决问题的方法。
营造了宽松、和谐的课堂氛围。本节课的教学从始至终,教师都是面带笑容地与学生进行互动,让学生充分发表自己的看法,及时给学生鼓励与肯定,消除学生由小学升入初中因环境变化而引起的心里障碍,激活学生的思维,保持学生参与课堂学习的积极性。
二、不足之处。
教学容量偏大,以致没有充分的时间引导学生对如何找相等关系进行总结归纳。本节课在引出一元一次方程的概念以后,设计了一组判断题对一元一次方程的概念进行辨析。课后我想到这节课的难点是如何找相等关系列方程,应该淡化概念,如果删去这道练习题就可以让学生有更充分的时间去总结归纳找相等关系的方法,从而突破本节课的难点。对学生情况不够熟悉。因为本节课是初一学生入学后一个月进行的,所以我对许多学生还叫不出名字,虽然课堂上可以用手指着某某同学回答问题,但是课后仔细想来,做好中小学数学教学的衔接工作不仅仅是教学内容设计上的衔接,而应该是多方位的衔接,其中就包括教师应尽快了解、熟悉学生,这样可以帮助消除学生刚升入初中的许多不适应。
初中七年级数学解一元一次方程教案篇十五
知识与技能。
(2)掌握二元一次方程组和对应的两条直线之间的关系;
(2)通过“做一做”引入例1,进一步发展学生数形结合的意识和能力。
(1)在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神。
(2)在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力。
数形结合和数学转化的思想意识。
教具:多媒体课件、三角板。
学具:铅笔、直尺、练习本、坐标纸。
第一环节:设置问题情境,启发引导(5分钟,学生回答问题回顾知识)。
内容:
1、方程x+y=5的解有多少个?是这个方程的解吗?
2、点(0,5),(5,0),(2,3)在一次函数y=的图像上吗?
3、在一次函数y=的图像上任取一点,它的坐标适合方程x+y=5吗?
4、以方程x+y=5的解为坐标的所有点组成的图像与一次函数y=的图像相同吗?
由此得到本节课的第一个知识点:
(1)以二元一次方程的解为坐标的点都在相应的函数图像上;
(2)一次函数图像上的点的坐标都适合相应的二元一次方程。
第二环节自主探索方程组的解与图像之间的关系(10分钟,教师引导学生解决)。
内容:
1、解方程组。
2、上述方程移项变形转化为两个一次函数y=和y=2x,在同一直角坐标系内分别作出这两个函数的图像。
(1)求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;
(2)求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解。
(3)解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种。
注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组。
第三环节典型例题(10分钟,学生独立解决)。
探究方程与函数的相互转化。
内容:例1用作图像的方法解方程组。
例2如图,直线与的交点坐标是。
第四环节反馈练习(10分钟,学生解决全班交流)。
内容:
1、已知一次函数与的图像的交点为,则。
2、已知一次函数与的图像都经过点a(—2,0),且与轴分别交于b,c两点,则的面积为()。
(a)4(b)5(c)6(d)7。
3、求两条直线与和轴所围成的三角形面积。
4、如图,两条直线与的交点坐标可以看作哪个方程组的解?
第五环节课堂小结(5分钟,师生共同总结)。
内容:以“问题串”的形式,要求学生自主总结有关知识、方法:
1、二元一次方程和一次函数的图像的'关系;
(1)以二元一次方程的解为坐标的点都在相应的函数图像上;
(2)一次函数图像上的点的坐标都适合相应的二元一次方程。
2、方程组和对应的两条直线的关系:
(1)方程组的解是对应的两条直线的交点坐标;
(2)两条直线的交点坐标是对应的方程组的解;
(1)代入消元法;
(2)加减消元法;
(3)图像法,要强调的是由于作图的不准确性,由图像法求得的解是近似解。
第六环节作业布置。
习题7.7a组(优等生)1、2、3b组(中等生)1、2c组1、2。
附:板书设计。
初中七年级数学解一元一次方程教案篇十六
这节课主要讲了一道实际应用题,是关于足球比赛的。这道题都是来源于生活,又作用于生活,提供学生生活中熟悉的材料作背景,学生学习兴趣很高。并且本节课采用活动―探索―合作―交流的形式,培养了学生的团结协作能力、勇于探索的精神。使学生在轻松熟悉的环境中完成了学习任务。自我感觉设计比较合理,题目适当,时间恰当,并注重知识的前后衔接,照顾更多的中差生。
不足之处:
过高估计学生,导致对学生在课堂上出现了很多小问题,今后应加强细节的设计和全面考虑。学生的讨论与合作学习还需加强,讨论问题还不够深入,多数时间还是以个别回答为主,虽然许多个别回答非常精彩,但仍需注意讨论形式的变化,让学生从合作学习中有所提高。另外,还需加强的是学生发现问题能力的培养,多数问题的发现还是在教师的指导下完成的。如果能达到学生提出问题,小组讨论,全班解决,那效果更佳。
初中七年级数学解一元一次方程教案篇十七
本节课是在学生学会了运用等式的基本性质解一元一次方程的基础上学习的,但是在解题过程中,书写理由太费劲,移项的出现使得解一元一次方程有了更简洁的表示方法和解法,但是移项实际上就是等式的性质(在等式的两边同加伙同减同一个代数式,所的结果仍然是等式)的另一种说法,因而移项概念的得出与运用等式的性质解方程是密不可分的,所以我在前置自学中设计了运用等式的性质解一元一次方程的几个题目,并让学生课间做到黑板上,为学生自主探究移项概念做好了铺垫工作;因为这节课的重点是移项法则的应用,因而我又设计了几个巩固移项概念的题组,通过小组合作学习、自主学习等多种方式来解决问题,对移项的概念和法则加深理解和应用;然后自学课本例题,掌握解一元一次方程的基本步骤和算理,并加以巩固应用,让学生体会出解题步骤的简洁性并通过达标测试中的应用问题,使学生进一步体会到解一元一次方程在解决实际问题中的重要性。
我在设计问题时,本想在导入新课时设计一个贴近学生生活的实际问题,最后在学习完解一元一次方程后,让学生运用所学知识解决这个问题,但是考虑到时间问题没有设计,因而对于加强学生学习数学的应用意识做得还不够好。
【本文地址:http://www.xuefen.com.cn/zuowen/14943066.html】