平行四边形的面积教学设计及反思范文(17篇)

格式:DOC 上传日期:2023-11-25 12:12:07
平行四边形的面积教学设计及反思范文(17篇)
时间:2023-11-25 12:12:07     小编:笔尘

志同道合的伙伴可以帮助我们共同实现目标。在写总结时,要注重逻辑性,使得读者能够更好地理解。阅读总结范文可以激发自己的写作灵感和创造力。

平行四边形的面积教学设计及反思篇一

1.使学生理解平行四边形面积计算公式的来源,能运用公式正确地计算平行四边形的面积,并会计算一些简单的有关平行四边形面积的实际问题。

2.培养学生初步的逻辑思维能力和空间观念。

3.结合教材渗透转化思想。

掌握和运用平行四边形面积计算公式。

平行四边形面积公式的推导过程。

投影器、长方形框架、平行四边形纸片等。

一、课前谈话:

师:同学们,你们知道曹冲称象的故事吗?曹冲是怎样称出大象的重量的?

二、创设生活情境

学生自由发言。

师:长方形花坛的面积你们肯定会算,知道什么就可以了?平行四边形的面积会算吗?今天我们就一起来探讨平行四边形的面积。(板书)

三、探究新知

1、自主探索

出示一平行四边形纸片,这是一张平行四边形的纸片,想一想,你们有办法知道它的面积吗?也可以和组里的同学商量讨论,如果有需要的材料可以到我给大家准备的学具袋里去找一找,我们比比看,哪个小组的同学最先知道这个平行四边形的面积!

学生以小组为单位开展活动,教师巡视。

汇报、反馈:都有结果了吧,哪个小组先来汇报?

各小组派代表发言。

2、对比分析

每个小组都得到了这个平行四边形的面积,我们一起来看看这些方法。课件展示学生的主要方法。

3、归纳总结

四、巩固运用

我们会计算了平行四边形的面积,接下来我们就到生活中去看看吧!

1、(课件出示例题)这是五二班选的花坛的相关数据,现在能求出它的面积了吧?

2、p82看第2题。

3、课件出示:p83第题,这两个平行四边形的面积相等吗?为什么?

五、小结:今天大家学得开心吗?你们都有哪些收获?

平行四边形的面积教学设计及反思篇二

教学目标:

通过看一看、剪一剪、拼一拼、比一比、算一算,使学生理解并掌握平行四边形的面积公式,并能进行简单的平行四边形的面积计算。

教学过程:

1、 让生看p69,观察方格纸上的长方形和平行四边形,并填写:

每个小方格代表1平方厘米(不满一格的,都按半格计算),数一数,长方形的面积是(   )平方厘米;平行四边形的面积是(  )平方厘米。

2、 观察并讨论:这个长方形和平行四边形有怎样的关系?

在学生讨论、回答的基础上小结得出:长方形的长和平行四边形的底相等,长方形的高和平行四边形的高相等。

1、 出示:平行四边形,请你想想办法,怎样求它的面积。(让生每人先准备两个平行四边形)。

2、 让生小组讨论,尝试。

3、 检查学生讨论的结果。如果有学生想出,让他到讲台上给其他同学介绍。

(2)比一比:这两个图形有什么关系?什么变了,什么没变?

这两个图形形状变了,但面积相等。

(3)、请你量一量长方形的长与宽,算出它的面积。

4、 总结得出。

如果用s表示平行四边形的面积,用a和h分别表示平行四边形的底和高,那么,平行四边形的面积计算公式可以写成:

s=ah。

(1)      让生独立做。

(2)      检查:18×10=18(平方米)。

(3)      注意:面积单位。

6、 看书,质疑。

三、练习。

底(厘米)。

50。

12.5。

100。

9

高(厘米)。

40。

8

36.4。

4

面积(平方厘米)。

12米。

25米。

50厘米。

四、总结。

五、课堂作业。

p71  5。

平行四边形的面积教学设计及反思篇三

教学内容:人教版《义务教育课程标准实验教科书数学》五年级上册第80、81页的内容。

教学目标:

1.在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;

2.通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。

教学重点:掌握平行四边的面积计算公式,并能正确运用。

教学过程:

一、情境激趣。

1.播放运载“嫦娥一号”探月卫星的火箭成功发射的录像。

2.师:为了纪念这个有意义的时刻,我们学校的小朋友们在数学活动上利用一些图形拼出了运载“嫦娥一号”的火箭模型呢!

3.(课件出示拼成的模型)让学生观察火箭模型是由哪些图形拼成的。

4.比较其中的长方形和平行四边形,谁的面积大,谁的面积小,可以用什么方法?(引导学生说出可以用数方格的方法。)。

二、自主探究。

1.数方格比较两个图形面积的大小。

(1)提出要求:每个方格表示1平方厘米,不满一格的都按半格计算。

(2)学生用数方格的方法计算两个图形的面积并填写书上80页表格。

(3)反馈汇报数的结果,得出:用数方格的方法知道了两个图形的面积一样大。

(5)观察表格,你发现了什么?

(6)引导学生交流发现并全班反馈得出:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积相等;平行四边形的面积等于底乘高。

2.操作验证。

(1)提出要求:请小朋友利用三角尺、剪刀,动手剪一剪拼一拼,把平行四边形想办法转变成我们已学过面积计算的图形,完成后和小组的同学互相交流自己的方法。

(2)学生分组操作,教师巡视指导。

(3)学生展示不同的方法把平行四边形变成长方形。

(4)利用课件演示把平行四边形变成长方形过程。

(5)观察并思考以下两个问题:

a.拼成的长方形和原来的平行四边形比较,什么变了?什么没变?

b.拼成的长方形的长与宽分别与原来平行四边形的底和高有什么关系?

(6)交流反馈,引导学生得出:

a.形状变了,面积没变。

b.拼成的长方形,长与原来平行四边形的底相等,宽与原来平行四边形的高相等。

(7)根据长方形的面积公式得出平行四边形面积公式并用字母表示。

(8)活动小结:我们把平行四边形转变成了同它面积相等的长方形,利用长方形面积计算公式得出了平行四边的面积等于底乘高,验证了前面的猜想。

3.教学例1。

(1)(出示例1)平行四边形的花坛的底是6m,高是4m。它的面积是多少?

(2)学生独立完成并反馈答案。

三、看书质疑。

四、课堂总结。

通过这节课的学习,你有哪些收获?(学生自由回答。)。

五、巩固运用。

1.练习十五第1题,让学生独立完成后反馈答案。

4.练习十五第3题。

六、全课小结(略)。

平行四边形的面积教学设计及反思篇四

教学目标:

通过看一看、剪一剪、拼一拼、比一比、算一算,使学生理解并掌握平行四边形的面积公式,并能进行简单的平行四边形的面积计算。

教学过程:

一、看一看:得出平行四边形与长方形的关系。

1、让生看p69,观察方格纸上的长方形和平行四边形,并填写:

每个小方格代表1平方厘米(不满一格的,都按半格计算),数一数,长方形的面积是()平方厘米;平行四边形的面积是()平方厘米。

2、观察并讨论:这个长方形和平行四边形有怎样的关系?

在学生讨论、回答的基础上小结得出:长方形的长和平行四边形的底相等,长方形的高和平行四边形的高相等。

二、剪一剪、拼一拼、比一比、算一算,得出平行四边形的面积公式。

1、出示:平行四边形,请你想想办法,怎样求它的面积。(让生每人先准备两个平行四边形)。

2、让生小组讨论,尝试。

3、检查学生讨论的结果。如果有学生想出,让他到讲台上给其他同学介绍。

(1)沿着平行四边形的一条高,剪下来,移到右边拼拼。

(2)比一比:这两个图形有什么关系?什么变了,什么没变?

这两个图形形状变了,但面积相等。

(3)、请你量一量长方形的长与宽,算出它的面积。

4、总结得出。

长方形的面积=长×宽。

如果用s表示平行四边形的面积,用a和h分别表示平行四边形的底和高,那么,平行四边形的面积计算公式可以写成:

s=ah。

5、例:有一块平行四边形的草地,底是18米,高是10米,这块草地的面积是多少?

(1)让生独立做。

(2)检查:18×10=18(平方米)。

(3)注意:面积单位。

6、看书,质疑。

三、练习。

底(厘米)。

50。

12.5。

100。

9

高(厘米)。

40。

8

36.4。

4

面积(平方厘米)。

12米。

24米40厘米15米。

25米。

50厘米。

3、有一块平行四边形的玻璃,底48厘米,高36厘米,它的面积是多少平方厘米?

4、有一块平行四边形的菜地,底120米,高比底少40米,这块地的面积是多少?

四、总结。

五、课堂作业。

p715。

书到用时方恨少,事非经过不知难。为大家整理的15篇平行四边形的面积教学设计及反思到这里就结束了,希望可以帮助您更好的写作平行四边形的面积教学设计。

平行四边形的面积教学设计及反思篇五

1、理解并掌握平行四边形面积的计算公式,会利用公式正确计算平行四边形的面积。

2、通过操作、观察、比较等实践活动,经历主动探索面积计算公式的过程,培养分析问题、解决问题的能力,进一步发展空间想象力和动手操作能力。

3、渗透转化的数学思想,激发探索的兴趣,增强数学应用意识,提高解决实际问题的能力。

理解并掌握平行四边形面积的计算公式,会利用公式正确计算平行四边形的面积。

理解平行四边形面积公式的推倒过程,会利用公式正确计算平行四边形的面积。

一、创设情境,激趣导入。

学生汇报。

(多媒体出示一块长方形的地,一块平行四边形的地)。

学生汇报。

师:你们准备怎样解决呢?

师:怎样才能知道这块长方形地的面积呢?(引导学生得出两种方法:数格子和用公式计算:测量出它的长和宽,用长乘宽就等于长方形的面积。)。

多媒体出示方格和长方形的长与宽,学生求出长方形的面积。

学生小组交流。

二、动手实践,探索新知。

学生汇报,教师引导:

(多媒体出示格子,并说明一个方格表示1平方厘米)。

师:现在就请同学们用这个方法算出平行四边形的面积(说明要求:不满一格的都按半格计算)。

师:通过数格子,我们发现我们的平行四边形萝卜地和老伯的长方形地的面积一样大,这样一来,我们换地公平了吗?(公平)。

学生猜测。

师:这还只是我们的一个猜想,大胆合理的猜想是我们迈向成功的第一步,那么接下来就请同学们利用手中的平行四边形卡片、剪刀等学具,想办法来验证验证。

学生动手实践,合作交流。

学生演示剪拼的过程及结果。(师:为什么要转化成长方形呢?学生汇报,师生总结:因为长方形是特殊的平行四边形,它的面积等于长乘宽)。

教师用课件演示剪——平移——拼的过程。

师:我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?引导学生讨论:

1、拼出的长方形和原来的平行四边形比,面积变了没有?什么变了?

2、拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?

学生汇报,教师归纳:

经过同学们的努力,我们发现把一个平行四边形转化为一个长方形,它的面积与原来的平行四边形面积相等,平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽。

学生汇报,教师板书:

此主题相关图片如下:

s=a×h。

师:刚才我们已经推导出了平行四边形的面积公式,知道了要求平行四边形的面积,必须要知道哪几个条件?(底和高,强调高是底边上的高)。

三、练习深化,巩固新知。

此主题相关图片如下:

2、先估一估,再算一算下面哪个平行四边形的面积与给出的平行四边形的面积一样大?

此主题相关图片如下:

3、先根据信息猜测是哪个省市的地形图,山西南北大约590千米,东西大约310千米,估计它的土地面积。

此主题相关图片如下:

四、知识应用,总结评价。

师:生活中还有哪些地方应用到我们今天所学的知识呢?

学生交流。

学生交流。

平行四边形的面积教学设计及反思篇六

:九年义务教育六年制小学数学第九册70页一72页。

1.使学生理解平行四边形面积计算公式的来源,能运用公式正确地计算平行四边形的面积,并会计算一些简单的有关平行四边形面积的实际问题。

2.培养学生初步的逻辑思维能力和空间观念。

3.结合教材渗透转化思想。

教学重点:掌握和运用平行四边形面积计算公式。

教学难点:平行四边形面积公式的推导过程。

课前准备:投影器、长方形框架、平行四边形纸片等。

一、课前谈话:

师:同学们,你们知道曹冲称象的故事吗?曹冲是怎样称出大象的重量的?

二、创设生活情境

学生自由发言。

师:长方形花坛的面积你们肯定会算,知道什么就可以了?平行四边形的面积会算吗?今天咱们就一起来探讨平行四边形的面积。(板书)

三、探究新知

1、自主探索

出示一平行四边形纸片,这是一张平行四边形的纸片,想一想,你们有办法知道它的面积吗?也可以和组里的同学商量讨论,如果有需要的材料可以到我给大家准备的学具袋里去找一找,咱们比比看,哪个小组的同学最先知道这个平行四边形的面积!

学生以小组为单位开展活动,教师巡视。

汇报、反馈:都有结果了吧,哪个小组先来汇报?

各小组派代表发言。

2、对比分析

每个小组都得到了这个平行四边形的面积,咱们一起来看看这些方法。课件展示学生的主要方法。

3、归纳总结

四、巩固运用

咱们会计算了平行四边形的面积,接下来我们就到生活中去看看吧!

1、(课件出示例题)这是五二班选的花坛的相关数据,现在能求出它的面积了吧?

2、p82看第2题。

3、课件出示:p83第题,这两个平行四边形的面积相等吗?为什么?

五、小结:今天大家学得开心吗?你们都有哪些收获?

平行四边形的面积教学设计及反思篇七

内容的梳理:

在《2011版数学新课标》中,“图形与几何”这部分内容包括:空间和平面基本图形的认识,图形的性质、分类与度量,图形的平移、旋转、轴对称、相似和投影,平面图形基本性质的证明,运用坐标描述图形的位置和运动。“平行四边形的面积”这节课,是在图形的度量这一范围当中。

与其知识相关联的知识链接:一是空间平面基本图形的认识,二是长方形和正方形的周长与面积的计算,三是关于平行与垂直的认知。这些是学习本课内容的知识基础。此外,“平行四边形面积”这节内容,对后续学习三角形、梯形、组合图形及圆形等其他平面图形的面积也是一个铺垫。

教材的解读:

平行四边形面积计算是在学生掌握了图形的特征以及长方形、正方形面积计算的基础上学习的,是进一步学习三角形面积、梯形面积、圆的面积和立体图形表面积的基础,平行四边形面积的计算又为学习三角形和梯形面积计算打下坚实的基础。

学生的了解:

五年级的学生已经具备初步的预习能力,也有了一定的活动经验,根据教材中的描述,学生基本上能对割补法有初步的体验,只是在语言的描述上还有一定的困难。但小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难,因此本节课的学习就让学生充分利用好已有的`知识,调动他们多种感官全面参与新知的发生、发展和形成过程。

思想的渗透:

“转化”是数学学习和研究的一种重要思想方法,平行四边形的面积公式推导就采用了转化的方法。在本节课的教学中,应以学生的探究活动为主要形式,通过操作,一方面启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透“转化”的思想方法;另一方面引导学生去主动探究所研究的图形与转化后的图形之间有什么关系,从而找到面积的计算方法。这样,学生在理解的基础上掌握面积计算公式,印象深刻,思维也得到发展。

活动经验的积累:

平行四边形面积公式的推导是建立在学生数、剪、拼、摆的操作活动之上的,所以操作是本节课教学的重要环节。教师既要做好引导,又要注意不要包办代替,一定要学生在独立思考和合作交流的基础上进行操作,切记有教师带着做。因此,教学中先用数格方法计算图形的面积,帮助学生进一步理解面积和面积单位的含义,为推导平行四边形的面积计算公式提供感性材料。再通过割补实验,把一个平行四边形转化为一个与它面积相等的长方形,把新旧知识联系起来,使学生明确图形之间的内在联系,便于从已经学过的图形面积计算公式推导出新的图形面积计算公式,使学生明确面积计算公式的意义和来源。通过实际操作活动,发展学生的空间观念,培养动手操作能力。

很高兴,能有这样的机会和各位数学精英们切磋交流,还恳请各位多提宝贵意见,多多给予我指导,谢谢!

平行四边形的面积教学设计及反思篇八

教学目的:1.通过剪拼摆等活动,让学生主动解决实际问题。

3.培养学生的初步的空间观念。

4.培养学生积极参与,团结合作,主动探索的精神。

教学难点:公式推导的过程。

透明的方格纸和剪刀。

教学过程:

s:数方格的方法。(教师揭示并演示)。

t:那这样的数方格的方法你有什么想说的吗?

s1:麻烦。s2:不够精确······。

s:······。

2.动手操作推倒公式。

t:那出你准备好的平行四边形,看看能不能将它们转化成我们以前学过的图形?

(先独立思考有了想法小组交流)。

s:······。

汇报:t:你是怎么样做的呢?哪个小组愿意来给大家展示一下。

s:拼成三角形,梯形,长方形······。

t:通过同学们的亲身探索操作,将平行四边形转化成了许多我们学过的图形。

知识转化:t:大家观察一下,哪种图形的面积我们会计算呢?

s:长方形。

t:请大家拿出来一张平形四边形纸片,将它转化成为长方形吧!智慧老人现在有几个问题留给大家思考,便于同学发现其中的规律。

请看小黑板:

1.你们是怎么样转化的?

2.与原来的平行四边形的关系是怎么样的?(面积对应的高与底)。

s2:面积是一样的.(学生板书)。

s3:长方形的面积是长乘宽长方形的面积=长乘宽(学生板书)。

t::哪个小组与他们的观点一致,有需要补充的吗?

s:我们是沿着另一条高折的也拼成了长方形。

t:同学们,听出来这两组同学的方法,虽然有不同的地方,但有一个共同点就是沿着高剪.

t:为什么要沿着高剪开的呢?

s:长方形有四个直角,所以我们必须沿着高来剪这样才能形成直角.

s:(学生板书:s=ah)。

小结:t:通过图形的转化,我们推出了平行四边形的面积计算公式,那我们以后再求平行四边形的面积的时候只要知道平行四边形的哪些条件(底和高)我们知道了平行四边形的底和高,我们就可以求平行四边形的(面积).

s:3×4=12(平方米)答:得买12平方米的草皮.

23。

33。

t:这道题告诉我们一个怎么样的问题?

s:对应边与对应高之间的乘积.

2.课本24页试一试说说自己的方法.

3.练一练。

总结:这节课你都学会了什么?有怎样的收获呢?

你对自己的表现满意吗?给自己来打一下分数满分是10分的话.

平行四边形的面积教学设计及反思篇九

1、知识与技能:

(1)使学生通过实际操作和讨论思考,探索并掌握平行四边形的面积计算公式,并能运用公式正确计算平行四边形的面积。

2、过程与方法:

使学生经历观察,操作、测量、讨论分析、比较归纳等数学活动过程,体会“等级变形”的思想方法,培养空间观念,发展初步的推理能力。

3、情感、态度与价值观:

(1)渗透转化的数学思想方法。

(2)使学生在探索平行四边形面积的计算方法中,获得成功的体验,形成积极的数学学习情感。

1、理解平行四边行面积计算公式的推导过程,并正确应用平行四边形的面积计算公式解决相应的实际问题。

2、让学生在动手实践与交流中引导学生从不同的途径和方法去探索平行四边形面积的计算方法。

1、多媒体课件、自制教具。

2、每个学生准备1把剪刀、一张平行四边形纸片。

一、创设情境,引入课题:

生:

现在老师把两个图形画在了方格纸上。(课件出示两个图形)师:左边的同学来数一数这块儿长方形的地,右边的同学来数一数平行四边形的地,看看它们的面积各是多少。(注意:不满一格的都按半格计算)。

师:我们一块儿来数一数平行四边形的面积(课件)。同学们,通过数方格你们发现了什么?(疑惑)哦,原来两块儿地的面积一样大。

(通过这个故事,我们知道了对父母、对长辈要尊敬;与兄弟姐妹要和睦;就好比我们这个大家庭,我们同学之间要团结,不能为了一些小事而斤斤计较或发生矛盾,你们说是吗?)。

师:看来图形的面积大小用眼睛看是不准确的,数方格又太麻烦了,如果平行四边形的面积也有公式,是不是就方便多了。那平行四边形的面积公式到底是什么呢?我们这一节课就来研究这个内容。(板书课题)。

二、探究新知,导出公式:

1、猜想:

师:我们在来观察这两个图形,想一想,除了面积相等以外,它们还有什么关系呢?(提示:看看长和底,宽和高)。

生:

生:

师:你们是怎么推导出这个公式的呢?

师:我们四人一组可以商量商量,也可以拿出我们手中的平行四边形通过剪、拼或平移,看能不能拼成我们以前学过的平面图形?(一个图只能剪一次)。

2、验证:

(1)学生动手操作。

(2)小组演示。

(3)师课件演示。

生:

师:同学们,你们能不能完整的说说平行四边形面积公式是怎样推导的呢?

(4)推导过程:(课件显示)。

我们把一个平行四边形通过剪拼、平移把它转化成一个长方形,长方形的长与平行四边形的底相等,拼成长方形的宽与平行四边形的高相等,因为长方形的面积等于长乘宽,所以平行四边形的面积就等于底乘高。

(5)师:刚才我们不仅验证我们的猜想,而且运用的“转化”的思想。还学会了“平移”的方法,同学们的表现真不错。

师板书:s=ah。

3、面积公式的运用。

三、巩固发展、实际运用:

1、这时晶晶和贝贝遇到了一个难题,想请同学们来帮帮它们,你们愿意吗?它们在干什么呢?(课件)。

2、一幅平行四边形的装饰画高5是分米,底是高的3。5倍,这个平行四边形的面积是多少?(课件)。

四、课后延伸:

五、反思与体会:

同学们,想一想,这节课你有哪些收获呢?(生)。

师:看来,大家的收获还真不少,只要大家勤动手,勤动脑,就能学到更多的、更有趣的数学知识,并且可以运用这些数学知识来解决我们生活中的实际问题,是吗?好了,这节课我们就上到这,同学们再见!

平行四边形的面积教学设计及反思篇十

教学目标:

通过看一看、剪一剪、拼一拼、比一比、算一算,使学生理解并掌握平行四边形的面积公式,并能进行简单的平行四边形的面积计算。

教学过程:

一、看一看:得出平行四边形与长方形的关系。

1、 让生看p69,观察方格纸上的长方形和平行四边形,并填写:

每个小方格代表1平方厘米(不满一格的,都按半格计算),数一数,长方形的面积是(   )平方厘米;平行四边形的面积是(  )平方厘米。

2、 观察并讨论:这个长方形和平行四边形有怎样的关系?

在学生讨论、回答的基础上小结得出:长方形的长和平行四边形的底相等,长方形的高和平行四边形的高相等。

二、剪一剪、拼一拼、比一比、算一算,得出平行四边形的面积公式。

1、 出示:平行四边形,请你想想办法,怎样求它的面积。(让生每人先准备两个平行四边形)。

2、 让生小组讨论,尝试。

3、 检查学生讨论的结果。如果有学生想出,让他到讲台上给其他同学介绍。

(2)比一比:这两个图形有什么关系?什么变了,什么没变?

这两个图形形状变了,但面积相等。

(3)、请你量一量长方形的长与宽,算出它的面积。

4、 总结得出。

如果用s表示平行四边形的面积,用a和h分别表示平行四边形的底和高,那么,平行四边形的面积计算公式可以写成:

s=ah。

(1)      让生独立做。

(2)      检查:18×10=18(平方米)。

(3)      注意:面积单位。

6、 看书,质疑。

三、练习。

底(厘米)。

50。

12.5。

100。

9

高(厘米)。

40。

8

36.4。

4

面积(平方厘米)。

12米。

25米。

50厘米。

3、 有一块平行四边形的玻璃,底48厘米,高36厘米,它的面积是多少平方厘米?

4、 有一块平行四边形的菜地,底120米,高比底少40米,这块地的面积是多少?

四、总结。

五、课堂作业。

p71  5。

平行四边形的面积教学设计及反思篇十一

2.通过数、剪、拼等动手操作活动,探索平行四边形面积计算公式的推导过程,渗透转化的数学思想,发展学生的空间观念。

3.在解决实际问题的过程中,感受数学与生活的联系,培养学生的数学应用意识。(现在目标应该写四基四能。)。

两张格子纸,一张白纸,可变形的平行四边形。

一、揭示课题:平行四边形(展示课件课本情景图)。

师:那么我们发现生活中处处有图形,,那么学校里面想对这两块花坛进行规划,在规划之前想比较他们的大小,比较他们的大小其实就是比较他们的什么?(展示单独两个花坛图片)。

生:面积(学生回答面积后,马上追问,什么是面积?)。

师:什么是面积?

生:面积就是一个图形所占平面的大小。

生:长方形和正方形。

师:它们的面积怎么求?

师:长方形的面积为什么等于长×宽?咱们是怎样求出来的?

(设计意图:引导学生回忆,数方格计算面积的方法,也就是数小方格的简便运算)。

师:长方形的面积我们已经学过,那么平行四边形的面积就是我们这节课要探究的。(板书课题)。

二、新授。

师:两个花坛不能直接看出他们面积的大小,但是如果老师把两个花坛的图形搬到方格纸中,能不能看出两个花坛哪个花坛的面积可以算出来?(展示方格纸)。

生:能。

师:怎么看出来?

生1:长方形的面积可以直接数格子数出来24个格子,是24平方米。

生2:长方形的长是6米,宽是4米,利用长方形面积公式:长方形的面积=长×宽=6×4=24。

师:长方形的面积可以直接数出来,那么平行四边形的面积能不能用数方格的方法,直接数出它的面积呢!

生操作。(拿出1号方格纸,不满一格的都按照半格计算)。

师:看看同学们都是怎么数的?

生:20个满格,8个半格,一共24个格,面积是24平方米。

(引导学生发现计算是最好的方法。设计意图:引导学生发现探索面积公式的必要性。)。

生:平行四边形的面积=底×高(猜测一下,平行四边的面积可能与什么有关?学生回答后,马上画出平行四边形的底和高,并测量。)。

生1:底是6米。

生2:高是4米。

(拿出2号方格纸)在方格纸上画一个平行四边形,并计算出平行四边形的面积。

生操作。

出示学生的作品,介绍一下是怎么想的。

生1:用拼的方法,拼成一个长方形,再数出面积。

生2:也是拼,剪掉上面的拼下面,剪下面拼上面。

师:刚才他们都用到了一个动词,是什么?(生:拼)。

师板书:拼。

生4:整块简拼,移到右边。

师:拼的过程其实也是我们数学当中的平移的过程。

师:不管是数格子,还是拼剪的方法,都算出了平行四边形的面积。

3、出示3号白纸,学生自己画一个平行四边形。

学生操作,小组讨论。

(此环节是本节课的重点和难点,应该放手让学生小组合作,讨论,并且汇报)。

展示学生作品。

小组讨论,学生操作剪一剪,拼一拼。

生1:不沿高剪得。

生2:先沿平行四边形的高剪开,把剪下来的三角形向右平移,拼在图形的右下方,把图形变成一个长方形,转化成长方形就能计算面积了。

师:看来平行四边形的面积和长方形的面积有关系,到底有什么关系呢?

师提醒:观察原来的平行四边形和转化后的长方形,发现它们之间有哪些等量关系?

学生讨论。

生1:平行四边形拼成后底成了长方形的长,高成了长方形的宽,长方形的面积是长×宽,所以平行四边形的面积=底×高。

(汇报时引导学生用完善的语言表达,把平行四边形沿着一条高剪开,把剪下的部分平移到平行四边形的另一侧,拼成一个长方形,拼成的长方形与原来的平行四边形面积相等,长方形的长是原来平行四边形的底,长方形的宽是原来平行四边形的高,因为长方形面积等于长乘宽,所以平行四边形面积等于底乘高。学生边汇报,教师边板书)。

3、如果用字母s表示面积,a表示底,h表示高。

生:s=a×h。

利用公式来计算。

出示例题1(练习题的设计应先出带图的,再出文字的,体现直观到抽象。)89页第二题可以打在幻灯片上,为了节约时间可以只列式不计算,目的是练熟公式。

拓展练习:

a20米b20平方米c18米d18平方米。

(2)出示图形(强调高和底是相对的)。

(3)画出一个底是3cm,高的5cm的平行四边形。

师总结:等底等高的平行四边形面积相等,但是形状不一样。

三、拓展探究。

1、展示可以拉伸的平行四边形,演示由平行四边形拉成长方形的过程。

师:那么这个平行四边形在拉成长方形时面积发生改变了吗?

学生讨论。

学生1:没有改变。

学生2:改变。

学生辩论。

师:周长一样长的平行四边形和长方形,面积不一定也一样。

四、总结。

这节课我们学习了什么,回顾整堂课的过程。

用今天的方法还能解决以后的问题,比如说三角形、梯形的面积。

预知后事,自己分晓。

板书设计。

拼数。

s=a×h。

平行四边形的面积教学设计及反思篇十二

使学生经历探索平行四边形面积计算公式的推导过程,掌握平行四边形面积的计算方法;培养学生的观察操作能力,领会割补的实验方法;培养学生灵活运用知识解决实际问题的能力;培养学生的空间观念,发展其初步推理能力;培养学生的合作意识和严谨的科学态度,渗透转化的数学思想和事物间相互联系的辩证唯物主义观点。

课件、平行四边形卡片、剪刀、三角板、直尺等。

“我能行”四步教学法。(详见文后注)。

同学们,你们想了解老师吗?你想知道关于我的什么情况?

老师的年龄是多少?教几年级?

师:我不能直接告诉你,那你们知道你父母的年龄吗?我可以让你们猜猜?为什么这样猜?

生:我的妈妈是(38)岁,年龄差不会有太多的变化,所以许老师的年龄应该是(30)岁。

师:想得真好,许老师就是(30)岁。

师:你们想想,我是怎样把我的年龄告诉你们的,我是把一个不熟悉的许老师,转化成一个熟悉的许老师,看来“转化”是非常有趣的。“转化”不单在生活中应用,在数学课堂上也一样可以应用。这节课我们就用这种数学“转化”思想来学习本节课。

师:

1.在数学课堂上哪些地方用到了“转化”?

预设:应用题三步转化成两步,再转化成一步;求未知数x,开始给出的式子比较复杂,然后一步一步转化成简单的方程。

看来,“转化”是一位非常高深的、不见踪影的高人,在背后帮助着我们。

2.请同学们看这样一个图形(不规则图形,)怎样求这个图形的面积呢?

生:演示方法。

3.师:为什么把它拼成一个长方形呢?

预设:学过长方形面积的计算,而且能够拼成长方形。

这个方法真好,开始的那个图形,不能一下子求出它的面积,但是我们通过“转化”,把一个不规则的图形转化成了长方形,可以求出它的面积。

4.刚才的图形“转化”过程,什么变了,什么没变?

【设计意图】。

情境导入就是要创设与教学内容相适应的声景或氛围,激发学生的学习兴趣,吸引学生注意,从而让他们兴趣盎然地进入学习状态。接着出示学习目标,使学生上课伊始就明确学习目标,知道通过本节课学习应该掌握哪些知识,培养什么样的能力等。

师:

预设:长方形、正方形、底、高、夹角、相邻的边等。

2.平行四边形的面积与它们都有关系吗?到底有什么样的关系?我们利用手中的平行四边形纸片来试着“转化”求它的面积。

3.请带着问题自学。(课件)。

4.四人小组交流一下你是怎样“转化”平行四边形面积的。

【设计意图】通过学生大胆猜测、动手实践,在互动的过程中生成问题有利睛学生掌握解决问题的方法,形成知识规律,更有利于激发学生的求知欲。

师:1.谁来汇报一下你们小组的发现?你们推导出平行四边形的公式吗?

4.你是怎样推导的?说一下你的操作过程。

5.剪下来这多余的,这条线是不是随便画的一条线?这是什么?(平行四边形的高)。

6.为什么要剪下来,要拼成一个什么图形?(拼成长方形)。

8.剪拼后的长方形的长,是原平行四边形的什么?宽呢?

9.我们学习过用字母来表示数量关系式,请同学们翻开数学书p81自学用字母怎样表示平行四边形的面积。(板书:s=ah)。

【设计意图】。

在生成问题之后,引导学生围绕探究的问题,自己决定探的方法,用自己的思维方式自由地、开放地探究知识,倡导探究、发现学习的方法,把对知识的理解进行整理汇报交流;较难的问题再引导学生进行合作探究性学习,在师生互动和生生互动中解决问题。

1.练习检测卡一题。

2.课件:判断、选择题、口答列式。

3.练习检测卡二、三题。

4.谈谈你对这节课的收获,好吗?

拓展练习(作业):你能求出这个图形的面积吗?把你的做法和想法画出来,看谁想得方法好,想得方法多。

【设计意图】。

归纳整理所学新知之后进行练习检测,先进行新知巩固性练习,再进行有坡度的、形式多样的变式和发展性练习,发现问题及进进行矫正和发展性练习,在练习中检测教学目标达成情况。

平行四边形的面积教学设计及反思篇十三

教学内容:。

教学目标:。

2,通过操作,观察,比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析,综合,抽象,概括和解决实际问题的能力.

教学难点:把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推倒出平行四边形面积计算公式.

教学方法:动手操作,小组讨论,启发,演示等教学方法.

教学准备:。

要求:底为6厘米,高为4厘米,最小的内角为45度,形状为:;。

2,剪刀,三角尺,文具(铅笔,橡皮等)。

3,板贴。

教学过程。

一,导入。

师:同学们,能告诉老师你最熟悉的平面图形吗。

生:长方形,正方形.

生:长方形的面积=长×宽正方形的面积=边长×边长。

二,体会"转化"的数学思想。

师:(出示图1)你能将这个图形变成我们熟悉的图形啊。

生:汇报:。

师:你发现了什么。

生:形状变了,面积不变.

师:(出示右图)这是什么图形(揭题:平行四边形)。

你能把这个图形变成你熟悉的图形吗。

生:能.

师:同学们,用你自己的方法把你的想法表示出来:。

学生尝试用自己的方式把平行四边形转化成长方形.

…………。

汇报:。

生1:我是画图的,。

生2:我是采用剪,拼的方法,先画一条高,沿着高剪下,移到另一边.

如图:。

生3:我也是采用剪拼法,但我和生2不一样,如图:。

师:看了三个同学的方法,你有什么收获啊。

生1:都采用了转化的方法.

生2:他们都要先画一条高,然后沿着高剪下,我想因为这样就可以得到直角.

生3:图形是转变了,面积不变.

二,动手测量,推导公式。

学生动手测量数据,进行计算.

………。

交流汇报:。

生1:我量的是长方形的长和宽,长是6厘米,宽是4厘米,面积是24平方厘米.因为长方形的面积就是平行四边形的面积,所以平行四边形的面积是24平方厘米.

生2:我量的是平行四边形的底和高,因为我认为平行四边形的底等于长方形的底,高等于长方形的宽,那么平行四边形的面积等于底×高.底是6厘米,高是4厘米,面积是24平方厘米.

师:两个同学都说的很好,同学们你们会了吗。

生:会了.

生:3×6=18(平方厘米)。

三,应用新知,深化理解。

2,。

3,综合练习。

生:等底等高,面积相等.

师:和这两个面积相等的平行四边形你还能在画几个吗。

生:有无数个,只要等底等高就行了.

四,引导回顾,师生总结。

板书设计:转化图形寻找联系推导公式。

五,课后反思:。

1,数学课堂教学中教什么比怎样教更重要,在平行四边形面积计算的教学中,我们是让学生掌握平行四边形面积的计算方法还是在平行四边形面积计算方法的教学渗透转化的数学思想,两者中我侧重于后者.

如何渗透数学思想呢从一开始,我让学生把不规则的图形变成已熟悉的图形,触动学生思维的联结点,凸显"转化"的动因.接着出示平行四边形,学生自然而然想到平行四边形可以转化成长方形.

在"你能将平行四边形转变成我们熟悉的图形吗"这个问题的驱动下,学生在静静的思考后,在"你能用自己的方法把你的想法表达出来吗"这一追问下,学生尝试画一画,剪一剪,拼一拼.操作的轨迹由想象操作到动手操作再到想象操作,学生的转化方法从模糊变为清晰.

3,在练习设计中知识的巩固和思想方法的应用并重.口算题是直接应用平行四边形面积计算公式,让学生进一步巩固知识.变式练习(右图)学生需要判断底和对应的高,此时我在一次提出可以把这个平行四边形看成怎样的长方形,从而能更深刻的理解底和高一定要对应的道理,对数学思想方法的认识也上升为数学思维策略,从而实现学生数学思维的提升.

平行四边形的面积教学设计及反思篇十四

让学生经历探索平行四边形面积计算公式的过程,掌握平行四边形的面积计算方法,能解决相应的实际问题。

(二)过程与方法。

通过操作、观察和比较,发展学生的.空间观念,渗透转化思想,培养学生分析、综合、抽象概括和动手解决实际问题的能力。

(三)情感态度和价值观。

通过活动,培养学生的探索精神,感受数学与生活的密切联系。

教学难点:理解平行四边形面积计算公式的推导过程,体会转化的思想。

平行四边形卡纸一张,剪刀一把,三角尺一个,多媒体课件。

(一)创设情境,激趣导入。

1。创设情境。

(1)呈现教材第86页单元主题图。(ppt课件演示)。

5。五年级上册数学图形与几何教案。

平行四边形的面积教学设计及反思篇十五

1.学生已经掌握了平行四边形的特征和长方形面积的计算方法。这些都为本节课的学习奠定了坚实的知识基础。

2.但是小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。

1.知识与技能目标:了解平行四边形面积的含义,掌握平行四边形面积的计算公式,会计算平行四边形的面积并能解决实际中的问题。

2.过程与方法目标:

(1)通过操作、观察、讨论、比较活动,让学生初步认识图形转化来计算平行四边形面积的过程。

(2)通过平行四边形面积公式推导过程的讲解,培养学生在动手操作、探索的过程中形成观察、分析、概括、推导能力,发展学生的空间观念。

3.情感目标:通过活动,激发学习兴趣,培养探索的精神,感受数学与生活的密切联系。

难点:把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推倒出平行四边形面积计算公式。

这是一幅街区图,上部是住宅小区,中部是街道,下部是学校的大门内外,图上的学校将是我们城关一小未来的面貌。为了使我们的学校变得更美丽,学校准备在大门前修建两个花坛,那要考虑什么实际问题呢?(修多大的花坛,也就是要计算它们的面积有多大)。(课件依次出现)。

这块花坛既不是长方形也不是正方形,如何求出这块地的面积?

为了解决上面的问题我们必须知道如何计算一个平行四边形的面积,今天我们就来一起学习的平行四边形的面积。(板书:平行四边形的面积)。

以前我们用数方格的方法求长方形的面积。今天,我们也用同样的方法求平行四边形的面积。(出示课前准备好的方格纸,每个方格按1㎡)。

1.用方格纸制作成的平行四边形放在边长是1米的方格中,数一数占几个方格(不满一格按半格计算)平行四边形的面积就是几平方米。这块空地的面积是24平方米。

根据这个例子,让同学将书本80页下面的表格补充完整,也会发现上面的规律!

2.填表并讨论:用数方格的方法可以得到了一个平行四边形的面积,但是这个方法比较麻烦,也不是处处适用。

(1)观察上表你发现了什么?(观察得出长方形的长和平行四边形的底相等,长方形的宽和平行四边形的高相等,它们的面积也相等,)。

方法二:“割补”法:通过数方格我们发现这个平行四边形的面积等于底乘高,是不是所有平行四边形的面积都可以用底乘高来进行计算呢?这就是我们这节课要研究的中心内容:平行四边形面积的计算。

1.提出假设:能不能把它转化成我们学过的图形呢?(用割补法转化为长方形)。

2.动手实验:(1)提出要求:请同学们拿出准备好的多个平行四边形纸片及剪刀,自己动手,运用所学过的割补法将平行四边形转化为长方形。那样的话我们就能不用方格就可以算出平行四边形的面积了。(在操作过程中教会学生运用了一种重要的数学方法“转化”,就是把一个平行四边形转化成了一个长方形,“转化”是一种重要的数学思想方法,在以后学习中会经常用到。)。

(2)学生实验操作,教师巡视指导。

3.小组讨论:观察拼出来的长方形和原来的平行四边形你发现了什么?

(1)平行四边形剪拼成长方形后,什么变了?什么没变?(形状变了,面积没变)。

(2)剪拼成的长方形的长与宽分别与平行四边形的底和高有什么关系?(长与原来平行四边形的底相等,宽与原来平行四边形的高相等。)。

(3)剪拼成的长方形面积怎样计算?得出:(面积=长×宽)。

(4)平行四边形的面积公式怎样表示?为什么?(平行四边形的面积=底×高)。

4.全班交流推导公式:

(1)谁愿意把你的转化方法说给大家听呢?请上台来交流!

(2)有没有不同的剪拼方法?(继续请同学演示)。

研究得出:沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形拼合成一个长方形。

1.出示书上82页的1题,请大家做一做。

2.汇报交流:谁来说一说你是怎么做的?

3.强化认识:那请大家想一想,要求平行四边形的面积,我们必须知道哪些条件?(底和高,强调高是底边上的高)。

1、试一试。

35cm20dm4.8m。

26cm28dm5m。

公式:公式:公式:

列式:列式:列式:

2、我能填得准。

反思一下刚才我们的学习过程,你有什么收获?

平行四边形的面积教学设计及反思篇十六

教学内容:

实验教材小学数学五年级上册第76页内容。

教学目标:

1、用转化的方法探索并掌握平行四边形的面积计算公式,并能正确计算平行四边形的面积。

2、经历探索平行四边形面积计算方法的过程,培养初步的观察能力、抽象能力,进一步发展空间观念。

3、在运用平行四边形面积计算公式解决现实问题的过程中,感受数学和现实生活的密切联系,培养初步的数学应用意识和解决简单实际问题的能力。

教学准备:

学生:方格图、平行四边形纸片、直尺、剪刀、三角尺。

教师:课件、投影仪。

教学过程:

一、谈话引入,提出问题。

(1:虾池的面积是多少?2:虾池是什么形状的?……)。

师:虾池是什么形状的?(平行四边形)。

师:求虾池的面积就是求什么的面积?(平行四边形)平行四边形的面积怎么计算呢,这节课我们共同来探究。(板书课题:平行四边形的面积)。

二、合作探索,解决问题。

1、猜想。

师:我们学过的长方形、正方形的面积计算都有一个公式,平行四边形的面积计算有没有公式呢?(有,师同时出示课件:虾池的平面示意图)。

师:希不希望通过自己的探究找到这个公式?

师:相信你们一定能行!在探究之前,先请同学们猜想一下:平行四边形的面积计算公式可能是什么?并说说你的理由。

(学生独立思考)。

师:谁来说?

(1、我猜平行四边形的面积计算公式是“底×邻边”。我是根据长方形的面积计算公式猜的。)。

师:谁有不同想法?

(2、我猜平行四边形的面积计算公式是“底×高”。我发现沿着高把平行四边形剪下来,移过去就拼成了长方形,所以我猜平行四边形的面积计算公式是“底×高”。)。

师:现在出现两种猜想,各有各的理由,而真正的计算公式肯定只有1个。我们怎么办?(验证)。

师:对!我们要逐个进行验证,看看正确的公式究竟是什么。

为了方便大家探究,老师为每个小组都准备了同样大小的平行四边形纸片来代替虾池,还有一些学具,或许会对你们的验证有所帮助。在动手验证之前,老师有几点小提示,请看屏幕:(课件出示,指名读)。

1.小组同学先讨论验证的方法,再动手验证。

2.小组成员要团结合作,合理分工。

3.每组推选1名代表进行汇报,其他组员可以补充。

4.使用学具时注意安全,用完后装入信封。

2、验证“底×邻边”

师:先来验证“底×邻边”这个猜想对不对。

比比看,哪个小组合作得好,最先找到答案!小组长拿出第一个信封,开始。

(学生合作,教师巡视)。

3、交流。

师:经过大家的动手操作,相信都有答案了。哪个小组愿意先来交流?

(我们小组是用数方格的方法来验证的。我们通过数方格的方法数出平行四边形纸片的面积是28平方厘米,而用猜想公式算出的面积是35平方厘米。所以“底×邻边”的猜想是错误的。)。

师:听明白他们小组的做法了吗?(找两人分享)感谢你们的介绍。还有不一样的小组吗?(没有)。

师:我们再一起看看验证的过程:(课件演示)用方格图数出这个平行四边形的面积是28平方厘米。而量一量它的底是7厘米,邻边5厘米,根据“底×邻边”的猜想公式算出面积为35平方厘米。所以通过“数方格”验证,“底×邻边”这个猜想是错误的。虽然这个猜想是错误的,但我们要感谢提出这个猜想的同学,因为你的猜想很有价值,让我们大家对“底×邻边”为什么不对有了更深刻地认识。既然“底×邻边”是错误的,那“底×高”是不是正确呢?现在请收起你的方格图,我们再次小组合作利用第二个信封的帮助再来验证“底×高”这个猜想对不对。一定要交流好验证方法再动手操作,开始。

4、验证“底×高”

(学生活动,教师参与)。

5、交流。

师:相信大家又有了新的发现和收获。哪组先来分享你们的研究成果?

(1、我们小组是这样做的:量一量平行四边形的底是7厘米,高4厘米,乘积是28平方厘米,所以“底×高”的猜想是正确的。

师评价:他们小组的这种方法怎么样?我发现他们小组很会利用资源。刚才知道这个平行四边形面积是28平方厘米,于是他们想到的验证方法就是用底×高,看是不是等于28。有不一样的验证方法吗?注意听,看看他们采用的究竟是什么方法。)。

(2、我们小组是沿着平行四边形的高剪下来,把它拼成长方形,我们发现长方形的长就是平行四边形的底,长方形的宽就是平行四边形的高,所以平行四边形的面积=底×高。可让其利用投影仪向全班展示。)。

师:我们再通过大屏幕一起看(播放课件):把平行四边形沿着高剪开,通过平移拼成长方形,面积有没有变化?也就是长方形的面积和平行四边形的面积相等(板书:长方形的面积、平行四边形的面积),而长方形的长就是原来平行四边形的(底)(板书:长、底),宽就是平行四边形的(高)(板书:宽、高)。根据长方形的面积=长×宽,可以推出平行四边形的面积=底×高(板书)。我有一个疑问:为什么要沿着高剪呢?(这样剪能拼成一个长方形,拼成长方形就能够求出平行四边形的面积。)。

师:奥,我明白了。原来这一剪的作用很大,把我们不会解决的平行四边形的面积这个难题转化成长方形的面积这一简单问题了。

师:是不是沿着平行四边形的任意一条高裁剪都可以?(是的)。

(平行四边形没有“长”和“宽”。)。

师:说的真好,我们可不能混淆了。

三.应用公式,巩固训练。

师:我们已经知道平行四边形的面积计算公式了,你能独立解决虾池的面积这个问题吗?写在你的练习本上。(出示虾池平面图课件,指名板演:90×60=5400(平方米)。

师:如果老师再给你提供这样一条信息:每平方米放养虾苗30尾,你能提出什么问题?(这个虾池能放养多少尾虾苗?)。

师:谁来解决这个问题?其余同学写在练习本上。(30×5400=16(尾))。

(出示课件:四个挑战)。

为什么?(单位:厘米图略)。

4、聪明小屋:下图中正方形的周长是24厘米,平行四边形的面积是多少?

师:真不错,挑战成功。

四.收获平台,课外延伸。

师:不知不觉中就要下课了。想一想,这节课你有哪些收获?

(我学会了“转化”这种方法;我们学到了平行四边形面积的计算方法。)。

师:回忆一下:我们在推导平行四边形的面积公式时是按什么步骤进行的?

(猜想--验证--结论。这是数学上常用的探究方法,相信你们在以后的学习中会经常使用它。这节课,同学们不仅仅学到了知识,而且掌握了一种重要的数学思想方法——转化,把平行四边形的面积转化成长方形的面积这一简单的问题来解决。课后想一想生活中你是否也用过转化法解决问题呢?同学之间互相交流一下。)。

平行四边形的面积教学设计及反思篇十七

1、能比较熟练地运用平行四边形计算公式,解答有关的应用问题。

2、养成良好的审题习惯,树立责任感。

:能比较熟练地运用平行四边形的计算公式,解答有关的应用题。

:口算卡片。

2、口算:

4.9÷0.75.4+2.64×0.250.87-0.49。

530+2703.5×0.2542-986÷12。

(1)底12米,高是7米;(2)高13分米,底长6分米;

(3)底2.5厘米,高4厘米;(4)底0.24分米,高0.5分米。

4、出示课题。

1、补充例题。

(1)独立列式后,指名口述,教师板书。

(2)如果改问题为“每公顷可收小麦6吨,这块地共可收小麦多少吨?”怎么解答?

让学生议一议,然后自己列式解答,最后评讲。

与上题比较,从数量关系上看,什么是相同的?什么是不同的?

让学生自己列式。

辨析:老师也列了三个算式,到底哪个对呢?帮个忙!

a900×(125×24÷10000)。

b900÷(125×24)。

c900÷(125×24÷10000)。

2、小结(略)。

练习十七第6、7题。

练习十七第8、9题。

板书设计:

教后感:

【本文地址:http://www.xuefen.com.cn/zuowen/14932122.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档