教案不仅是一份教学计划,更是一份对教学内容和方法的思考和总结。教案中的教学活动要能够帮助学生建立知识体系和解决问题的能力。编写教案需要教师具备良好的教学素养和教学经验的积累。
长方体的表面积教案篇一
2.指出长方体纸盒的长、宽、高,并说出长方体的特征。指出正方体的棱长,并说出正方体的特征。
二、新课讲授。
(1)请同学们拿出准备好的长方体纸盒,在上面分另标出“上”、“下”、“前”、“后”、“左”、“右”六个面。
师生共同复习长方形的特征。请同学们沿着长方体纸盒的前面和上面相交的棱剪开,得到右面这幅展开图。
(2)请同学们拿出准备好的正方体纸盒,分别标出“上、下、前、后、左、右”六个面,然后师生共同复习正方体的特征。让学生分别沿着正方体的棱剪开。得到右面正方体展开图。
观察后,小组议一议。引导学生总结长方体的表面积概念。长方体或正方体6个面的总面积,叫做它的表面积。
(2)出示教材第24页例1。
理解分析,做一个包装箱至少要用多少平方米的硬纸板,实际上是求什么?(这个长方体饭包装箱的表面积)。
先确定每个面的长和宽,再分别计算出每个面的面积,最后把每个面的面积合起来就是这个长方体的表面积。
(3)尝试独立解答。
(4)集体交流反馈。
老师根据学生的解题思路进行板书。
0.7×0.4+0.7×0.4+0.5×0.4+0.5×0.4+0.7×0.5+0.7×0.5=0.28+0.28+0.2+0.2+0.35+0.35=1.66(m2)。
0.7×0.4×2+0.5×0.4×2+0.7×0.5×2=0.7+0.56+0.4=1.66(m2)。
方法三:(上面的面积+前面的面积+左面的面积)×2。
(0.7×0.4+0.5×0.4+0.7×0.5)×2=0.83×2=1.66(m2)。
(6)请同学们尝试自己解答教材第24页例2,集体交流算法,请学生说说你是怎样解答计算正方体表面积的。
三、课堂作业。
1.完成教材第23页“做一做”。
2.完成教材第24页“做一做”。
3.完成教材第25~26页练习六第1、2、3、4、6、7题。
四、课堂小结。
板书设计:
教学内容:
教学目标:
1.利用长方体和正方体的表面积计算方法,结合实际生活,求一些不是完整六个面的长方体、正方体的表面积。
2.通过练习、操作发展空间想象能力。培养学生对数学的兴趣与求知欲。
教学重点:
能根据生活实际,对不是完整六个面的长方体、正方体的表面积进行正确的判断。
教学难点:
教具运用:
课件。
教学过程:
师:上节课我们认识了长方体和正方体的表面积,并且学习了表面积的计算方法,请大家试着解决下面的两个问题。(出示课件)。
1.做一个长8厘米,宽6厘米,高5厘米的纸盒,至少需要多少纸板?
2.一个棱长和为180的正方体,它的表面积是多少?学生独立计算,教师巡视指导,集体订正。师:通过前两节课的学习,我们学会了长方体、正方体表面积的计算方法,就是计算出它们6个面的面积之和,但在实际生活中,有时只需要计算其中一部分面的面积之和,这就要根据实际情况来思考了。
二、新课讲授。
1.教材25页第5题。
(2)学生读题,看图,理解题意。
(3)“上下面不贴”说明什么?(说明只需要计算4个面的面积,上下两个面不计算)。
(4)学生尝试独立解答。
(5)集体交流反馈。
方法一:10×12×2+6×12×2=240+144=384(cm2)。
方法二:(10×12+6×12)×2=(120+72)×2=384(cm2)。
答:这张商标纸的面积至少需要384平方厘米。
2.教材26页第8题。
(1)课件出示教材26页第8题图片及文字:一个玻璃鱼缸的形状是正方体,棱长3dm,制作这个鱼缸时至少需要玻璃多少平方分米?(鱼缸的上面没有盖)。
(2)学生读题,看图,理解题意。
(3)提问“鱼缸的上面没有盖”说明什么?(说明只需计算正方体5个面的面积之和)。
(4)请学生独立列式计算,教师巡视,了解学生是否真正掌握。
3×3×5=9×5=45(dm2)。
答:制作这个鱼缸时至少需要玻璃45平方分米。
三、课堂作业。
完成教材第26页练习六第9、10题。
四、课堂小结。
五、课后作业。
完成练习册中本课时练习。
板书设计:
长方体的表面积教案篇二
老师们在讨论《长方体的表面积》一节时,常常会有几点疑惑:一是前节刚上过《展开与折叠》,这节有什么必要再把长方体再展开?二是教材为什么要安排“估算”?三是教材中的正方体图形有什么必要同时给出三个棱长的数据?对这几个问题,我是这样看的:
一、本节为什么要把长方体再展开?
立体图形的表面积,求的是面积。既是面积,就是平面几何的研究对象,因此,从逻辑上说,教材在这里必须要把立体问题转化为平面问题,才能用面积的概念去给表面积下定义。在平面几何里,所讨论问题的前提都是“在同一平面上”,因此,要再次展开。
三维立体空间与二维平面空间的图形的相互转换,是空间想象能力的重要组成部分。由于技术的限制,对于立体图形,目前我们在教材里呈现给学生的只能是“三维示意图”(实际上是二维图形)。因此,学生的三维空间想象能力常常具体地体现为“让‘三维示意图’立起来”。而学过立体几何的人都知道,未来学生解决立体几何问题时,最重要的意识与能力就是“转化”,即把三维问题转化为二维。本节对立体图形与平面展开图形的对应关系的讨论,意在加强面与体的联系,培养学生的转化意识,进一步发展学生的空间想象能力。
二、为什么要安排“估算”?
教材在“估一估,算一算”的小标题下,提出:“做上面的纸盒,至少需要用多少纸板?先估一估,再精确计算。”
我认为,这首先是一个实际应用问题,是做纸盒时必然要遇到、要解决的问题。既然从生活中提出了做纸盒,就理所当然地要服从生活逻辑。
其次,这里说的是“至少”,也就是,估算时应当“往大里去”。因此,可以是用最大面的面积乘以6,也可以是把整个展开图看成一个大的长方形的局部。这样处理,就不会跟后面精确计算的过程重复,也就不会显得多余。
更重要的是,估算技能是一种重要的数学技能,估算意识是一种重要的数学意识,重视估算,是新课标、新课程对传统数学教学的最显著、最重要的改进之一。本节的引例又确有估算的实际需要,因此,教材在本节安排估算是很有道理的。
三、正方体图形为什么要给出三棱长?
本节的课题是《长方体表面积》,而非过去教材的《长方体、正方体的表面积》。在教材的正文中实际上只讨论了长方体的表面积,而对正方体表面积只是在“试一试”中作为长方体表面积的一个应用给出。在“试一试”里给出的条件是“棱长为0。8米的正方体”,而在紧接着的“练一练”中,给出的正方体图形则标明了三维的数据。
我认为,这段教材的意图是:让学生由“正方体是特殊的长方体”,套用长方体表面积的算法来计算正方体的表面积。教师在教学中,不应当把“正方体的表面积等于棱长平方乘以6”处理为学生的“已知”,而必须让学生经历简单的推理过程。也就是,要把“棱长为0.8米的正方体”转化为“长、宽、高都是0.8米的长方体”,然后,套用长方体表面积的计算方法,再简化为“棱长平方乘以6”。否则,在数学逻辑上就是不严密的。
长方体的表面积教案篇三
1.学生通过操作掌握长方体和正方体的表面积的概念,并初步掌握长方体和正方体表面积的计算方法。
3.培养学生分析能力,发展学生的空间概念。
长方体、正方体纸盒,剪刀,投影仪。
一、复习导入。
1.什么是长方体的长、宽、高?什么是正方体的棱长?
2.指出长方体纸盒的长、宽、高,并说出长方体的特征。指出正方体的棱长,并说出正方体的特征。
二、新课讲授。
(1)请同学们拿出准备好的长方体纸盒,在上面分另标出“上”、“下”、“前”、“后”、“左”、“右”六个面。
师生共同复习长方形的特征。请同学们沿着长方体纸盒的前面和上面相交的棱剪开,得到右面这幅展开图。
(2)请同学们拿出准备好的正方体纸盒,分别标出“上、下、前、后、左、右”六个面,然后师生共同复习正方体的特征。让学生分别沿着正方体的棱剪开。得到右面正方体展开图。
观察后,小组议一议。引导学生总结长方体的表面积概念。长方体或正方体6个面的总面积,叫做它的表面积。
(2)出示教材第24页例1。
理解分析,做一个包装箱至少要用多少平方米的硬纸板,实际上是求什么?(这个长方体饭包装箱的表面积)。
先确定每个面的长和宽,再分别计算出每个面的面积,最后把每个面的面积合起来就是这个长方体的表面积。
(3)尝试独立解答。
(4)集体交流反馈。
老师根据学生的解题思路进行板书。
方法一:长方体的表面积=6个面的面积和。
0.7×0.4+0.7×0.4+0.5×0.4+0.5×0.4+0.7×0.5+0.7×0.5=0.28+0.28+0.2+0.2+0.35+0.35=1.66(m2)。
0.7×0.4×2+0.5×0.4×2+0.7×0.5×2=0.7+0.56+0.4=1.66(m2)。
方法三:(上面的面积+前面的.面积+左面的面积)×2。
(0.7×0.4+0.5×0.4+0.7×0.5)×2=0.83×2=1.66(m2)。
(6)请同学们尝试自己解答教材第24页例2,集体交流算法,请学生说说你是怎样解答计算正方体表面积的。
三、课堂作业。
1.完成教材第23页“做一做”。
2.完成教材第24页“做一做”。
3.完成教材第25~26页练习六第1、2、3、4、6、7题。
四、课堂小结。
长方体的表面积教案篇四
新课程倡导学生学习有用的数学,并尽可能在有趣的情境中进行学习。教学《长方体表面积》这一课时我也在努力着,力求让学生乐学、学懂、学会,并在教学中不断地调整自己的思路。先是从生活实际出发,求长方体表面积的方法。。接着解决为什么要求长方体的表面积(学有用的数学),解决生活中,如:包装盒子、粉刷墙壁等不是都求六个面的表面积的具体问题,即组织学生完成“练一练”的题。反思如下:
一、继续抓好计算。我发现有很大一部分学生方法懂了,计算却出错了,孩子们的借口是数字太大容易出错。所以计算应是常抓不懈的。
二、进一步培养学生的抽象思维能力。学生出错的原因之一是分不清底面是哪两条棱相乘的面积,之所以这样是因为对长方体革面的人是没有理解透彻。
三、进一步在学生“乐学”方面下功夫,从这一节课看数字是大点,算起来复杂些,孩子们就觉得没趣了,有部分学生对数学有了畏惧的念头,这是最不利于我们教学的因素之一。
四、通过让学生自己动手剪、看观察分析得出表面积的几种计算方法,学生能自主探索出表面积的计算方法,学习兴趣较浓,且对计算方法也掌握的较好,避免了死记公式的办法。
五、在学生掌握了表面积的计算方法后,再出示一些生活实际应用题,既练习了实际又提高了学生学习的兴趣。
将本文的word文档下载到电脑,方便收藏和打印。
长方体的表面积教案篇五
3、培养学生分析能力,发展学生的空间概念。
2、指出长方体纸盒的长、宽、高,并说出长方体的特征。指出正方体的棱长,并说出正方体的特征。
(1)请同学们拿出准备好的长方体纸盒,在上面分另标出上、下、前、后、左、右六个面。
师生共同复习长方形的特征。请同学们沿着长方体纸盒的前面和上面相交的棱剪开,得到右面这幅展开图。
(2)请同学们拿出准备好的正方体纸盒,分别标出上、下、前、后、左、右六个面,然后师生共同复习正方体的特征。让学生分别沿着正方体的棱剪开。得到右面正方体展开图。
观察后,小组议一议。引导学生总结长方体的表面积概念。长方体或正方体6个面的总面积,叫做它的表面积。
(2)出示教材第24页例1。
理解分析,做一个包装箱至少要用多少平方米的硬纸板,实际上是求什么?(这个长方体饭包装箱的表面积)。
先确定每个面的长和宽,再分别计算出每个面的面积,最后把每个面的面积合起来就是这个长方体的表面积。
(3)尝试独立解答。
(4)集体交流反馈。
1、完成教材第23页做一做。
2、完成教材第24页做一做。
3、完成教材第25~26页练习六第1、2、3、4、6、7题。
长方体的表面积教案篇六
1.口答填空。
(1)长方体有()个面,一般都是(),相对的面的()相等;
(2)正方体有()个面,它们都是(),正方形各面的()相等;
(4)这是一个(),它的校长是()厘米,它的棱长之和是()厘米。
教师:我们已经掌握了长方体和正方体的特征,它们的表面都有6个面,今天就来研究它们表面的大小。(板书课题:长方体和正方体的表面积。)。
长方体的表面积教案篇七
3.正确利用所学知识解决生活实际问题。
如何利用所学知识解决生活实际问题。
一、联系实际,揭示课题。
同学们,学校利用这个假期同学们休息的时间,要对我们的教室进行从新粉刷。
在粉刷之前,校方提前进行了资料收集,收集的资料如下:
1.每个教室的长8米,宽5米,高3米;
2.每个教室要对四壁和屋顶进行粉刷;
3.每个教室门窗的面积共20平方米;
4.每个教室要粉刷三次;
5.第一次粉刷每平米用涂料0.5千克;第二次和第三次粉刷每平米只用去涂料0.2千克。
6.我校共有个教室需要粉刷。你能根据校方收集的上述信息帮助校方计算出应该买多少涂料吗?(揭示课题)。
二、师生交流,提出问题。
师:同学们,看到这个课题,你想知道什么?
生1:什么叫表面积?
生3:学了这些知识有什么用处?
三、师生互动,探究问题。
1.学生操作,解决问题;
(1)请同学们拿出准备好的正方体纸盒,请将这个正方体纸盒沿着棱剪开。(学生操作)我们将正方体沿着棱剪开,就得到了一个正方体表面的展开图。
(出示学生得到的正方体表面的展开图。)。
(2)引导学生观察得到的正方体的展开图,思考:正方体表面的展开图有什么特征?
2.组内交流,发表见解;
(1)正方体表面的展开图有6个正方形的面组成。
(2)它们的形状都相同。
(3)它们的面积都相等。
3.教师引导,深入探究;
(1)想一想可以怎么求这6个面的面积总和。先求出1个面的面积,再乘以6,就是这6个面的面积总和。
(2)请你试着求一求你手中的正方体6个面的面积总和。
注意:先测量棱长的尺寸,再计算,取整厘米数。(学生计算)看书巩固,掌握方法;刚才我们计算的就是正方体的表面积,那什么是正方体的表面积?正方体的表面积可以怎么求呢?书上有具体的介绍,请打开书,翻到p39,看书回答:
四、巧加点拨,学而致用。
1、追随上知,质问质疑。
2、迁移知识,灵活运用。
学生利用所学方法推导长方体的表面积计算公式。
3、组际交流,发表见解。
4、看书小结,掌握方法。
请打开书,翻到p40,看书回答:
5、引用方法,灵活解答。
长方体的表面积教案篇八
教学目标:
知识目标:通过练习,进一步巩固所学知识。
能力目标:
提高学生解决实际生活问题的能力,发展学生的空间想象力。
情感目标:
体会数学与生活的联系,激发学习兴趣,调动学生学习的主动性。
教学重点、难点:
运用所学知识解决生活中的实际问题,发展学生的思维能力。
教学策略:
充分利用教具和实物图进行演示,对分数问题要找出标准量。分析数量关系,在解答。
教学准备:长方体和正方体模型。
教学过程:
一、复习:
提问:相邻两个体积单位间的进率是多少?怎样把立方厘米化成升?
二、练习。
1、做“练一练”的第4题。读题理解题意用实物演示这个长方体油桶的形状,再让学生讨论解答方法。
2、做第6题,要学生先估算,再计算。对学困生要进行指导。
3、学生自己做出第7题、第8题、第9题。
交流时,要说出等量关系式,再列式计算。
4、解方程,先指名说一说解方程的步骤,再解方程,也可让学困生板演。
5、实践活动:
小组合作,估计下列学生分别占本班学生总数的百分之几,再进行调查。
各类学生占全班学生总数的百分比情况单位:%。
各类学生占全班学生总数的百分比情况。
估计。
调查结果。
男生。
近视眼的学生。
睡眠时间不到10时的学生。
喜欢唱歌的学生。
三、。
板书设计:
与复习(二)。
发芽率-5/8=15。
解:(1-5/8)×=15。
3/8=15。
教学反思:
长方体的表面积教案篇九
苏教版《义务教育课程标准实验教科书数学》六年级(上册)第15页例4及随后的试一试练一练,完成练习四第1~5题。
1.使学生在具体的情境中,经历操作、讨论、交流、归纳的过程,理解长方体、正方体表面积的含义,探索并掌握长方体和正方体表面积的计算方法,能解决一些与表面积计算有关的简单实际问题。
2.使学生在活动中进一步积累空间与图形的学习经验,初步体会长方体和正方体表面积计算在日常生活中的广泛应用,感受表面积计算方法的实际价值,增强空间观念,发展思维能力。
3.使学生在探索和发现长方体和正方体表面积计算方法的过程中,培养对数学学习的兴趣,树立学好数学的信心。
一、创设情境。
谈话:昨天,老师要求同学们从家里找一个长方体纸盒带到学校来,都带来了吗?(带来了)请大家先拿出自己带来的长方体纸盒,用尺量一量,你带来的长方体纸盒的长、宽、高分别是多少?把测量的数据记录在练习纸上,并按要求完成下面的填空。
出示练习四第1题的填空部分。
学生测量数据并完成填空,组织交流。
谈话:今天这节课,我们就来研究同学们手中的纸盒,讨论一下,你打算从哪个方面来研究这些纸盒。
反馈:你认为可以从哪个方面来进一步地研究这些纸盒?(学生可能想到:把这些纸盒分分类;看做这些纸盒需要多少硬纸板;这些纸盒内能装多少物品)。
揭题:同学们提出了许多有价值的问题,这些问题都值得我们认真地去研究和发现。今天我们选择其中的一个来研究,就选做这些纸盒需要多少硬纸板来研究吧。
二、自主探索。
谈话:确定了研究和探索的方向,下面要思考的问题就应该是用怎样方法来解决这个问题。怎样计算做一个纸盒需要多少硬纸板呢?请同学们以自己带来的纸盒为例,按下面的要求开展研究活动。
出示活动要求:
(1)独立思考,想办法求出做自己的这个纸盒需要多少硬纸板。
(2)把自己的计算方法和小组内的同学交流。
(3)小组讨论:怎样计算做一个长方体纸盒需要多少硬纸板?
学生按要求活动,教师参与学生的活动。
学生可能出现以下几种情况:
(1)把纸盒拆开,再计算每个面的面积。
(2)先算出每个面的面积,再把6个面加起来。
(3)在计算6个面的面积时,发现计算的方法不够简便,改为分别求出3组相对的面的和,再相加。
(4)分别求出每组相对的面中一个面的面积,相加后再乘2。
引导:每个小组都完成自己的任务了吗?再请同学们在小组里把你们小组刚才的研究过程整理一下。看一看,你们小组的同学想出了几种求做一个长方体纸盒需要多少硬纸板的方法,在这些方法中,哪种方法是比较简便的,然后再讨论一下,你们准备用怎样的形式向大家汇报。
反馈:哪个小组先上来,把你们的研究过程和结果向大家汇报一下?在一个小组汇报时,其他小组的同学要仔细地听,认真地想,如果有什么问题,可以向他们提问。
学生按小组带着自己的纸盒和计算过程,到实物展示台上汇报。[着重引导学生体会两点:
(1)求做这个长方体纸盒需要多少硬纸板,就是求长方体6个面的总面积;
小结并板书:长方体6个面的总面积,叫做它的表面积。
学生提出问题,师生共同帮助解答。
如果学生提出:做一个长方体纸盒还需要留出一些连接的地方,为什么不计算连接处所需要的纸?则引导通过交流体会一般情况下,我们只计算长方体的表面积,接头处所需要的纸,很多情况下是忽略不计的。所以,实际问题中经常出现至少需要用多少硬纸板这样的问题。
如果有学生提出:有些纸盒只有5个面怎么办?则让学生说一说怎样算,再告诉学生,应用长方体表面积计算方法解决问题时,经常会遇到这样的情况,下节课我们将专门研究这样的问题。
出示:试一试。
提问:求做这个正方体纸盒至少要用多少平方分米的硬纸板,就是求什么?
再问:怎样求正方体的表面积?自己在下面试一试。
学生独立解题,教师巡视。
反馈:你是怎样算的?为什么可以这样算?
根据学生回答,完成板书:长方体(或正方体)6个面的总面积,叫做它的表面积。
三、巩固练习。
1、完成练一练。
出示第15页的练一练。
学生独立练习,并组织交流。
2、完成练习四第2题。
出示题目(长6cm、宽5cm、高3cm的长方体)。
提问:第一个问题要求的是什么?第二个问题呢?
学生练习后,提问:通过这道题的练习,你想到了什么?(求长方体的表面积,先求出每组相对的面中一个面的面积,再用三个面的面积和乘2,比较简便。)。
3、完成练习四第3、4题。
学生独立完成,再组织反馈。
4、完成练习四第5题。
四、课堂总结。
提问:通过本节课的学习,你有哪些收获?还有什么不懂的问题?
五、课外延伸。
出示练习四第6题。
提问:我们知道求长方体或正方体的表面积,就是求长方体或正方体6个面的总面积。怎样解决这里的问题呢?有兴趣的同学课后可以到生活中找一些这样的例子,再想一想怎样解决这样的问题,我们下节课将专门研究。
长方体的表面积教案篇十
1、长方体有()个顶点,有()条棱,有()个面,一般情况下()面的面积相等。
2、一个长方体的长是15厘米,宽是12厘米,高是8厘米,这个长方体的表面积是()平方厘米。
3、一个正方体的棱长是8分米,它的棱长总和是(),表面积是()。
5、用铁丝焊接成一个长12厘米,宽10厘米,高5厘米的长方体的框架,至少需要铁丝()厘米。
6、一个长方体的长是25厘米,宽是20厘米,高是18厘米,最大的.面的长是()厘米,宽是()厘米,一个这样的面的面积是()平方厘米;最小的面长是()厘米,宽是()厘米,一个这样的面的面积是()平方厘米。
7、一个长方体的长是1米4分米,宽是5分米,高是5分米,这个长方体有()个面是正方形,每个面的面积是()平方分米;其余四个面是长方形的面积大小(),每个面的面积是()平方分米;这个长方体的表面积是()平方分米。
8、一个长方体的金鱼缸,长是8分米,宽是5分米,高是6分米,不小心前面的玻璃被打坏了,修理时配上的玻璃的面积是()。
9、一个正方体的棱长总和是72厘米,它的一个面是边长()厘米的正方形,它的表面积是()平方厘米。
长方体的表面积教案篇十一
2、探索长方体、正方体体积与底面积和高之间的关系。
教学重点。
长方体、正方体体积计算。
教学难点。
底面积和高之间的关系。
教具准备。
长方体、正方体。
教师指导与教学过程。
学生学习活动过程。
设计意图。
一、复习导入。
1、出示长方体。
思考:如何计算它的体积?
长:2cm宽:3cm高:4cm。
二、引入新课。
1、出示正方体。
提问:如何计算正方体体积?
2、根据学生反馈,教师极书公式:
正方体体积=棱长×棱长×棱长。
v=a×a×a=a3。
3、试一试。
1出示三幅图。
学生进行思考。
反馈:长×宽×高。
学生进行计算。
2×3×4=24cm3。
学生回顾长方体体的公式,联系长方体、正方体的关系,进行推理。
正方体体积=棱长×棱长×棱长。
v=a×a×a=a3。
通过对长方体体积公式的回顾,引导学生联系长方体和正方体之间方之间的关系,引导学生自己进行推测,从而得出正方体体积的计算公式。
培养学生推理能力和理解,分析问题的能力。
教师指导与教学过程。
学生学习活动过程。
设计意图。
2引导学生观察:
图中阴影部分叫什么?
它们与高之间有什么关系?
3你还能提示三个图形的体积吗?
4引导学生计逄三幅图的体积。
三、练一练。
1、练一练1。
引导学生通过观察得出长方体的长、宽、高成正方体的棱长,再利用公式计算。
2、练一练2。
让学生应用公式进行计算独立完成。
反馈计论结果。
引导学生观察,找出阴影部分,并认识体面积。
独立思考:它们与高之间的关系。
得出:底面积×高=体积。
学生利用所推导出的公式,计算三幅图的体积。
反馈。
学生观察图。
计算。
教师指导详细教研组4.7。
学生在观察中体会底面积与高之间的关系,进一步理解记忆长方体、正方体体积的计算。
长方体的表面积教案篇十二
各位评委老师:
今天我给大家呈现的这节课是北师大版小学数学五年级下册第二单元的第3课《长方体的表面积》,本单元是属于我们小学数学四大领域里的“空间与图形”范畴内的内容。在本节课之前学生已经掌握了长方体与正方体展开图的基础上进行的,而本节课是长方体的表面积,也为后面学习圆柱的表面积起着铺垫作用。鉴于本课特点及教材编排意图,结合学生已有的认知水平和年龄特点,我为本课制定了以下教学目标:
1、在解决实际问题的过程中,探索长方体表面积的计算方法。
基于以上目标,本课的教学重点是掌握长方体表面积的计算方法。教学难点是探索长方体表面积的计算方法。通过学生自主探究、合作交流及形式多样的练习来突破难点,解决数学问题,内化新知。
在整个教学过程中,我采用了点拨引导、讲解分析、类比迁移(根据教学设计需要确定方法)等方法进行教学,在主问题提出后,新知探究中,我会适时指导点拨,引领学生去学习,在学生内化新知中对于学生不够明确的知识适时进行讲解分析,照顾到所有学生,让每一位学生在本节课中都有所收获。在检测反馈和巩固提升中,我将采用类比迁移的方法将新知进一步升华,提高学生解决问题的能力。
基于以上的构思,为了能凸显“有效教学”的理念,更好的达成学习目标,本着“教什么,怎么教,为什么这样教“的思路对本节课作如下设计:
通过复习旧知,让学生加深对新知的理解,并将新旧知识衔接起来,并在学习新知中加以应用。
提出熟视无睹,习以为常的生活情境中的新问题,从而导入新课,可激发学生的学习兴趣和探究新知的积极性,也使学生体会到数学来源于生活,又用于生活。
苏霍姆林斯基曾说过:“在人的心灵深处,都有一种根深蒂固的需要,这就是希望感到自己是一个发现者、研究者、探究者。而在小学生精神世界中,这种需要尤为强烈。”因此在获取新知的过程中我采用了涂一涂、数一数、算一算、想一想等多种方法,培养学生的创新意识,使学生思维的灵活性、独特性得到发张,最大限度地开发学生的创造潜能。
设计由易到难,由浅入深,力求体现知识的纵横联系做到层次分明的练习,让学生学以致用,用数学的眼光观察生活,用数学的方法解决实际问题,感受数学就在我们身边,生活中处处有数学,同时让学生体验到成功的喜悦。
总之,本节课始终关注着学生的发展,创设各种条件让学生参与到知识的产生、形成、发展、运用的过程中,从而落实“四基”,培养“四能”,使不同层次水平的学生都在原有的基础上有所提高。
当然,课堂上也有很多不尽人意的地方,不能照顾到学生全部,大部分学生的积极性没能调动起来,但学生的创新思维与求异思维还有待于我进一步挖掘。没有最好,只有更好,在成长的路上,我会更加努力,希望各位老师给予指教和点拨。
长方体的表面积教案篇十三
(三)培养和发展学生的空间观念。
教学重点和难点。
(二)确定长方体每一个面的长和宽。
教学用具。
教具:长方体、正方体纸盒(可展开)、投影片、电脑动画软件。
学具:长方体、正方体纸盒、剪刀。
教学过程设计。
(一)复习准备。
1.口答填空。
(1)长方体有()个面,一般都是(),相对的面的()相等;
(2)正方体有()个面,它们都是(),正方形各面的()相等;
(4)这是一个(),它的校长是()厘米,它的棱长之和是()厘米。
长方体的表面积教案篇十四
《长方体的表面积》是在学生认识并掌握了长方体、正方体特征的基础上教学的,也是学生学习几何知识由平面计算扩展到立体计算的开始,是本单元的重要内容。
讲长方体的表面积之前给学生布置了任务,要求学生自己制作一个长方体和正方体学具,调动学生感兴趣的学习情境,开课时我用学生亲手制作的长方体学具引入新课,学生自己观察长方体有六个面,要想知道长方体的六个面到底有多大,请你利用小组中的学具帮助老师解决。学生通过思考与交流,认识到“要想知道长方体的六个面到底有多大,必须计算出六个面的面积总和”,这时我因势利导指出:“长方体六个面的面积之和叫做它的表面积”,然后再让学生摸一摸、说一说。这样设计既能刺激学生产生好奇心,又能唤起学生强烈的参与意识,产生学习的需求,使学生在自主的观察与思考中理解了表面积的意义,为探索长方体和正方体表面积的计算打下了良好的基础。
数学来源于生活,同时又服务于生活。应用学到的知识解决实际生活中的问题,不但能使学生感受数学与实际生活是密切联系的,而且能培养学生的创新精神。为此,我出示了以下几种情况的练习:比如无盖的玻璃鱼缸、没有底面的洗衣机罩,学生认识到长、正方体的表面积也会遇到许多特殊情况,我们求表面积不可以千篇一律要根据实际情况具体问题具体分析。
因为是从平面到立体,成人看似简单,而对小学生却有一定的难度。学生的作业反映出来的问题屡见不鲜,因为与实际生活联系比较密切的例子比比皆是,有些题学生考虑不全面,有些却是无所适从,刚刚学过长方体和正方体的表面积,有个别学生不分青红皂白,不认真审题,如果在课堂上我能够抓住学生实践的过程适时把展开的`平面图做出点拨效果会更好。有些学生缺乏空间想象力,还是分不清楚具体的面应该怎样求才是它的面积,而且学生缺乏耐心细致,做不到具体情况具体分析,因此在解决实际问题时,失误较多。以后的教学中我应注重通过观察物体、制作模型、设计图案等活动,发展学生的空间观念。例如,礼堂中有四根长方体形状的木柱,底面是正方形,边长是5分米,高5米,这四根柱子占地面积是多少分米?有个别学生依然把底面积和表面积混淆,把简单问题复杂化。
数学知识从生活中来,但是他们生活常识较少,思维跟不上,对所学的知识没有吃透,似懂非懂又不及时追问。应该对教材有更深入的研究,也应该全方位的去拓展学生思维,尤其是长方体和正方体这一部分内容,在生活中学生对长方体可以说司空见惯,在学习新知时学生也是兴味盎然,积极性很高,但数学知识具有高度的抽象性,今后要多引导学生在动手操作中思考加工,培养技能技巧,促进思维发展,在平时的教学中有时怕学生在课堂上忘乎所以,不好组织,所以尽量避免让学生动手操作,今后也应吸取本次的经验,尽可能的让学生多动手,动手的同时也会拓展学生的思维,达到举一反三,触类旁通的效果。
以后的教学中我应注重通过观察物体、制作模型、设计图案等活动,将抽象的知识变成了学生能看得见、摸得着的现实东西,使学生在观察和操作中,对知识的思考与实物模型的演示和操作有机的结合起来,在学生头脑中形成表象,建立概念,以动促思。并给学生机会,让学生充分发表自己的见解。
长方体的表面积教案篇十五
尊敬的各位评委、各位老师:
今天我说课的内容是人教版小学数学五年级第下册第33——35页《长方体、正方体的表面积》一课。我将从目标的叙写、评价的设计、学习流程和板书设计这四个方面谈谈这节课的教学设计。
学习目标是课堂教学的根本出发点和归宿点,它决定了教学的有效性,关系到新课程理念的真正落实。为此,在叙写目标前,我认真查阅了标准、教材、了解了五年级学生的知识现状。
1、基于标准。
(1)通过观察、操作,认识长方体、正方体的展开图。
(2)结合具体情境,探索并掌握长方体和正方体表面积的计算方法,并能解决简单的实际问题。
2、基于教材。
长方体、正方体的表面积是五年级下册第三单元《长方体和正方体》的第二节内容。它是在学生认识并掌握了长方体和正方体特征的基础上进行学习的。通过学习,既加深学生对长方体和正方体特征的理解,又有助于学生解决生活中的实际问题,并为进一步学习其他立体图形打下基础。本节课的内容分三个层次:一是观察长方体和正方体实物展开图概括出长方体和正方体表面积的意义。二是利用长方体和正方体展开图推导出长方体和正方体表面积计算公式;三是利用公式解决例1和例2等一些实际问题。
3、学情分析。
学生已经掌握了长方形、正方形面积的计算方法,并掌握了长方体和正方体的特征。本节课学习难点在于学生不能根据给出的长方体的长、宽、高,想象出求每个面所需的长和宽各是多少。在教学中我让学生把正方体或长方体纸盒剪开,通过观察展开图来突破这一难点。
基于以上分析,考虑到五年级学生的认知水平,我把本节课的学习目标定为以下两点:
1、能说出长方体和正方体表面积的意义,并归纳出计算方法。
2、能用长方体和正方体表面积的计算方法计算出一个长方体或正方体的表面积。并能解决生活中的一些实际问题。
根据学习目标的设计和我班学生的具体情况,本节课学习重点是:
1、重点:说出长方体、正方体表面积的计算方法,并会解决有关的实际生活问题。
2、难点是:根据给出的长方体的长、宽、高确定每个面的长和宽是多少。
为了突出重点,突破难点,从而实现学习目标,在本课中我主要采用如下学习方法:动手操作法,观察发现法,自主探究法,合作交流法,让学生在剪一剪,说一说等活动中明白长方体、正方体表面积的意义,并归纳出表面积计算方法。
教具、学具准备:课件、长方体、正方体纸盒、剪刀、火柴盒、直尺。
为了检测目标的达成,我设计了以下的评价方案:
任务1:通过观察长方体或正方体纸盒能说出长方体或正方体表面积的意义。
任务2:通过剪一剪,说一说等活动发现每个面的长、宽与长方体长、宽、高的关系,能说出长方体和正方体表面积计算方法。
本节课我以“四了”教学模式为宗旨,设计了四个环节,下面我说一下本节课的学习流程:
(一)巧设情景,质疑引入:
学生学习的积极性、主动性往往以自己的兴趣为转移。本节课我结合小明为妈妈买了一份生日礼物。可他觉得这件礼物的盒子不够精美,你们能不能给小明出主意?想知道这张包装纸的大小吗?导入新课。这一情境的设计意在激发学生的求知欲,同时感受到一种人文情怀。
(二)自主探究、感悟新知。
在教学中让学生通过一系列实践操作活动,经历长方体、正方体表面积概念的形成过程,独立去探索表面积的计算方法。
(1)动手操作、探究概念。
《数学课程标准》中明确指出:“有意义的数学学习必须建立在学生的主观愿望和知识经验的基础之上”。对于学生来说,长方体和正方体每个面面积的计算已不是难点,难在如何从立体图形中找到每个面所对应的长方体的长、宽、高。为了突破这个难点,我设计了:
1)复习旧知,巩固强化。教师先拿出长方体纸盒对长方体的长宽高,以及面之间的关系进行复习巩固为求表面积进行铺垫。
2)学生拿出准备好的长方体纸盒剪开,然后将自己剪开的长方体纸盒展开,标出“上、下、前、后、左、右”6个面的位置。使学生明确表面积的定义:长方体或正方体六个面的总面积就是它的表面积。为进一步求表面积作好铺垫。
3)讨论探究让学生观察展平的长方体图,分小组带着问题进行讨论:a、一个长方体剪开的每个面是什么形状?b、展开后哪两个面是相对的面,有几组相等的面?c、上下、左右、前后各个面的长和宽分别是原长方体的什么?让学生通过手动、口说、眼看、脑想发现长方体每个面面积的计算所需数据。
4)教师课件演示将长方体纸盒剪开,学生说出每个面的算法。
5)总结归纳用文字的形式总结出长方体表面积计算公式:长方体表面积=(长×宽+长×高+宽×高)×2,这样使学生从循序渐进中感受到学习的乐趣和成功的喜悦。
(三)综合实践、学以致用。
数学来源于生活,又服务于生活。本节课我设计了有梯度的三类练习题。
1、基础练习:
引导学生练习书本中例题1和例题2加深了学生对公式的感性认识。
2、巩固提高。
实际生活中,经常遇到不需要算出长方体或正方体六个面的面积,我通过两道求5个面面积的练习题(课本33页做一做,35页第6题)进行了巩固。在此基础上请学生说说解这种题时要注意什么,并举出在日常生活中,做哪些事与求长方体、正方体的部分面积有关。使学生懂得具体问题要具体分析的思维方法。
3、拓展延伸。
因学生个体的差异,我让学生同桌合作,测量火柴盒的长、宽、高,并计算做这样一个火柴盒需要多少纸板?学生经过动手测量,体会到了所学知识与现实生活的必然联系,同时在量一量,算一算中培养了学生的合作学习的意识。
(四)全课小结:谈谈你在本节课中收获到了什么。
课堂小结是对本节课所学知识的归纳和总结,加深学生对知识的巩固理解。也是对学生情感态度的肯定。
(五)说板书。
此板书力图全面而简明的将重点内容展示给学生,便于学生理解和感知所学数学知识,增强识记效果。
综上所述,本节课,我主要采用了动手操作、自主探索和合作交流的学习方式,充分发挥学生的主体作用,培养了学生的探索精神。以上是我对长方体和正方体的表面积的个人看法,有什么不当之处请各位评委和老师们批评指正。谢谢!
长方体的表面积教案篇十六
今天教学《长方体的表面积》不大顺畅,除了课堂上魏博宇、毕峻伟同学因理解出现偏差,交流纠正浪费时间外,我认为教师的设计也存在很大问题。
1、复习导入内容可以再精炼一点。没必要从长方体和正方体的点、面、棱的方面挨个去比较,去订正,直接设计说出长方体和正方体的异同点,形式也没必要挨个抽学生回答,可以同桌互相交流,抽一组代表回答即可,这样既节省时间也抓住了重点。第二个练习题的设计可以直接让学生说出面积即可,其他学生判断,因为是复习内容,没必要像新课一样都是重点去分析。
2、重点的内容重点突破。长方体的表面积探索是本节课的重点,也是在之前学习了长方体的特征和展开面的基础上进行的,所以可直接让学生借助实物或者展开图去探究长方体的表面积,关键是让学生理清弄顺长方体展开面的长和宽和原长方体的长宽高的关系,将小组合作“议一议”的内容作为重点,让学生们自己去探究、去发现、去总结,占用的时间也应该是比较重要的时间。
比如这节课上“什么是长方体的表面积?”在学生用自己的话说出来后,没必要定义读三遍,然后又抽取了10个同学依次回答问题。包括温故知新里的练习内容,只要学生回答正确,或者知错能改,没必要一道又一道的讲解。
而本节课学生说的多,而且环节过于罗嗦,将简单问题复杂化了,导致教学任务没有完成,练习又少之又少。
以上原因都是老师个人的原因造成的,初次带五年级数学,对教材内容以及重难点内容抓不准、吃不透,设计上不敢求新颖只求能正确的教学下来就好,针对以上不足,我以后一定要勤学习,勤请教,争取快速提高自己的.数学教学水平。
长方体的表面积教案篇十七
本节课的教学本着让学生自主探究的要求,让学生充分自主学习、研究、讨论和操作,从而得出结论,激发学生的学习兴趣,培养学生思维能力和实践能力。并在操作的过程中,让学生理解表面积的意义,总结出求表面积的计算方法并能学会运用。
但是由于大部分学生是外来学生,缺乏一定的生活经验,导致他们缺乏解决实际问题的能力,没能真正学以致用。如在解决课本练习中的给洗衣机做一个布罩时,求至少需要多大面积的布,部分学生没有直接接触过洗衣机,对给它做布罩需要做几个面不清楚,因而影响解决该题。另外,课本练习中要为一长为10厘米,宽为8厘米,高位2厘米的长方体选择一合适尺寸的包装纸,几乎全部的学生都选择了第一种包装纸,理由是这两者的面积刚好相等。正是由于学生对如何包装物体缺乏一种生活的认识,所以他们没法做出教参所要求的答案。
因此,我们教师在教学该部分时,应尽量让学生获得更多对生活的认识,加强直观教学,让他们在生活中学习、在生活中获取知识。
长方体的表面积教案篇十八
长方体表面积的计算一课是在学生已经认识了长方体的特征的基础上学习的,这部分内容对于学生来说并不困难,只要把六个面的面积相加就行。然而在实际应用中,特别是遇到特殊情况,比如鱼缸、粉刷教室用材、通风管道等,有很多学生往往不能分清哪些面不需要计算,或是应该怎样计算?教材中计算表面积时是让学生先想象出展开图,再根据展开图各个图形的面积来选择计算出所求面积。
面对以往学生在学习时出现的较高的错误率,我在教学时便采用了让学生“钻”进长方体里求表面积的方法。
我首先让学生环顾四周,把我们的教室看做一个长方体,而我们就生活在这个长方体的世界里,而后我让学生分别指出这个长方体――教室的的顶点、相交于同一顶点的三条棱各叫什么?屋顶的面怎么求?前后的面怎么求?在竞赛的氛围中同学们都能很快地说出每个面的面积的求法。接着我要求学生换方向,与原来方向成90度,接着提问:“现在前面的面积怎么求?左面呢?上面呢?”从而使学生明白,长方体摆放的位置不同,求每个面的面积所用的条件也有所不同,要根据具体的长方体摆放的位置,来决定求每个面的面积应该用哪些条件。经过这样训练,学生不但能理解每个面的长与宽和原来长方体的长、宽、高的关系,而且还能根据我所给出的数据说出每个面的面积,再算出长方体的表面积。在遇到计算特殊物体的表面积,如鱼缸、通风管、游泳池等,我启发学生先钻进“盒子”里,再想象应该计算哪些面的面积,哪些面的面积不用算,这大大地提高了解答的正确率。
一般的教学是让学生想象展开图再进行计算,由于这个图是虚拟的,对学生的空间观念要求比较高。而“钻”进长方体,长方体的各个面就围绕在学生的四周,使学生感觉实在,从而利用直观的看就知道了哪个面不求,还可以用手比划一下,想清楚这个面的长与宽各是多少,再求出面积。这样的做法,对于空间观念比较弱的学困生来说,多了一根思维的“拐棍”。因此,在解决长方体的表面积实际问题时,我经常可以看到有些同学不时的抬起头或转过头看墙壁,有的还用手指偷偷比划着。我知道,他们此时,正“钻”进长方体里。
当然教学中仍存在着一些不足,如没有强调计算必须在单位统一的前提下才可以进行,造成一道练习题的错误率很高。这也是从一个侧面教育学生要养成良好的。
将本文的word文档下载到电脑,方便收藏和打印。
【本文地址:http://www.xuefen.com.cn/zuowen/14912852.html】