用代入法解二元一次方程组教案大全(14篇)

格式:DOC 上传日期:2023-11-25 10:06:03
用代入法解二元一次方程组教案大全(14篇)
时间:2023-11-25 10:06:03     小编:曼珠

教案中应包括教学过程的具体安排和教学活动的选择。编写教案时可以参考相关教材和教学资源,充分利用现代教育技术手段,提高教学效果。以下是小编为大家整理的教案范例,供大家参考学习。

用代入法解二元一次方程组教案篇一

(北师大版新课标实验教材八年级上册)。

一、教学目标。

1、知识与技能。

2、过程与方法。

运用代入消元法解二元一次方程;了解解二元一次方程时的“消元”思想,初步体会“化未知为已知”的化归思想。

3、情感、态度、价值观。

在学生了解解二元一次方程时的“消元”思想,从而初步理解化“未知”为“已知”和化复杂问题为简单问题的化归思想。感受学习数学的乐趣,提高学习数学的热情;培养学生合作交流,自主探究的好习惯。

二、教学重、难点。

1、教学重点。

2、教学难点。

“消元”的思想;“化未知为已知”的化归思想。

三、教学设计。

1、复习,引入新课。

上次课我们学习了二元一次方程、二元一次方程组,以及二元一次方程、二元一次方程组的解的定义。下面请同学们回忆一下它们分别是怎样定义的?(同学们说,说不完的教师利用ppt进行展示)。

2、新课讲解。

(1)来看我们课本上的例子:

上次课我们设老牛驮了x包,小马驮了y包,并建立如下的方程组。

现在要求老牛和小马到底各驮几个包裹?就需要我们求出该方程组的解对吧?我们前面已经学习了怎样求解一元一次方程,下面请同学们讨论怎样通过已学的知识解这个方程组?(学生讨论,教师巡视指导)。

通过同学们的讨论我们已经有了解题思想。首先,由方程(1)将x视为已知数解出y=x-2,由于方程组中相同的字母表示同一未知数,所以可以用x-2代替方程(2)中的y,即将y=x-2代入方程(2)。这样就可以把方程化为我们所熟悉的一元一次方程,进而求解这个一元一次方程得到y的值,带回方程组求出x的'值,方程组的解就求出来了。

好!下面我们一起来解这个方程组(学生说,教师板书)。

(1)?x?y?1?(2)?x?1?2(y?1)。

解:由(1),得y=x-2(3)。

x+1=2[(x-2)-1]。

解得,x=7。

把x=代入方程(3)得y=5。

x7所以,方程组的解为:

y5。

因此,就求出了老牛驮了7个包裹,小马驮了5个包裹。

来看我们的解题过程,首先将其中一个方程中的一个未知数用含有另一个未知数的代数式表示出来,再把得到的代数式代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程进行形求解。这种求解二元一次方程组的方法称为代入消元法。

解题基本思路:消元,化未知为已知。(边说边板书)。

(2)下面再来看一个例子:

(1)?2x?3y?16..........?..(2)?x?4y?13......

解:由(2),得x=13-4y(4)。

将(3)代入(1),得2(13-4y)+3y=16。

26-8y+3y=16。

-5y=-10。

y=2。

将y=2代入(3),得x=5。

x5所以原方程的解为y2。

3、课堂练习。

下面请同学们自己解下列方程组:

(1)?1)1)?x?y?11....(?3x?2y?9....((2)?(2)?x?y?7......?x?2y?3......(2)。

解答(略)。

(让两位同学上黑板做,教师巡视、指导。做完后评讲,给出解题过程)。

4、小结复习。

这节课主要学习了用代入消元法解二元一次方程组,其本思想是消元,将未知转化为已知。主要步骤为将其中一个方程中的一个未知数用含有另一个未知数的代数式表示出来,再把得到的代数式代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程进行求解。

5、布置作业。

课本习题7.2的1、2题。

四、板书设计。

五、教学反思。

进行教学实践后在进行总结、反思、改进。

用代入法解二元一次方程组教案篇二

难点:正确发找出问题中的两个等量关系

课前自主学习

1.列方程组解应用题是把“未知”转化为“已知”的`重要方法,它的关键是把已知量和未知量联系起来,找出题目中的()

2.一般来说,有几个未知量就必须列几个方程,所列方程必须满足:

(1)方程两边表示的是()量

(2)同类量的单位要()

(3)方程两边的数值要相符。

3.列方程组解应用题要注意检验和作答,检验不仅要求所得的解是否( ),更重要的是要检验所求得的结果是否( )

4.一个笼中装有鸡兔若干只,从上面看共42个头,从下面看共有132只脚,则鸡有( ),兔有( )

新课探究

看一看

1题中有哪些已知量?哪些未知量?

2题中等量关系有哪些?

3如何解这个应用题?

本题的等量关系是(1)()

(2)()

解:设平均每只母牛和每只小牛1天各需用饲料为xkg和ykg

根据题意列方程,得

解这个方程组得

答:每只母牛和每只小牛1天各需用饲料为( )和( ),饲料员李大叔估计每天母牛需用饲料18—20千克,每只小牛一天需用7到8千克与计算()出入。(“有”或“没有”)

练一练:

小结

用方程组解应用题的一般步骤是什么?

8.3实际问题与二元一次方程组(2)

1、经历用方程组解决实际问题的过程,体会方程组是刻画现实世界的有效数学模型;

2、能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程组;

3、学会开放性地寻求设计方案,培养分析问题,解决问题的能力

难点:正确发找出问题中的两个等量关系

课前自主学习

1.甲乙两人的年收入之比为4:3,支出之比为8:5,一年间两人各存了5000元(两人剩余的钱都存入了银行),则甲乙两人的年收入分别为()元和()元。

2.在一堆球中,篮球与排球之比为赞助单位又送来篮球队10个排球10个,这时篮球与排球的数量之比为27:40,则原有篮球()个,排球()个。

用代入法解二元一次方程组教案篇三

1、发现的问题:在学习《二元一次方程组》时,学生对本节课的内容和前面学习的一元一次方程有点类似,学生学习起来感到枯燥无味。课堂气愤涣散,效率不高。

2、解决问题的过程:在学习二元一次方程组时,可以用中国古代著名数学问题“鸡兔同笼”或“百鸡百钱”问题作为引入。学生被这种有趣的问题吸引,积极思考问题的答案,以“趣”引思,使学生处于兴奋状态和积极思维状态,不但能诱发学生主动学习,而且还能增长知识,了解了我国古代的`数学发展,培养学生的爱国主义精神。

3、教学反思:一堂成功的数学课,往往给人以自然、和谐、舒服的享受,在数学教学中,我们要紧密联系学生的生活实际,在现实世界中寻找数学题材,让教学贴近生活,让学生在生活中看到数学,摸到数学,体会到数学就在身边,感受到数学的趣味和作用,体验到数学的魅力。让学生接触与生活有关的数学问题,势必会激发学生的学习兴趣,从而有效的提高课堂教学效率,使学生真正喜欢数学、学好数学、用好数学。

用代入法解二元一次方程组教案篇四

本节内容是在学生掌握了二元一次方程组的解法,能列二元一次方程组解较简单的应用题的基础上安排的,其中的“牛饲料问题”“种植计划问”“成本与产出问题”是具有一定综合性的问题,涉及到估算与精确计算的比较、开放地探索设计方案、根据图表信息列方程组等问题形式。由于本节需要探究的问题比较复杂,所以在教学的过程中,一方面需要设置部分台阶减小坡度、分散难点,另一方面需要用一些具体的方法引导学生学会分析和表达,还要留给学生充足的思考、交流、整理、反思的时间。在解决问题的过程中,使学生体会到方程组应用的广泛性与有效性,提高分析解决问题的能力。

根据我校农村学校学生的具体学习情况和认知特点,本节内容设计为3个教学课时,第一课时主要引导学生探索列方程组解应用题的步骤和基本思路;第二课时主要进行综合性应用问题的探索;第三课时主要进行思维拓展和巩固提高。

(一)知识与技能

1、会用二元一次方程组解决生产生活中的实际问题;

2、用方程组的数学模型刻画现实生活中的实际问题。

(二)过程与方法

1、培养学生应用方程解决实际问题的意识和应用数学的能力;

2、将解方程组的技能训练与解决实际问题融为一体,进一步提高解方程组的技能。

(三)情感态度与价值观

1、体会方程组是刻画现实世界的有效模型,培养应用数学的意识。

2、在用方程组解决实际问题的过程中,体验数学的实用性,提高学习数学的兴趣。

3、结合实际问题,培养学生关注生产劳动、热爱生活的意识,让学生重视数学知识与实际生活的联系。

教学重点:根据题意找出等量关系,列二元一次方程组。

教学难点:正确找出问题中的两组等量关系。

4.1第一学时

教学活动

公园一角三个学生的对话:甲:昨天,我们一家8个人去公园玩,买门票花了34元。乙:哦,那你们家去了几个大人?几个小孩呢?丙:真笨,自已不会算吗?成人票5元每人,小孩3元每人啊!

(设计说明:利用学生熟悉的公园购票设计一个简单的问题,在解决这个问题的同时,使学生熟悉列方程解应用题的一般步骤,以及解二元一次方程组常用的方法,为下一步的探究做好准备。)

解:设大人为x人,小孩为y人,依题意得

x+y=8 ①

5x+3y=34 ②

解得

x=5

y=3

答:大人5人,小孩3人。

注:对列出的不同形式的方程组及其解法作简要的比较说明,有意识的引导学生体会解决问题方法的多样性及方法选择的重要性。

(教学说明:以此活动创设一个学生感兴趣的情景,教师提出问题,学生尝试解答,两名学生板演,结合板演订正,提醒学生注意选择简单的方法解方程组,避免重列轻解现象的发生。)

问题1:怎样判断李大叔的估计是否正确?

(设计说明:引导学生探寻解题思路,并对各种方法进行比较,方法一主要是要估算的运用,而方法二是方程思想的应用学生在比较探究后发现用方法二较简便,思路明确之后进一步考虑具体解答问题)

判断李大叔的估计是否正确的方法有两种:

1、先假设李大叔的估计正确,再根据问题中给定的数量关系来检验。

2、根据问题中给定的数量关系求出平均每只母牛和每只小牛1天各约需用饲料量,再来判断李大叔的估计是否正确。

(教学说明:教师提出问题,让学生讨论交流,在此过程中可以逐步理解题意,找到解决问题的方法)

问题2 思考:题目中有哪些已知量?哪些未知量?等量关系有哪些?

(设计说明:利用思考中的问题,引导学生分析题目中的数量关系,逐步将学生的思维引向问题的核心,从而顺利解决问题。)

分析:本题的等量关系是

(1)30只母牛和15只小牛一天需用饲料为675kg

(2)(30+12)只母牛和(15+5)只小牛一天需用饲料为940kg

(教学说明:教师先让学生自己阅读思考,然后同学之间互相交流,最后师生共同得出结论)

问题3 如何解这个应用题?

(设计说明:在学生正确理解题意,把握题中数量关系的基础上写出解答过程,一方面可以进一步梳理思路,熟悉解答过程,另一方面把想和做统一起来,在做的过程中发展计算、表达等多种能力。)

解:设平均每只母牛和每只小牛1天各需用饲料为xkg和ykg根据题意列方程组,得

30x+15y=675 ①

(30+12)x+(15+5)y=940 ②

化简得

2x+y=45

2.1x+y=47

解这个方程组得

x=20

y=5

答:每只母牛和每只小牛1天各需用饲料为20kg和5kg,因此,饲养员李大叔对大牛的食量估计较准确,对小牛的食量估计偏高。

(教学说明:学生在写解答过程时,教师重点关注学习有困难的学生,同时平时做事不认真规范的同学也是重点关注对象。完成之后针对出线的问题及时点评,使学生形成良好的学习习惯。)

问题3 总结:列方程组解应用题的一般步骤及需要注意的问题。

(设计说明:问题解决之后及时回顾反思,能更清晰的发现存在的问题及需要改进的地方,便于学生自查、自悟,找到适合自己的学习方法)

审:弄清题目中的数量关系;

设:设出两个未知数;

列:分析题意,找出两个等量关系,根据等量关系列出方程组;

解:解出方程组,求出未知数的值;

验:检验求得的值是否正确和符合实际情形;

答:写出答案(有时要分别作答)。

(设计说明:通过不同形式的情境设置,从不同的角度帮助学生进一步加深对列方程组解决应用问题的认识,形成初步技能。针对学习后进的学生降低了解方程组的难度,有利于这部分学生把主要精力用于学习列方程组的方法步骤上。)

那2米和1米的各应多少段?

解:设2米的有x段,1米的有y段,根据题意,得

x+y=10 ①

2x+y=18 ②

解得

x=8

y=2

答:小明估计不准确,2米长的8段,1米长的2段。

(说明:通过从不同的角度帮助学生进一步加深对列方程组解决应用问题的认识,巩固初步形成的技能。要求学生自主解决,以此检验学生掌握情况和本堂课的教学效果,为第二课时教学奠定基础。)

1、本节课你学习了什么?(利用列二元一次方程组解决实际问题。)

2、列二元一次方程组解决实际问题的主要步骤是什么?(审、设、列、解、验、答。)

3、列二元一次方程组解决实际问题应注意哪些问题?

(1)认真审题,用数学语言或式子表示题目中的数量关系。

(2)解出方程组时要选择适当的方法,运算速度要快,准确度要高。

(3)要按要求写出答案。

课外作业:p101复习巩固第1题、第2题、第3题。

在这节课之前的学习中,学生已经了解了一些用方程组表示问题中的条件及解方程组的相关知识,而且探究了用方程组解决具有现实意义的实际问题。因此,这一节课共安排了四个贴近实际问题的情境活动:活动一:逛公园,提起学生兴趣导入实际问题,数量关系较为简单;活动一:参观农场,帮助李大叔计算验证,数量关系的难度有所提高,活动中总结列二元一次方程组解决实际问题的主要步骤,同时含有关注农业生产的思想;活动三:工厂锻炼——知识应用和活动四:大显身手——拓展提高。主要通过从不同的角度帮助学生进一步加深对列方程组解决应用问题的认识,巩固初步形成的技能。

这节课更为关注建立二元一次方程组数学模型的“探索”过程。它不仅为解决实际问题提供了重要的策略,而且为数学交流提供了有效的途径,它的模型化的方法,合理优化的思想意识为学生解决实际问题提供了理论上的科学依据。所以我觉得设计此课的重点应该是使学生在探究如何用二元一次方程组解决实际问题的过程中,进一步提高分析问题中的数量关系、设未知数、列方程组并解方程组、检验结果的合理性等能力,感受建立数学模型的作用。教学中我应该根据学生的实际,选取学生熟悉的背景,让学生体会数学建模的思想。在教学中应发挥自主学习的积极性,引导学生先独立探究,再进行合作交流。

在此教学过程中,要熟练掌握多媒体课件的使用流程,充分发挥图片资料创设情境和提高学生学习兴趣的作用。

用代入法解二元一次方程组教案篇五

在数学课堂教学中如何充分发挥好教师在课堂教学中的组织和引导作用,让学生在学习活动中充分张扬自己的个性呢?我以《加减法解二元一次方程组》为例,谈谈自己的体会。

要领会大纲,吃透、钻研教材。在新课改的实施过程中,实质是要让我们教师转变观点,让新的教育理念重新来武装头脑,为此我认真学习数学课程标准的解读,学习新课程大纲,以树立新观念,新认识。通过钻研教材,我把本节课的教学目标定位为:1.使学生正确掌握用加减法解二元一次方程组;2.使学生理解加减消元法的基本思想所体现的“化未知为已知”的化归思想。同时突出学生能力的培养。目标定位为:培养学生观察、分析与综合、比较、概括的能力。3.明确用加减法解二元一次方程组的关键是必须使两个方程中同一未知数的系数绝对值相等定位为本节课的教学难点,同时注意现代教育媒体的运用。以上这些,经过最后的教学检验,从学生反馈来看,还是正确的,是切实可行的。

设计教学,编写教案。在对新课程的精神和理念的把握有了新的认识后,我在教案的设计上,力求突破传统,冲破原先固有模式,努力尝试建构以学生为主体的新的教学模式,让学生从原有的认知结构提出问题,讨论交流后发现问题,再共同来解决问题。学生对新知接受感知后,一是让学生自己设计题目,互相来解;二是教师设计提高题,当堂反馈检测,最后,在师生共同讨论中总结本节课的学习内容,并注意向课处的`延伸,这样既做到知识点的教学有的放矢,又做到学生能力的培养逐步渗透提高,让学生对知识的掌握,从感性上升到理性,进而发展能力,促进应用。

纵观全课,由于我做到充分突出了学生的主体性,本节课师生配合确实很好,学生发言积极,热情高涨,又由于我在教学中充分让学生“我口述我心”,即让学生把想到的东西说出来,哪怕一点点或是错误的,这也是学生思维的火花,这都说明学生的思考是积极的、主动的,也就把学生从大量繁琐的练习题中解放出来;从作业反馈、教学效果来看:所错者甚少。通过此课的教学,我更加认识到充分发展学生的思维,渗透品德教育和情感体验,让学生真正成为学习的主人在今后的数学教学中尤其重要。

用代入法解二元一次方程组教案篇六

看一看:课本99页探究2。

问题:1“甲、乙两种作物的单位面积产量比是1:1、5”是什么意思?

2、“甲、乙两种作物的总产量比为3:4”是什么意思?

3、本题中有哪些等量关系?

提示:若甲种作物单位产量是a,那么乙种作物单位产量是多少?

思考:这块地还可以怎样分?

练一练。

一、某农场300名职工耕种51公顷土地,计划种植水稻、棉花、和蔬菜,已知种植植物每公顷所需的劳动力人数及投入的设备奖金如下表:

农作物品种每公顷需劳动力每公顷需投入奖金。

水稻4人1万元。

棉花8人1万元。

蔬菜5人2万元。

问题:题中有几个已知量?题中求什么?分别安排多少公顷种水稻、棉花、和蔬菜?

用代入法解二元一次方程组教案篇七

(2)通过“做一做”引入例1,进一步发展学生数形结合的意识和能力.

(1)在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神.

(2)在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力.

数形结合和数学转化的思想意识.

教具:多媒体课件、三角板.

学具:铅笔、直尺、练习本、坐标纸.

内容:

1.方程x+y=5的解有多少个?是这个方程的解吗?

2.点(0,5),(5,0),(2,3)在一次函数y=的图像上吗?

3.在一次函数y=的图像上任取一点,它的坐标适合方程x+y=5吗?

4.以方程x+y=5的解为坐标的所有点组成的图像与一次函数y=的图像相同吗?

由此得到本节课的第一个知识点:

(2)一次函数图像上的点的坐标都适合相应的二元一次方程.

内容:

2.上述方程移项变形转化为两个一次函数y=和y=2x,在同一直角坐标系内分别作出这两个函数的图像.

(2)求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解.

(3)解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种.

注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组.

探究方程与函数的相互转化。

内容:

例1用作图像的方法解方程组。

例2如图,直线与的交点坐标是.

内容:

1.已知一次函数与的图像的交点为,则.

2.已知一次函数与的图像都经过点a(—2,0),且与轴分别交于b,c两点,则的面积为.

(a)4(b)5(c)6(d)7。

3.求两条直线与和轴所围成的三角形面积.

4.如图,两条直线与的交点坐标可以看作哪个方程组的解?

内容:以“问题串”的形式,要求学生自主总结有关知识、方法:

(2)一次函数图像上的点的坐标都适合相应的二元一次方程.

2.方程组和对应的两条直线的关系:

(1)方程组的解是对应的两条直线的交点坐标;。

(2)两条直线的交点坐标是对应的方程组的解;。

(1)代入消元法;。

(2)加减消元法;。

(3)图像法.要强调的是由于作图的不准确性,由图像法求得的解是近似解.

习题7.7a组(优等生)1、2、3b组(中等生)1、2c组1、2。

用代入法解二元一次方程组教案篇八

1、选自初一年级(下)数学学科第八章(第一单元)第一节(课)(1课时45分钟)。

2、教材内容简要分析。

教材以引言中的一个实际例子,“一班和二班进行篮球比赛,总共打了22场。每胜一场得2分,每负一场得1分,已知比赛结束一班累计得了40分,思考:一班胜了多少场,负了多少场”来开展这次课程。以本例来首先回忆已学过的一元一次方程的知识内容,以此作为切入点,引导学生思考用两个未知数来表示方程,借此进入二元一次方程的介绍。之后,引导学生利用一元一次方程的解法特点来思考二元一次方程组的解答方法,本次课程内容主要介绍了代入解答法(也称消元法)的详细解答过程,以及二元一次方程组的实际运用及解答,让学习者更好的吸收及掌握二元一次方程组和二元一次方程组的消元法。另外,在本单元结束介绍了作为课外知识的“二元一次方程古代表示方法”。

3、学习内容分析表:

知识点。

重点。

难点。

编号。

内容。

1

2

代入消元法。

代入消元法的具体解法。

3

以实际例题列出方程并解答。

未知数的假设以及运用已知条件列出正确方程。

本次教学的对象是云南省某中学的初中一年级学生,平均年龄12岁。初一年级是学生由幼稚的童年向青年转化和个性逐渐成型的重要转折点,初一年级学生具有其特殊性。初一年级学生由于刚刚接触完全不同于小学的学习生活而有手足无措的情况。而在这个时期的学生生理和心理飞速发展变化,自我意识开始强烈,有了自己的兴趣,独立性增强,感情趋于丰富复杂化,有一定独立思考的能力、一定程度的抽象思维能力和逻辑思维能力,处于识记能力最强的时期。此时,进行的教育可以更加重视独立思考,在数学教学中更加重视引导教学,致使学习者能够更加深刻的理解所学知识,达到教学目标。

1、教学顺序。

(1)复习已学过的一元一次方程知识引入开篇实例。

(3)以二元一次方程的方法建立方程,进而介绍二元一次方程组的定义及特点并巩固。

(5)介绍二元一次方程组消元法的运用,并进行随堂练习以及随堂解答。

(6)在确定学生掌握消元法后进入二元一次方程组的实例运用讲解以及随堂练习。

(7)复习、回忆、巩固本次课程的主要内容,介绍课外延伸内容。

2、教学活动程序。

(1)引起注意。

以“上课”号令以及播放ppt唤起学习者的注意。

(2)告诉学习者目标。

以ppt的播放以及言语刺激,明确告诉学习者本次课的内容是学习二元一次方程组,本次学习的目标是掌握二元一次方程组的消元法以及二元一次方程的实例运用。

(3)刺激对先前知识的回忆。

回忆之前学过的一元一次方程的主要内容(定义、解法、实际运用),以实例进行先前内容的回忆并且充分利用原有的认知结构中关于一元一次方程的列式观念来与新学的二元一次方程产生共鸣。

(4)呈现刺激材料。

在讲解过程中伴随着ppt的播放,并在关键需要注意的部分进行板书强调,在语调上有所突出。

(5)提供学习指导。

以教材内容为指导,以及教师的提示语和示范性行为等进行引导。

(6)诱导行为。

在重点部分题型注意,进行随堂练习,分为详细解答和对答案两种方式。在详细解答时要求同学与老师一同进行,必要时提问同学,让学习者参与进来,更好的理解信息并掌握学习内容。

(7)提供反馈。

在学习者作出反应、表现出行为之后,及时让学习者知道学习结果,从而使学习者能肯定自己的理解与行为正确与否,以便及时更正。

(8)评定行为。

以随堂测验的方式进行随堂评定,并且在课后布置习题让同学们课后完成,再由教师进行评定。

(9)增强记忆与促进迁移。

设置教学活动(见附录),强化刺激,为学习者加深印象,并且促使其发散思维,将学习的知识广泛运用。

3、教学组织形式。

本次教学中选择运用了以下几种教学组织形式。

(1)讲解的形式。

以教师的说明和解释为主,向学生传输新信息,是本次教学主要形式,因本次教学内容的特征,这种形式能够全面详细的解释本次教学内容,并能充分发挥教师的引导作用。

(2)提问的形式。

这一形式能够在教学过程中起到刺激课堂,引起学习者注意的作用,并且是对学习者某一知识学习情况的抽样调查,由教师找出学习者存在的问题进行解决。

(3)师生共同解答的形式。

采用这个形式能够在师生之间产生共鸣,提起课堂气氛,产生共鸣,引起注意,使大部分学习者都参与进来,也是一个小型头脑风暴过程,在学习者之间互相影响,从而对知识得到正确理解。

4、教学方法的选择。

本次课程选择运用了讲授法、演示法、练习法的教学方法。

(1)语言的方法—讲授法,主要是根据教学目标和教学任务,数学这门学科的解释性强的特点以及这个学习阶段的学习者的自学能力不够然而接受能力很强的特点而选择的。

(2)直观的方法—演示法,顺应时代的发展,教学中出现了利用新媒体的需要,并且,对于这个阶段的学习者,在课程开展中利用ppt来进行演示可以更加有效的刺激学习者感官,并且配合适当的板书,对于这个年龄段的学习者更加容易接受,同时也由于我们已经具备了采用新媒体的条件。在课后,会以电子杂志的形式形成重点复习资料留给学习者课后复习。

(3)实践的方法—练习法,包括了口头练习和书面练习。口头练习是这个年龄段学习者心理特征的需要,因为他们独立性还不够强,在进行口头练习的时候,比较能够跟上大多数人的思维,产生共鸣。书面练习是这个学科特征的需要,必须进行书面练习才能让同学们更好的掌握所学知识,随堂练习能及时反映出当场学习的状况。

用代入法解二元一次方程组教案篇九

学生的知识技能基础:七年级时,学生已经学习了一元一次方程及其应用。本章中,学生又学习了二元一次方程、二元一次方程组、列二元一次方程组解应用题等,能熟练地解二元一次方程组,已初步具备了用方程组刻画实际问题的经验和基础,能正确地分析和理解题意,寻求题中的各种数量关系,具备了继续学习本节内容的知识和能力。

学生的活动经验基础:在相关知识的学习过程中,学生已经经历了一些编题活动,同时也具备了一些生活经验,知道列方程解应用题的一些规律、特点和方法,具备了一些解决实际问题的经验和能力。在以前的数学学习中,学生已经经历很多合作学习的过程,具备了一定的'合作学习经验,具备了一定的合作与交流的能力。

地位和作用:本节内容是在学生学习了二元一次方程组的解法和部分二元一次方程组的应用后,紧接着学习的有关数字问题的应用题。这部分内容的学习,有助于加深学生对数字问题的理解,进一步掌握列方程组解应用题的方法(相等关系),提高学生解决实际问题的能力。本节课的教学目标为:

2.让学生进一步经历和体验列方程组解决实际问题的过程,体会方程(组)是刻画现实世界的有效数学模型。

3.在解决问题过程中,学会借助图表分析问题,感受化归思想。

4.让学生体验把复杂问题化为简单问题策略的同时,培养学生克服困难的意志和勇气。

本节课的重点是教学生会用图表分析数字问题。难点是将实际问题转化成二元一次方程组的数学模型;设间接未知数转化解决实际问题。

教学准备。

flah播放器;若flash不能播放,请按绝对路径重新插入后播放。

本课设计了六个教学环节:第一环节:知识回顾;第二环节:情境引入,新课讲解;第三环节:练习提高;第四环节:合作学习;第五环节:学习反思;第六环节:布置作业。

1.一个两位数的十位数字是x,个位数字是y,则这个两位数可表示为:10x+y.

2.一个三位数,若百位数字为a,十位数字为b,个位数字为c,则这个三位数为:100a+10b+c.

3.一个两位数,十位数字为a,个位数字为b,若在这两位数中间加一个0,得到一个三位数,则这个三位数可表示为:100a+b.

4.a为两位数,b是一个三位数,若把a放在b的左边得到一个五位数,则这个五位数可表示为:

1000a+b.

设计意图:通过复习,为本节课的继续学习做好铺垫。

实际效果:提问学生,教师加以点评,这样经过知识的回顾,学生基本能熟练地用代数式表示有关数字问题。

动画,情景展示。

12:00是一个两位数,它的两个数字之和为7;。

13:00十位与个位数字与12:00所看到的正好颠倒了;

14:00比12:00时看到的两位数中间多了个0.

小明和小华在一起玩数字游戏,他们每人取了一张数字卡片,拼成了一个两位数。小明说:“哇!这个两位数的十位数字与个位数字之和恰好是9.”他们又把这两张卡片对调,得到了一个新的两位数,小华说:“这个两位数恰好也比原来的两位数大9.”

那么,你能回答以下问题吗?

(1)他们取出的两张卡片上的数字分别是几?

(2)第一次,他们拼出的两位数是多少?

(3)第二次,他们拼成的两位数又是多少呢?请你好好动动脑筋哟!

用代入法解二元一次方程组教案篇十

“解二元一次方程组”是“二元一次方程组”一章中很重要的知识,占有重要的地位。通过本节课的教学,使学生会用加减消元法解二元一次方程组,进一步了解“消元”的思想。加减法解二元一次方程组的基本思想与代入法相同,仍是“消元”化归思想,通过代入法、加减法这些手段,使二元方程转化为一元方程,从而使“消元”化归这一转化思想得以实现。因此在设计教学过程时,注重化归意识的点拨与渗透,使学生在学习中逐步体会理解这种具有普遍意义的分析问题、解决问题的思想方法。

教学后发现,大部分学生能够较快学会加减消元法解二元一次方程组。教学一开始给出了一个二元一次方程组,在例题选取上把有方程组的同一个未知数的系数分别为1和—1的二元一次方程组交给学生,学生利用自己已有的知识解决这一问题,先让学生用代入法求解,再把两个方程直接相加达到消元的目的,从而引出本节课的主题。既复习了旧知识,又引出了新课题,引发学生探究的兴趣。通过学生的观察、发现,理解加减消元法的原理和方法,使学生明确使用加减法的条件,体会在一定条件下使用加减法的优越性。之后,通过展示两个书写较好学生的练习来帮助学生规范书写,同时明确用加减法解二元一次方程组的步骤。接下来,通过一系列的练习来巩固加减消元法的应用,并在练习中摸索运算技巧,培养能力,训练学生思维的灵活性及分析问题、解决问题的综合能力。同学们对加减法解二元一次方程组有较浓厚的兴趣,解答答起来也特别得心应手,但有个别同学在方程相减时出现负号的运算上比较容易出错,运用的灵活性掌握得不太好,解答起来速度较慢,我想只要多加练习,一定会又快又准确的,这一点在许多学生身上已经得到印证。

用代入法解二元一次方程组教案篇十一

1、本节课是一堂概念课,设计时按照“实例研究、初步体会―类比分析,把握实质――归纳概括,形成定义――应用提高,发展能力”的思路进行,让学生体会到因为“需要”而学习新知识,逐步渗透应用意识。

2、二元一次方程及其解的意义类比一元一次方程进行学习,一方面加深学生对方程中“元”与“次”的理解,另一方面易于理清一元一次方程组有关概念的学习扫清障碍。

3、分层递进,循环上升,学生对知识的理解,教师对学生的要求,都是由低到高,逐步提升,题目设计从单一知识点的直接用,逐渐对多个知识点的灵活运用,给学生设置必要的'台阶,使其一步步向前,最终达到教学目标,充分尊重学生的认识规律。

4、教师始终把自己放策划者,引志者,引导者,促进者的位置,注重学法指导,把学生推向前台,使学生以探索者,研究者的身份穿梭于课堂,充分突出其主体地位,让学生在学习中获得成功,收获自信,使其德智双赢。

用代入法解二元一次方程组教案篇十二

本课内容是在学生掌握了二元一次方程组有关概念之后的学习内容,用代入消元法解二元一次方程组是学生接触到的解方程组的第一种方法,是解二元一次方程组的方法之一,消元体现了“化未知为已知”的重要思想,它是学习本章的重点和难点。学完以后可以帮助我们解决一些实际的问题,也是为了今后学习函数、线性方程组及高次方程组奠定了基础。

2、理解代入消元法的基本思想;了解化“未知为已知”的转化过程,体会化归思想。

2、难点:在“消元”的过程中能够判断消去哪个未知数,使得解方程组的运算转为较简便的过程。

(1)复习引入。

设计意图:让学生复习巩固二元一次方程组和二元一次方程组解的概念,追问其他一个抛砖引玉的效果,激起学生的学习兴趣,引出课题。

(2)探究新知。

此过程通过播放洋葱视频中的代入消元法片段视频,播放致列出二元一次方程组和一元一次后点击暂停,先让学生考虑想清楚两个问题。

一个问题是为什么能用一元一次方程解决的实际问题我们要用二元一次方程组来解决?第二个问题观察二元一次方程组和一元一次方程组之间有何异同?学生想清楚这两个问题后,渗透消元的思想,然后继续播放视频让学生知道二元一次方程组完整的解题过程,并在每一步做出相应的`解释,怎么变化而来。

播放视频完后先让学生自主总结归纳解二元一次方程组的基本步骤,教师引导总结。接着完成配套的3个习题,强化训练。

(3)例题讲解。

让学生尝试解答。

设计意图:让学生通过例1和例2的对比,引出如何选择变化有利于计算的问题。

预想大部分学生例2会存在这样的问题到底选择哪个方程变形,当学生做出例1,犹豫例2时,提出这样两个问题:

(1)在解二元一次方程组的步骤中变形的过程我们应当如何变形?把一个方程变形为用含x的式子表示y(或含y的式子表示x)。

(2)选择哪个方程变形比较简便呢?

再一次激起学生的学习兴趣,接着播放洋葱视频继续代入消元法片段视频,让学生清楚的知道在不同的二元一次方程组中在变形的过程选择那一个方程,选择那一个未知数变形能简便的进行运算。

1、这节课你学到了哪些知识和方法?

2、你还有什么问题或想法需要和大家交流分享?

xxx。

通过洋葱视频辅助教学,使得学生容易体会到“消元”思想的渗透,学生能够学会规范解题。通过视频的讲解能够准确的选择要变形的方程,如果是传统的教学方式可能会出现很多学生不理解的地方,但通过洋葱数学短小精辟的视频讲解一下子让学生理解透!

用代入法解二元一次方程组教案篇十三

本节课是加减法解二元一次方程组,是在学习过直接采用加减消元法解二元一次方程组的基础上,来进一步解决较复杂的二元一次方程组的求解问题的。我应用“先学后教,当堂训练”的教学模式,对教学过程精心设计,创设情境,复习设疑,引发兴趣;提出问题,学生讨论,分散难点;自主学习与小组互动、合作学习相结合,培养学生观察能力、合作意识和探索精神;以学生自学、互学为主,把课堂还给了学生,面向全体,促进课堂动态生成,让学生全面发展,课堂教学生命化,取得了良好的课堂效果,得到了教研组听课老师的'好评。但其中也有一些不足。

1、组内帮扶作用发挥的突出。虽然大家都知道加减消元法,但有些同学不太明确怎样变形成可直接加减的形式,而通过组内帮扶,正好能帮助教师分散解决个别问题,从而大大提高了这节课的课堂效率。

2、易错点强调的较好。在用减法消元时,学生最容易出错的地方是减数位置是一个整体,应该每一项都变号,所以在学生展示时,我让他写出了减的具体过程,也要求大家本节课做题时也要这么做,这样就减少了错误发生的概率。

1、课前复习提问不到位。本节课要继续研究加减消元的方法,在课前我只简单的提问了可直接采用加减消元的条件及如何加减消元,但从学生做题的过程来看,学生更容易在对方程的等价变形中出错,即利用方程的简单变形,两边同时乘以同一个数,学生往往忽略等式右边的常数项,不过,这一点我在课堂教学中提醒了一下,所以在以后的备课中我还要更细致些,多从学生的角度出发思考他们的易错点。

2、加减法解二元一次方程组的一般步骤出示时间有点早。我是在学生“先学”环节中引导学生总结得出,课后认为在“后教”环节的“更正”、“讨论”后让学生自己归纳出,更能体现追求以人的发展为本的“生命化课堂”教育新理念。

用代入法解二元一次方程组教案篇十四

2、通过应用题教学使学生进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性。

正确发找出问题中的两个等量关系。

一、复习。

列方程解应用题的步骤是什么?

审题、设未知数、列方程、解方程、检验并答。

新课:

看一看课本99页探究1。

问题:

1题中有哪些已知量?哪些未知量?

2题中等量关系有哪些?

3如何解这个应用题?

本题的等量关系是(1)30只母牛和15只小牛一天需用饲料为675kg。

(2)(30+12只母牛和(15+5)只小牛一天需用饲料为940。

练一练:

【本文地址:http://www.xuefen.com.cn/zuowen/14897669.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档