总结是一个反思的过程,可以帮助我们深化对事物的认识和理解。在写总结之前,我们可以先对过去的经历进行回顾和整理,明确总结的目标和重点。希望大家在阅读这些总结范文时能够有所收获,写出一篇优秀的总结。
初一下学期数学知识点总结篇一
1.有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示不同的含义,我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)其中a表示横轴,b表示纵轴。
2.平面直角坐标系:在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与垂直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做x轴或横轴,竖直的数轴叫做y轴或纵轴,x轴或y轴统称为坐标轴,它们的公共原点o称为直角坐标系的原点。
3.横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。
4.坐标:对于平面内任一点p,过p分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点p的横坐标和纵坐标。
5.象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。坐标轴上的点不在任何一个象限内。
6.特殊位置的点的坐标的特点。
(1)x轴上的点的纵坐标为零;y轴上的点的横坐标为零。
(2)第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。
(3)在任意的两点中,如果两点的横坐标相同,则两点的连线平行于纵轴;如果两点的纵坐标相同,则两点的连线平行于横轴。
(4)点到轴及原点的距离。
7.在平面直角坐标系中对称点的特点。
(1)关于x成轴对称的点的坐标,横坐标相同,纵坐标互为相反数。(横同纵反)。
(2)关于y成轴对称的点的坐标,纵坐标相同,横坐标互为相反数。(横反纵同)。
(3)关于原点成中心对称的点的坐标,横坐标与横坐标互为相反数,纵坐标与纵坐标互为相反数。(横纵皆反)。
1.不等式:用符号,,,表示大小关系的式子叫做不等式。
2.不等式分类:不等式分为严格不等式与非严格不等式。
一般地,用纯粹的大于号、小于号,连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号),连接的不等式称为非严格不等式,或称广义不等式。
3.不等式的解:使不等式成立的未知数的值,叫做不等式的解。
4.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
5.不等式解集的表示方法:
(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解,用数轴表示不等式的解集要注意两点:一是定边界线;二是定方向。
6.解不等式可遵循的一些同解原理。
(1)不等式f(x)g(x)与不等式g(x)f(x)同解。
(2)如果不等式f(x)g(x)的定义域被解析式h(x)的定义域所包含,那么不等式f(x)g(x)与不等式h(x)+f(x)。
(3)如果不等式f(x)g(x)的定义域被解析式h(x)的定义域所包含,并且h(x)0,那么不等式f(x)g(x)与不等式h(x)f(x)0,那么不等式f(x)g(x)与不等式h(x)f(x)h(x)g(x)同解。
初一下学期数学知识点总结篇二
对于多说中等生来说,他们可能是课堂上学习的乖乖者,这是他们的优点,教给他们多少,他们就学多少,让他们怎样做,他们就怎么做,而一旦离开老师的帮助,他们则变得不知所措。因此,培养其会学习,学好习的习惯尤其重要。本学期,正是基于这样的考虑,所以,我在课堂上给出明确的学习的目标,指出学习的重难点,提供学生学习的素材,帮助学生逐渐养成会学习的习惯。同时,结合他们学习有余,灵活不足的特点,通过附加的学习素材,培养他们灵活的学习特点。
初一下学期数学知识点总结篇三
课堂教学是教学过程中最为重要的一个环节,要取得较好的课堂教学效果,必须营造一种轻松的、积极的、向上的气氛,激发学生的求知欲。所以在课前的准备中,我都会考虑到如何给学生营造一种轻松愉快的环境,以此调动学生的积极性。
根据教学内容,我设计形式多样化的导学案,激发了学习兴趣,提高了听课的积极性,促进探究的主观能动性,增强知识掌握的牢固性,培养了学生探究思维的能力,同时,也提高了课堂教学的效率,反馈练习中效果比较明显。
初一下学期数学知识点总结篇四
回想三角形的面积公式。三角形的面积公式是a=1/2bh。
a=三角形的面积。
b=三角形底边长。
h=三角形底边的高。
看一下你的三角形,确定哪些变量是已知的。在本例中,你已经知道了面积,可以将面积的数值代入公式中的a。你也已知底边长的大小,可以将数值代入公式中的"'b'"。如果你不知道面积或底边长,那么你只能尝试其它的方法了。
无论三角形是如何绘制的,三角形的任意一边都可以作为底边。为了更形象地展示它,你可以想象把三角形进行旋转,直到已知边长位于底部。
例如,如果已知三角形面积是20,一边长为4,那么带入得a=20,b=4。
将数值代入公式a=1/2bh,然后进行计算。首先将底边长(b)乘以1/2,然后用面积(a)除以它。运算得到的结果应该就是三角形的高!
本例中:20=1/2(4)h。
20=2h。
10=h。
2、求等边三角形的高。
回忆等边三角形的特征。等边三角形有三条相等大小的侧边,每个夹角都是60度。如果你将等边三角形分成两半,就会得到两个相同的直角三角形。
在本例中,我们使用边长为8的等边三角形。
回忆勾股定理。勾股定理将两个直角边描述为a和b、斜边为c:a2+b2=c2。我们可以使用这个定理求出等边三角形的高!
将等边三角形对半切开,并将数值代入变量a、b和c。斜边c等于原始的斜边长。直角边a的长度就变成了边长的1/2,直角边b就是所求的三角形的高。
以边长为8的等边三角形为例,其中c=8,a=4。
将数值代入勾股定理的公式,求出b2。边长c和a分别乘以自身求平方值。然后用c2减去a2。
42+b2=82。
16+b2=64。
b2=48。
求出b2的开方值就得到三角形的高了!使用计算机的开根号计算求得sqrt(2)。得到的结果就是等边三角形的高!
b=sqrt(48)=6.93。
3、已知边长和角求高。
确定你已知的变量。如果你知道三角形的一个夹角和一条边长,如果这个角是底边和已知侧边的夹角,或是已知三条边长,你就能求出三角形的高。我们将三角形的三边称之为a、b和c,三角为a、b和c。
如果你已知三角形的三边边长,可以使用海伦公式来求出三角形的高。
如果你已知两条边长和一个角,可以使用面积公式a=1/2ab(sinc)来求解。
如果你已知三条边长也可以使用海伦公式。海伦公式分为两部分。首先,你必须求解出变量s,它等于三角形周长的一半。你可以使用这个公式:s=(a+b+c)/2求出。
例如,三角形三边长为a=4、b=3和c=5,故而s=(4+3+5)/2,也就是s=(12)/2。求出s=6。
然后使用海伦公式的第二部分。面积=sqr((s-b)(s-c)。再将面积代入含有高的面积公式:1/2bh(或1/2ah、1/2ch)。
计算求出高。在本例中,就是1/2(3)h=sqr(6(6-4)(6-3)(6-5)。化简得3/2h=sqr(6(2)(3)(1),也就是3/2h=sqr(36)。使用计算器计算开方,得到3/2h=6。因此,使用边长b作为底边,得出,三角形的高等于4。
如果已知一条边长和一个夹角,使用两边和一角的面积公式来求解。用三角形面积公式1/2bh来代替上述公式中的面积。公式就变成了1/2bh=1/2ab(sinc),化简得到h=a(sinc),这样可以消除一条未知边长的变量。
根据已知变量来求解等式。例如,已知a=3、c=40度,代入公式得“h=3(sin40)。使用计算器来计算等式,得到高h约等于1.928。
初一下学期数学知识点总结篇五
主要是指认真阅读数学课本。许多同学没有养成这个习惯,把课本当成练习册;也有一部分同学不知怎么阅读,这是他们学不好数学的主要原因之一。一般地,阅读可以分以下三个层次:
1.课前预习阅读。预习课文时,要准备一张纸、一支笔,将课本中的关键词语、产生的疑问和需要思考的问题随手记下,对定义、公理、公式、法则等,可以在纸上进行简单的复述,推理。重点知识可在课本上批、划、圈、点。这样做,不但有助于理解课文,还能帮助我们在课堂上集中精力听讲,有重点地听讲。
2.课堂阅读。预习时,我们只对所要学的教材内容有了一个大概的了解,不一定都已深透理解和消化吸收,因此有必要对预习时所做的标记和批注,结合老师的讲授,进一步阅读课文,从而掌握重点、关键,解决预习中的疑难问题。
3.课后复习阅读。课后复习是课堂学习的延伸,既可解决在预习和课堂中仍然没有解决的问题,又能使知识系统化,加深和巩固对课堂学习内容的理解和记忆。一节课后,必须先阅读课本,然后再做作业;一个单元后,应全面阅读课本,对本单元的内容前后联系起来,进行综合概括,写出知识小结,进行查缺补漏。
二、多想。
主要是指养成思考的习惯,学会思考的方法。独立思考是学习数学必须具备的能力。
同学们在学习时,要边听(课)边想,边看(书)边想,边做(题)边想,通过自己积极思考,深刻理解数学知识,归纳总结数学规律,灵活解决数学问题,这样才能把老师讲的、课本上写的变成自己的知识。
三、多做。
主要是指做习题,学数学一定要做习题,并且应该适当地多做些。做习题的目的首先是熟练和巩固学习的知识;其次是初步启发灵活应用知识和培养独立思考的能力;第三是融会贯通,把不同内容的数学知识沟通起来。在做习题时,要认真审题,认真思考,应该用什么方法做?能否有简便解法?做到边做边思考边总结,通过练习加深对知识的理解。
四、多问。
是指在学习过程中要善于发现和提出疑问,这是衡量一个学生学习是否有进步的重要标志之一。有经验的老师认为:能够发现和提出疑问的学生才更有希望获得学习的成功;反之,那种一问三不知,自己又提不出任何问题的学生,是无法学好数学的。那么,怎样才能发现和提出问题呢?第一,要深入观察,逐步培养自己敏锐的观察能力;第二,要肯动脑筋,不愿意动脑筋,不去思考,当然发现不了什么问题,也提不出疑问。发现问题后,经过自己的独立思考,问题仍得不到解决时,应当虚心向别人请教,向老师、同学、家长,向一切在这个问题上比自己强的人请教。不要有虚荣心,不要怕别人看不起。只有善于提出问题、虚心学习的人,才有可能成为真正的学习上的强者。
返回目录。
初一下学期数学知识点总结篇六
对顶角相等。
过一点有且只有一条直线与已知直线垂直。
连接直线外一点与直线上各点的所有线段中,垂线段最短(简单说成:垂线段最短)。
平行线。
经过直线外一点,有且只有一条直线与这条直线平行。
如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
1、直线平行的条件。
两条直线被第三条直线所截,如果同位角相等,那么两直线平行。
两条直线被第三条直线所截,如果内错角相等,那么两直线平行。
两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。
2、平行线的性质。
两条平行线被第三条直线所截,同位角相等。
两条平行线被第三条直线所截,内错角相等。
两条平行线被第三条直线所截,同旁内角互补。
二元一次方程组。
方程中含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程。
把两个二元一次方程合在一起,就组成了一个二元一次方程组。
使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
消元。
将未知数的个数由多化少、逐一解决的'想法,叫做消元思想。
不等式。
用小于号或大于号表示大小关系的式子,叫做不等式。
使不等式成立的未知数的值叫做不等式的解。
能使不等式成立的x的取值范围,叫做不等式的解的集合,简称解集。
不等式的性质。
不等式两边加(或减)同一个数(或式子),不等号的方向不变。
不等式两边乘(或除以)同一个正数,不等号的方向不变。
不等式两边乘(或除以)同一个负数,不等号的方向改变。
初一下学期数学知识点总结篇七
第五章:
本章重点:一元一次不等式的解法,
本章难点:了解不等式的解集和不等式组的解集的确定,正确运用。
不等式基本性质3。
本章关键:彻底弄清不等式和等式的基本性质的区别.
(2)不等式的基本性质,它是解不等式的理论依据.
(3)分清不等式的解集和解不等式是两个完全不同的概念.
(6)一元一次不等式的解集,在数轴上表示一元一次不等式的解集。
(8).利用数轴确定一元一次不等式组的解集。
第六章:
1.二元一次方程,二元一次方程组以及它的解,明确二元一次方程组的解是一对未知数的值,会检验一对数值是不是某一个二元一次方程组的解.
2.一次方程组的两种基本解法,能灵活运用代入法,加减法解二元一次方程组及简单的三元一次方程组.
3.根据给出的应用问题,列出相应的二元一次方程组或三元一次方程组,从而求出问题的解,并能根据问题的实际意义,检查结果是否合理.
本章的重点是:二元一次方程组的解法——代入法,加减法以及列一次方程组解简单的应用问题.
本章的难点是:
1.会用适当的消元方法解二元一次方程组及简单的三元一次方程组;。
2.正确地找出应用题中的相等关系,列出一次方程组.
第七章。
本章重点是:整式的乘除运算,特别是对幂的运算及乘法公式的应用要达到熟练程度.
本章难点是:对乘法公式结构特征和公式中字母意义的理解及乘法公式的灵活应用。
1.幂的运算性质,正确地表述这些性质,并能运用它们熟练地进行有关计算.
2.单项式乘以(或除以)单项式,多项式乘以(或除以)单项式,以及多项式乘以多项式的法则,熟练地运用它们进行计算.
3.乘法公式的推导过程,能灵活运用乘法公式进行计算.
4.熟练地运用运算律、运算法则进行运算,
5.体会用字母表示数和用字母表示式子的意义.通过式的变形,深入理解转化的思想方法.
第八章:
1、认识事物的几种方法:观察与实验归纳与类比猜想与证明生活中的说理数学中的说理。
2、定义、命题、公理、定理。
3、简单几何图形中的推理。
4、余角、补交、对顶角。
5、平行线的判定。
判定:一个公理两个定理。
公理:两直线被第三条直线所截,如果同位角相等(数量关系)两直线平行(位置关系)。
定理:内错角相等(数量关系)两直线平行(位置关系)。
定理:同旁内角互补(数量关系)两直线平行(位置关系).
平行线的性质:
两直线平行,同位角相等。
两直线平行,内错角相等。
两直线平行,同旁内角互补。
由图形的“位置关系”确定“数量关系”
第九章:
重点:因式分解的方法,
难点:分析多项式的特点,选择适合的分解方法。
1.因式分解的概念;。
2.因式分解的方法:提取公因式法、公式法、分组分解法(十字相乘法)。
3.运用因式分解解决一些实际问题.(包括图形习题)。
第十章:。
重点是:用统计知识解决现实生活中的实际问题.
难点是:用统计知识解决实际问题.
1.统计初步的基本知识,平均数、中位数、众数等的计算、
2.了解数据的收集与整理、绘画三种统计图.
3.应用统计知识解决实际问题能解决与统计相关的综合问题.
初一下学期数学知识点总结篇八
(m,n都是整数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:
b)指数是1时,不要误以为没有指数;。
二、幂的乘方与积的乘方。
三、同底数幂的除法。
(1)运用法则的前提是底数相同,只有底数相同,才能用此法则。
(2)底数可以是具体的数,也可以是单项式或多项式。
(3)指数相减指的是被除式的指数减去除式的指数,要求差不为负。
四、整式的乘法。
1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。单独的一个数或一个字母也是单项式。单项式的数字因数叫做单项式的系数,所有字母指数和叫单项式的次数。
如:bca22-的系数为2-,次数为4,单独的一个非零数的次数是0。
2、多项式:几个单项式的和叫做多项式。多项式中每个单项式叫多项式的项,次数项的次数叫多项式的次数。
初一下学期数学知识点总结篇九
对于成绩优异的学生来说,他们学习能力强,自觉性强,这都是他们成绩优异的一个重要原因。但尽管这样,在课堂上,他们可能是学习的高手,但在课下,他们却不一定会学习。特别是从三年级到四年级是小学阶段的一个转折,对学习方法的问题还并不是很明确。因此,应更多地培养他们学习的方法和习惯。例如,在课堂上,从复习,新授,练习,提高,小结等方面培养他们独立自主学习的习惯,利用学案,使他们养成会学习的习惯,能交给他们的交给他们自己解决,尽量培养他们较强的'学习能力。课下,则对他们不知额外的任务,使他们在掌握基本的学习知识的同时,尽可能培养其更强的学习能力。
初一下学期数学知识点总结篇十
1.读的方法。初一同学往往不善于读数学书,在读的过程中,易沿用死记硬背的方法。那么如何有效地读数学书呢?平时应做到:
(1)粗读。先粗略浏览教材的枝干,并能粗略掌握本章节知识的概貌,重、难点;。
(3)研读。要研究知识间的内在联系,研讨书本知识安排意图,并对知识进行分析、归纳、总结,以形成知识体系,完善认知结构。
读书,先求读懂,再求读透,使得自学能力和实际应用能力得到很好的训练。
2.听的方法。“听”是直接用感官去接受知识,而初一同学往往对课程增多、课堂学习量加大不适应,顾此失彼,精力分散,使听课效果下降。因此应在听课的过程中注意做到:
(1)听每节课的学习要求;。
(2)听知识的引入和形成过程;。
(3)听懂教学中的重、难点(尤其是预习中不理解的或有疑问的知识点);。
(4)听例题关键部分的提示及应用的数学思想方法;。
(5)听好课后小结。
3.思考的方法。“思”指同学的思维。数学是思维的体操,学习离不开思维,
数学更离不开思维活动,善于思考则学得活,效率高;不善于思考则学得死,效果差。可见,科学的思维方法是掌握好知识的前提。七年级学生的思维往往还停留在小学的思维中,思维狭窄。因此在学习中要做到:
(1)敢于思考、勤于思考、随读随思、随听随思。在看书、听讲、练习时要多思考;。
(2)善于思考。会抓住问题的关键、知识的重点进行思考;。
(3)反思。要善于从回顾解题策略、方法的优劣进行分析、归纳、总结。
4.问的方法。孔子曰:“敏而好学,不耻不问。”爱因斯坦说过:“提出问题比解决问题更重要。”问能解惑,问能知新,任何学科的学习无不是从问题开始的。但七年级同学往往不善于问,不懂得如何问。因此,同学在平时学习中应掌握问问题的一些方法,主要有:
(1)追问法。即在某个问题得到回答后,顺其思路对问题紧追不舍,刨根到底继续发问;。
(2)反问法。根据教材和教师所讲的内容,从相反的方向把问题提出来;。
(4)联系实际提问法。结合某些知识点,通过对实际生活中一些现象的观察和分析提出问题。
此外,在提问时不仅要问其然,还要问其所以然。
5.记笔记的方法。很大一部分学生认为数学没有笔记可记,有记笔记的学生也是记得不够合理。通常是教师在黑板上所写的都记下来,用“记”代替“听”和“思”。
有的笔记虽然记得很全,但收效甚微。因此,学生作笔记时应做到以下几点:
(1)在“听”,“思”中有选择地记录;。
(2)记学习内容的要点,记自己有疑问的疑点,记书中没有的知识及教师补充的知识点;。
(3)记解题思路、思想方法;。
(4)记课堂小结。并使学生明确笔记是为补充“听”“思”的不足,是为最后复习准备的,好的笔记能使复习达到事倍功半的效果。
正确的学习态度和科学的学习方法是学好数学的两大基石。这两大基石的形成又离不开平时的数学学习实践,下面就几个数学学习实践中的具体问题谈一谈如何学好数学。
初一下学期数学知识点总结篇十一
现在的学生,独立性越来越强,而且恰好处于青春叛逆期,每个人都有自己独特的想法,为了了解学生,经常课后与学生谈心,后来学生有问题也喜欢找我,听听我的意见,这对于我的教学也有一定的促进作用,能及时了解学生对于数学和对于我的教学方法的意见,及时改进。
这学期以来有成绩也有不足:108班还是两极分化严重,部分男生更是由于底子薄而厌学,下一步的工作重点就是让这部分人能重拾信心。还是那句话:我希望我的每一个学生在我这里学有所获。加油!
初一下学期数学知识点总结篇十二
本着回顾过去、展望未来的原则,现对七年级下学期数学教学工作进行总结。这既是对过去数学教学工作的回顾、总结和评价,同时也是为了从中总结成功的经验,找出失败的原因。对失败的作法加以分析和改进,以提高今后的教学水平。下面谈谈自己在本学期教学中的几点做法与思考,权当教学工作总结吧。
初一下学期数学知识点总结篇十三
960年,赵匡胤建立北宋,以开封(称为东京)为都城,赵匡胤就是宋太祖。(陈桥驿兵变和“黄袍加身”)。
二、宋太祖加强中央集权的措施。
1、军事方面:解除禁军将领的兵权;将领有拥兵之权而无调兵之权;定期换防造成兵不识将,将不识兵。(杯酒释兵权)。
2、行政方面:在中央,削弱宰相权力,设多重机构,分割宰相的军政、财政大权;。
3、地方:安排文臣担任知州等,并且三年一换,设通判分权;设置转运使,把地方财税收归中央。
三、实行重文轻武的政策。
目的:为防止唐末以来武将专横跋扈的弊端重现。
措施:a、宋太祖有意重用文臣掌握军政大权,宋太宗继续采取抑制武将、提升文官地位的政策,文臣统兵的格局逐渐形成。b、注重发展文教事业,改革和发展科举制。
影响:a、扭转了五代十国时期尚武轻文的风气,杜绝了武将拥兵自重的情况,有利于政权的稳固和社会稳定。b、造就了宋朝科技发达、文化昌盛、人才辈出的文治局面。c、(消极作用)宋朝重文轻武,导致国家军队战斗力削弱,政府行政效率下降,人民负担加重。
初一下学期数学知识点总结篇十四
单项式和多项式统称整式。
a)由数与字母的积组成的代数式叫做单项式。单独一个数或字母也是单项式。
b)单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数,系数为1或-1。
c)一个单项式中,所有字母的指数和叫做这个单项式的次数(注意:常数项的单项式次数为0)
a)几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项。其中,不含字母的项叫做常数项。一个多项式中,次数最高项的次数,叫做这个多项式的次数。
b)单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数。多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的`单项式的个数。多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数。
a)整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式。
b)括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘。
初一下学期数学知识点总结篇十五
单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.
1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.
2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.
3.多项式:几个单项式的和叫多项式.
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式.
5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.
整式分类为:
6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.
7.合并同类项法则:系数相加,字母与字母的指数不变.
8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.
9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.
10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.
初一下学期数学知识点总结篇十六
a)由数与字母的积组成的代数式叫做单项式。单独一个数或字母也是单项式。
b)单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数,系数为1或-1。
c)一个单项式中,所有字母的指数和叫做这个单项式的次数(注意:常数项的单项式次数为0)。
a)几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项。其中,不含字母的项叫做常数项。一个多项式中,次数最高项的次数,叫做这个多项式的次数。
b)单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数。多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的`单项式的个数。多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数。
a)整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式。
b)括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘。
初一下学期数学知识点总结篇十七
1.我们把实物中抽象的各种图形统称为几何图形。
2.有些几何图形(如长方体.正方体.圆柱.圆锥.球等)的各部分不都在同一平面内,它们是立体图形。
3.有些几何图形(如线段.角.三角形.长方形.圆等)的各部分都在同一平面内,它们是平面图形。
4.将由平面图形围成的立体图形表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。
5.几何体简称为体。
6.包围着体的是面,面有平的面和曲的面两种。
7.面与面相交的地方形成线,线和线相交的地方是点。
8.点动成面,面动成线,线动成体。
9.经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线。简述为:两点确定一条直线(公理)。
10.当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。
11.点m把线段ab分成相等的两条线段am和mb,点m叫做线段ab的中点。
12.经过比较,我们可以得到一个关于线段的基本事实:两点的所有连线中,线段最短。简单说成:两点之间,线段最短。(公理)。
13.连接两点间的线段的长度,叫做这两点的距离。
整式的加减。
1.都是数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式。
2.单项式中的数字因数叫做这个单项式的系数。
3.一个单项式中,所有字母的指数的和叫做这个单项式的次数。
4.几个单项的和叫做多项式,其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。
5.多项式里次数项的次数,叫做这个多项式的次数。
6.把多项式中的同类项合并成一项,叫做合并同类项。
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。
7.如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。
8.如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
9.一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。
初一下学期数学知识点总结篇十八
1、认真学习教育教学理论,落实课标理念,让学生通过观察、思考、探究、讨论、归纳,主动地进行学习。认真研究教材,体会新课标理念,认真上课、认真辅导和批改作业,同时让学生认真学习。
2、通过介绍数学家、数学史和数学趣题,激发学生学习兴趣。
3、引导学生积极参与知识建构,营造民主、和谐、平等,学生自主探究、合作共享发现快乐的课堂,让学生体会学习的快乐。
4、通过实践探索,培养学生归纳推理能力和多种途径探求问题的解决方式。
5、培育学生良好的学习习惯,发展学生的非智力因素。
6、进行分层教育的探索,让全体学生都得到充分的发展。
【本文地址:http://www.xuefen.com.cn/zuowen/14879049.html】