平行四边形的面积教案(汇总24篇)

格式:DOC 上传日期:2023-11-24 19:30:06
平行四边形的面积教案(汇总24篇)
时间:2023-11-24 19:30:06     小编:紫薇儿

教案是教师根据教育教学活动的特点和要求,经过科学的教育教学设计,用以组织教育教学活动的一种文档资料。教案要体现循序渐进、启发思考、激发兴趣的原则。在下面的范文中,你可以看到不同学科和不同年级的优秀教案设计。

平行四边形的面积教案篇一

教学内容:人教版《义务教育课程标准实验教科书数学》五年级上册第80、81页的内容。

教学目标:

2.通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。

教学重点:掌握平行四边的面积计算公式,并能正确运用。

教学过程:

一、情境激趣。

1.播放运载“嫦娥一号”探月卫星的火箭成功发射的录像。

2.师:为了纪念这个有意义的时刻,我们学校的小朋友们在数学活动上利用一些图形拼出了运载“嫦娥一号”的火箭模型呢!

3.(课件出示拼成的模型)让学生观察火箭模型是由哪些图形拼成的。

4.比较其中的长方形和平行四边形,谁的面积大,谁的面积小,可以用什么方法?(引导学生说出可以用数方格的方法。)。

二、自主探究。

1.数方格比较两个图形面积的大小。

(1)提出要求:每个方格表示1平方厘米,不满一格的都按半格计算。

(2)学生用数方格的方法计算两个图形的面积并填写书上80页表格。

(3)反馈汇报数的结果,得出:用数方格的方法知道了两个图形的面积一样大。

(5)观察表格,你发现了什么?

(6)引导学生交流发现并全班反馈得出:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积相等;平行四边形的面积等于底乘高。

2.操作验证。

(1)提出要求:请小朋友利用三角尺、剪刀,动手剪一剪拼一拼,把平行四边形想办法转变成我们已学过面积计算的图形,完成后和小组的同学互相交流自己的方法。

(2)学生分组操作,教师巡视指导。

(3)学生展示不同的方法把平行四边形变成长方形。

(4)利用课件演示把平行四边形变成长方形过程。

(5)观察并思考以下两个问题:

a.拼成的长方形和原来的平行四边形比较,什么变了?什么没变?

b.拼成的长方形的长与宽分别与原来平行四边形的底和高有什么关系?

(6)交流反馈,引导学生得出:

a.形状变了,面积没变。

b.拼成的长方形,长与原来平行四边形的底相等,宽与原来平行四边形的高相等。

(7)根据长方形的面积公式得出平行四边形面积公式并用字母表示。

(8)活动小结:我们把平行四边形转变成了同它面积相等的长方形,利用长方形面积计算公式得出了平行四边的面积等于底乘高,验证了前面的猜想。

3.教学例1。

(1)(出示例1)平行四边形的花坛的底是6m,高是4m。它的面积是多少?

(2)学生独立完成并反馈答案。

三、看书质疑。

四、课堂总结。

通过这节课的学习,你有哪些收获?(学生自由回答。)。

五、巩固运用。

1.练习十五第1题,让学生独立完成后反馈答案。

4.练习十五第3题。

六、全课小结(略)。

平行四边形的面积教案篇二

本节课中,学生兴趣盎然,始终以积极的态度、主人翁的姿态投入到每一个环节的学习中。我认为教学成功的关键在于学生是通过自主探究得到了知识,获得了发展。主要体现在以下几个方面:

一、创设卡通情境,激发探究欲望。

卡通人物是学生喜闻乐见的,所以我选用咖啡猫来创设情境。创设学生感兴趣的学习情境有利于让学生积极主动地投入到数学活动中去,使学生对学习的内容产生了浓厚的兴趣和亲切感,激发起他们强烈的求知欲望,使学生能以饱满的热情投身于新知识的探究之中。著名数学家华罗庚说过:“人们对数学早就产生了枯燥乏味、神秘、难懂的印象,原因之一便是脱离了实际。”所以在教学中,教师要善于把这些有价值的问题置于学生熟悉的、感兴趣的实际生活情境中,使数学知识成为学生看得见、摸得着、听得到的现实,让数学贴近学生的生活,学生就会真正体会到生活中充满了数学,感受到数学的真谛与价值,从而喜欢数学。而本节课的情境创设正是在这种理念的支撑下,把问题赋予儿童化的色彩,使学生觉得好象不是在学习新的知识,而就是为了帮咖啡猫解决问题而寻找方法,所以学生都很乐意也很愿意主动去探究。

二、在动手中学习,在动手中思维。

“学习任何知识的最佳途径是通过自己的实践活动去发现,因为这样发现理解最深,也最容易掌握。”学生学习数学知识是主动建构过程,也就是说,学生学习数学只有通过自身的操作活动和主动参与的去做才能产生效果。现代教育理论主张让学生动手去“做”科学,而不是用耳朵“听”科学。这节课我给了学生足够的时间和空间去动手操作,都是学生的智慧,然后让学生同伴互助去探究、去发现、去总结,给每个学生参与数学活动的机会,真正使学生在动手中学习,在动手中思维,学习主人翁的地位充分展现。

三、初步体验科学探究的方法。

科学探究的方法是创新能力的必要基础,是每个公民必须具备的基本素质。纵观整个教学过程,初步体现了“提出问题——大胆猜测——反复验证——总结规律——灵活运用”这一科学探究的方法,让学生通过自身的实践活动对科学探究的方法有了初步的了解,体验到知识的产生都经历了曲折艰苦的创新过程。因此,我在把握教材内涵的基础上,把教材的知识结论变成学生主动参与、探究问题、发现规律的创新过程,培养了学生科学探究的精神,不仅使学生的智慧、能力得到发展,而且获得了深层次的情感体验。

本课教学中也有待于修正的地方,在学生动手操作,想想能不能把平行四边形转化为以前学过的图形时,学生的思路非常活跃,但有些同学没有明确转化的目的是为了计算平行四边形的面积,有的说能转化为两个三角形,有的说能转化成两个梯形……没有想转化后的图形面积会不会计算,所以教师在这时,应重点强调:能不能把平行四边形转化为原来学过的长方形,这样目的明确了,当学生转化为长方形后,就易于发现两个图形之间的关系,从而推导出平行四边形面积计算公式。所以,教师在备课时,应该充分备学生,多想想学生的理解、学生的思维、想法,这样才能使课堂教学更紧凑,让学生充分利用上课时间,学习最多的知识。

读书破万卷下笔如有神,以上就是为大家整理的4篇《五年级数学《平行四边形的面积》教案》,希望可以对您的写作有一定的参考作用,更多精彩的范文样本、模板格式尽在。

平行四边形的面积教案篇三

2、通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。

掌握平行四边的面积计算公式,并能正确运用。

把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推倒出平行四边形面积计算公式。

动手操作、小组讨论、演示等。

2、“同学们真会用数学的眼光观察,老师还有一上问题,门口的这两个花坛哪一个比较大呢?”

1、用数方格的方法验证:

2、猜测:

不数方格,你有什么好方法验证?能把平行四边形转变成我们学过的图形来计算它的面积吗?可以转变成什么图形呢?怎么样才能用最简单的方法把平行四边形转变成长方形?(小组讨论)请同学们借助手中的平行四边形、剪刀等学具剪一剪,拼一拼(学生操作,四人小组比一比谁剪得快、好)。

学生边操作边叙述自己实验过程。“你把平行四边形转化成了什么图形?你是怎样转化的?”教师演示。“这两种方法都沿着什么来剪?为什么?”

小组讨论:平行四边形转化成长方形后,什么变了?什么没变?

转化后,长方形的长与平行四边形的底有什么关系?宽与平行四边形的高有什么关系?

平行四边形的面积怎样计算吗?(板书:平行四边形的面积=底x高)(字母式)。

小结:沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形转化成一个长方形。这个长方形的面积与原来平行四边形的面积相等。这个长方形的长与平行四边形的底相等;宽与平行四边形的高相等。因为长方形的面积等于长乘宽,所以平行四边形的面积是底乘高。

刚才大家不仅验证了前面提出的猜想,还继续应用了“转化”的思想,转化是一种很重要的数学方法,大家在以后还会经常用到。

3、应用:出示例1,谁来说一说你是怎么做的?

要求平行四边形的面积,我们必须知道哪些条件?

反思:在本节课中,本来操作应能提高学生学习的积极性,但在引导学生把平行四边形转化成长方形时,交待不清,学生不明白老师要求做什么,怎么做。欠缺形式,气氛不够热烈。教师在备课时应预设学生的反应,不应只关注自己的设计和练习。语言不够精练,激励语言较少,生生互动少。

平行四边形的面积教案篇四

《平行四边形的面积》教案商丽娟教学目标:通过探索,理解并掌握平行四边形面积计算公式,能运用公式解决实际问题。渗透图形间相互联系、互相转化的思想,初步学会用转化的方法解决问题。培养学生观察、分析、概括、推导能力,发展学生的空间观念。教学重点:通过探索,理解掌握平行四边形面积计算公式。教学难点:探究平行四边形面积计算公式。教具学具:多媒体课件、平行四边形、剪刀、直尺教学过程:一、导我们学过面积的有关知识吗?你能计算出下面图形的面积吗?课件依次显示:长方形、正方形。学生口答。课件显示:平行四边形(不标数据)需要老师给你们提供哪些数据呢?(提供数据)请同学们根据有关数据列出算式。(生列算式,指名板演。)二、学1、交流预设:5×4你能说说想法吗?(学生可能由长方形面积=长×宽想到平行四边形面积=长×宽)同学们看到平行四边形时,都想到了另外一个图形――?平行四边形和长方形有什么联系?请学生到台前利用学具把平行四边形拉成长方形。观察思考:平行四边形面积是不是等于长乘宽?预设:学生想不出时,引导学生观察平行四边形和长方形面积是否相等。说明:看到平行四边形想到长方形,运用了一种数学方法转化,只是转化过程中忽略了面积大小。没关系,我们有平行四边形(纸),可以帮助我们进一步来研究。2、探究出示要求:同桌合作,利用剪刀、直尺、铅笔等工具,把平行四边形转化成和它面积大小一样的.长方形。学生动手操作。指名学生展示,汇报交流。重点问题:沿着哪条线剪?可不可以不沿高剪?是不是只有这一种剪法?多媒体展示“剪移拼”过程,学生思考平行四边形和转化后的长方形关系,推导出平行四边形面积公式。三、练1、基础练习。看图口答。2、近似平行四边形草坪。提供高、底数据,求草坪面积大约是多少。指名板演,其余学生独立完成,后交流。四、结刚才,我们运用新知识帮老师解决了难题。我们学的是什么新知识?这就是我们本节所学平行四边形的面积。(板书课题)那平行四边形面积公式是什么?我们在探究过程中还运用了一种数学方法――(转化),希望以后运用转化探究出其它平面图形的面积。板书设计:平行四边形的面积长方形的面积=长×宽转化平行四边形面积=底×高

平行四边形的面积教案篇五

本节课教法上最大的特点是让学生动手操作,把静态知识转化成动态,把抽象数学知识变为具体可操作的规律性知识。指导学生理论联系实际,开展多次讨论,使他们自主、快乐地解决问题。

在本节课中,我还力图体现出学生学习方法的转变:从被动接受学习变为在自主、探究、合作中学习。让学生自己提出问题,再自己想办法解决,并能以小组为单位共同合作完成;让学生亲身体验知识的形成过程,促进学生思维的发展。

在导入部分我采用了创设生活情境,设疑引入的方法来激发学生的学习兴趣,这为充分发挥学生主体作用奠定了基础。

在探究过程中,我很重视学生动手操作、自主探索和合作交流的学习方式,大胆放手,给学生时间和空间,让他们在熟悉的具体情境中,通过探究和体验,感受新知;联系生活经验,构建新知;小组合作交流,扩展新知;创新活动设计,超越新知。

平行四边形的面积教案篇六

教学内容:

课本第73-74页练习十七第4-9题。

教学要求:

1、能比较熟练地运用平行四边形计算公式,解答有关的应用问题。

2、养成良好的审题习惯,树立责任感。

教学重点:

能比较熟练地运用平行四边形的计算公式,解答有关的应用题。

教具准备:

口算卡片。

教学过程:

一、复习。

(1)底12米,高是7米;

(2)高13分米,底长6分米;

(3)底2.5厘米,高4厘米;

(4)底0.24分米,高0.5分米。

4、出示课题。

二、新授。

1、补充例题。

(1)独立列式后,指名口述,教师板书。

(2)如果改问题为“每公顷可收小麦6吨,这块地共可收小麦多少吨?”怎么解答?

让学生议一议,然后自己列式解答,最后评讲。

与上题比较,从数量关系上看,什么是相同的?什么是不同的?

让学生自己列式。

辨析:老师也列了三个算式,到底哪个对呢?帮个忙!

a900×(125×24÷10000)。

b900÷(125×24)。

c900÷(125×24÷10000)。

2、(略)。

三、巩固练习。

练习十七第6、7题。

四、课堂作业。

练习十七第8、9题。

平行四边形的面积教案篇七

一、教学目标:

2、透过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的潜力。

3、感受数学与生活的联系,激发学数学的兴趣。

二、教学重点:掌握平行四边形的计算公式,能正确运用。

三、教学难点;把平行四边形转化成长方形,找到长方形与平行四边形的关系,从而顺利推导出平行四边形的面积计算公式。

四、教学过程:

1、创设情境、激趣导入。

生:想。

师:你们准备怎样解决?

师:怎样才能明白这块长方形菜地的面积?

生:测出菜地的长和宽,用长乘宽就等于面积。

生:不明白。

师:那我们这天就来研究怎样求平行四边形的面积(板书课题;平行四边形的面积)。

2、探究发现、提出猜想。

生:数格子。

师:下方我们就用这种方法来算算平行四边形的面积。(学生数格子,在书上填表)。

师:谁愿意帮老师把这个表格填一填(生上黑板填写)。

师;能告诉大家你是怎样数的吗?

生:我是先数整格,再数半格。

师:还有不一样数法吗?

生:……。

生:不方便。

师:既然不方便,那么不数格子,能不能计算出平行四边形的面积呢?

师:请同学们仔细观察表格中的数据,你发现了什么?

生:我发现平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽。

生:我还发现这个平行四边形的底是6,高是4,而面积是24,正好是6与4的乘积。

师:他说的对不对呢?下方让我们动手操作验证一下吧。(学生验证,师巡视)。

3、验证猜想、推导公式。

师:哪个小组说说你们是怎样验证的?

生:我们小组把这个平行四边形沿着高剪开,然后拼成了一个长方形,这个长方形的长相当于平行四边形的底,宽相当于平行四边形的高。长方形的面积等于长乘宽,平行四边形的面积就就应等于底乘高。

师:这组同学想到了用剪拼的方法,将平行四边形转化成了长方形,用旧知识解决了新问题,十分好!这种转化的方法在数学中经常用到。

师:哪个小组再来说说你们是怎样验证的?

生:我们组也是沿着平行四边形的高剪的,把平行四边形拼成了长方形,得到平行四边形的面积公式是底乘高。(教师板书平行四边形的面积公式)。

师:平行四边形的面积还能够用字母表示,如果用s表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高。怎样用字母表示平行四边形的面积。

生:s=ah。

4、解决问题,拓展延伸。

生列式。

师:这两块地的面积相等吗?能够换吗?

生:相等,能够换。

师口述例1、一个平行四边形花坛的底是6米,高是4米,它的面积是多少?

生:24平方米。

生:32÷4=8(米)。

师:老师这还有两道决定题。

师:任何一个平行四边形都能割补成长方形。

生:对。

生:不对,因为面积单位是平方米。

师:同学们表现真好,书中还为我们准备了一些搞笑的练习,我们去看一看吧。

生看第6题回答32÷4=8(米)8×8=64(米)。

生:周长没有变化。

师:你真是一个善于发现的孩子。

5、全课总结、深化认识。

生:我还明白任意一个平行四边形都能够拼成一个长方形。

师:同学们的收获真不少,老师很佩服你们!想一想,能不能用这节课的方法推导出三角形、梯形的面积公式?课后研究研究,老师相信你们必须能有所发现,有所收获的,这节课就上到那里。

平行四边形的面积教案篇八

1.使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

2.通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。

学习卡,每个学生准备一个平行四边形。

1.观察主题图(课件出示),让学生找一找图中有哪些学过的图形。

3.引入学习内容:长方形的面积我们已经会计算了,今天我们研究平行四边形面积的计算。

1.用数方格的方法计算面积。

(1)用多媒体出示教材第80页方格图:我们已经知道可以用数方格的方法得到一个图形的面积。现在请同学们用这个方法算出这个平行四边形和这个长方形的面积。

说明要求:一个方格表示1cm2,不满一格的都按半格计算。把数出的数据填在表格中。

(2)独立完成。

(3)汇报结果。

(4)观察表格的数据,你发现了什么?

通过学生讨论,可以得到平行四边形与长方形的底与长、高与宽及面积分别相等;这个平行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。

(1)引导:如果不用数方格,那能不能计算出平行四边形的面积呢?

学生讨论,鼓励学生大胆发表意见。

(2)归纳学生意见,提出:是不是这样计算呢?需要验证一下。因为我们已经会计算长方形的面积,所以我们能不能把一个平行四边形变成一个长方形计算呢?请同学们试一试。学生用课前准备的平行四边形和剪刀进行剪和拼,教师巡视。

请学生演示剪拼的过程及结果。

教师用课件或教具演示剪—平移—拼的过程。

(3)我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?(小组讨论)。

小组汇报,教师归纳:

我们把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形面积相等。

这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,因为长方形的面积=长×宽,所以平行四边形的面积=底×高。

3.教师指出在数学中一般用s表示图形的面积,a表示图形的底,h表示图形的高,请同学们把平行四边形的面积计算公式用字母表示出来。

4.出示例1。读题并理解题意。

1、判断,并说明理由。

2、计算。

练习十五第1、2题。

s=ah。

平行四边形的面积教案篇九

内容分析:

九年义务教育六年制小学数学教材关于几何初步知识的安排特点是:从一年级第一册教材起逐步安排学生能够接受的几何初步知识,其中第六册教材中安排了长方形和正方形的面积计算;第八册教材中安排了平行四边形、三角形和梯形的认识,清楚了其特征及底和高的概念。而本册(第九册)教材中“平行四边形的面积”,是在学生掌握上述内容的基础上安排的。所以若想使学生理解掌握好平行四边形面积公式,必须以长方形的面积与平行四边形的底和高为基础,运用迁移和同化理论,使平行四边形面积的计算公式这一新知识,纳入到原有的认知结构之中。另外平行四边形面积公式这一内容学习得如何,直接与学习三角形和梯形的面积公式有着直接的关系。

教学目标:

1.使学生理解并掌握平行四边形面积计算公式,会运用平行四边形的面积公式求平行四边形的面积。

2.发展学生的空间思维能力。

教学重点:

使学生能够运用平行四边形面积公式正确计算出平行四边形面积。

教学难点:

将本文的word文档下载到电脑,方便收藏和打印。

平行四边形的面积教案篇十

1、使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

2、通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。

:学习卡,每个学生准备一个平行四边形。

一、导入。

1、观察主题图(课件出示),让学生找一找图中有哪些学过的图形。

3、引入学习内容:长方形的面积我们已经会计算了,今天我们研究平行四边形面积的计算。

1、用数方格的方法计算面积。

(1)用多媒体出示教材第80页方格图:我们已经知道可以用数方格的方法得到一个图形的面积。现在请同学们用这个方法算出这个平行四边形和这个长方形的面积。

说明要求:一个方格表示1cm2,不满一格的都按半格计算。把数出的数据填在表格中。

(2)独立完成。

(3)汇报结果。

(4)观察表格的数据,你发现了什么?

通过学生讨论,可以得到平行四边形与长方形的底与长、高与宽及面积分别相等;这个平行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。

学生讨论,鼓励学生大胆发表意见。

(2)归纳学生意见,提出:是不是这样计算呢?需要验证一下。因为我们已经会计算长方形的面积,所以我们能不能把一个平行四边形变成一个长方形计算呢?请同学们试一试。学生用课前准备的平行四边形和剪刀进行剪和拼,教师巡视。

请学生演示剪拼的过程及结果。

教师用课件或教具演示剪—平移—拼的过程。

(3)我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?(小组讨论)。

小组汇报,教师归纳:

我们把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形面积相等。

3、教师指出在数学中一般用s表示图形的面积,a表示图形的底,h表示图形的高,请同学们把平行四边形的面积计算公式用字母表示出来。

4、出示例1。读题并理解题意。

三、巩固和应用。

1、判断,并说明理由。

2、计算。

四、体验。

五、作业:练习十五第1、2题。

六、板书设计。

s=ah。

平行四边形的面积教案篇十一

九年义务教育六年制小学数学第九册70页一72页。

1.使学生理解平行四边形面积计算公式的来源,能运用公式正确地计算平行四边形的面积,并会计算一些简单的有关平行四边形面积的实际问题。

2.培养学生初步的逻辑思维能力和空间观念。

3.结合教材渗透转化思想。

课前准备:投影器、长方形框架、平行四边形纸片等。

师:同学们,你们知道曹冲称象的故事吗?曹冲是怎样称出大象的重量的?

学生自由发言。

师:长方形花坛的面积你们肯定会算,知道什么就可以了?平行四边形的面积会算吗?今天咱们就一起来探讨平行四边形的面积。(板书)。

1、自主探索。

出示一平行四边形纸片,这是一张平行四边形的纸片,想一想,你们有办法知道它的面积吗?也可以和组里的同学商量讨论,如果有需要的材料可以到我给大家准备的学具袋里去找一找,咱们比比看,哪个小组的同学最先知道这个平行四边形的面积!

学生以小组为单位开展活动,教师巡视。

汇报、反馈:都有结果了吧,哪个小组先来汇报?

各小组派代表发言。

2、对比分析。

每个小组都得到了这个平行四边形的面积,咱们一起来看看这些方法。课件展示学生的主要方法。

3、归纳总结。

1、(课件出示例题)这是五二班选的花坛的相关数据,现在能求出它的面积了吧?

2、p82看第2题。

3、课件出示:p83第题,这两个平行四边形的面积相等吗?为什么?

平行四边形的面积教案篇十二

师:我们一起回忆一下,已经学过长方形的哪些知识?(出示长方形,并且让学生回忆有关它的周长和面积的知识)。

师:今天我们来研究平行四边形的面积。这里有两个图形,请大家先测量有关数据,再计算它们的面积。(图略)。

生活动后汇报如下:

长方形的长6厘米,宽4厘米,长方形的面积=6×4=24平方厘米。

(1)平行四边形底6厘米,另一条底4厘米,它的面积=6×4=24平方厘米。

1、师:计算同一个平行四边形的面积,大家有几种不同的想法,可以肯定其中必定有错误。请大家看清楚,每种猜想的意思,然后作出判断。

你觉得哪种更合理?能不能举个例子,证明哪种是错误的。

生:我觉得可以用底乘底来计算。我们知道平行四边形容易变形,如果把一条底边拉直,就变成了长方形,长方形的面积等于长乘宽,所以平行四边形的面积等于底乘底。

师:这位同学想到了平行四边形容易变形的特征。大家觉得有道理吗?

生:我发现平行四边形在变形过程中,面积边了,而两条边的长度始终不变。所以用“底乘底”计算平行四边形的面积是错误的。

师:在平行四边形变形过程中,随着面积的变化,什么也同时发生了变化?(再次演示长方形渐变成平行四边形。)。

生:(兴奋地)高!

3、师:用什么办法可以比较它们的面积大小呢?

生:把平行四边形多出来的三角形剪下来,补到另一边,看出长方形大,平行四边形小。

师:变成长方形后,面积大小变了没有?

生:没有。

生:要求出平行四边形的面积,就知道长方形的面积,所以这个平行四边形的面积应是6乘3来计算,而不是6乘4。

生:6是长方形的长,也是平行四边形的'底,3是拼成后的长方形的宽,也是平行四边形的高,所以第二种猜想是正确的。

师:这位同学把“计算平行四边形的面积”这个问题转化成了“计算长方形的面积”,利用旧知识解决了新问题。

师:是不是所有的平行四边形都可以剪拼成长方形呢?请同学们任意拿一个平行四边形,想一想,怎样可以把它转化成一个长方形。

根据学生反馈情况进行课件演示,出现几种拼法(略)。

师:这几种剪拼方法有什么相同之处?

生:都是先沿着平行四边形底边上的高剪开,再拼成一个长方形。

生:在剪拼过程中,图形的形状变了,面积不变。

生:因为长方形的长相当于平行四边形的底,长方形的宽相当于平行四边形的高,长方形面积等于长乘宽,所以平行四边形面积等于底乘高。

师:这个平行四边形公式是不是适用于所有的平行四边形呢?为什么?

生:对任何一个平行四边形,只要沿着底边上的高剪开,一定都可以拼成长方形,所以平行四边形的面积=底×高。

师:我们用s表示平行四边形的面积,用a表示底,用h表示高,那么计算平行四边形的面积公式用字母表示为s=ah。

师:今天我们遇到了一个什么新问题?我们是怎样解决的?有什么收获?

平行四边形的面积教案篇十三

教学内容:。

教学目标:。

2,通过操作,观察,比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析,综合,抽象,概括和解决实际问题的能力.

教学难点:把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推倒出平行四边形面积计算公式.

教学方法:动手操作,小组讨论,启发,演示等教学方法.

教学准备:。

要求:底为6厘米,高为4厘米,最小的内角为45度,形状为:;。

2,剪刀,三角尺,文具(铅笔,橡皮等)。

3,板贴。

教学过程。

一,导入。

师:同学们,能告诉老师你最熟悉的平面图形吗。

生:长方形,正方形.

生:长方形的面积=长×宽正方形的面积=边长×边长。

二,体会"转化"的数学思想。

师:(出示图1)你能将这个图形变成我们熟悉的图形啊。

生:汇报:。

师:你发现了什么。

生:形状变了,面积不变.

师:(出示右图)这是什么图形(揭题:平行四边形)。

你能把这个图形变成你熟悉的图形吗。

生:能.

师:同学们,用你自己的方法把你的想法表示出来:。

学生尝试用自己的方式把平行四边形转化成长方形.

…………。

汇报:。

生1:我是画图的,。

生2:我是采用剪,拼的方法,先画一条高,沿着高剪下,移到另一边.

如图:。

生3:我也是采用剪拼法,但我和生2不一样,如图:。

师:看了三个同学的方法,你有什么收获啊。

生1:都采用了转化的方法.

生2:他们都要先画一条高,然后沿着高剪下,我想因为这样就可以得到直角.

生3:图形是转变了,面积不变.

二,动手测量,推导公式。

学生动手测量数据,进行计算.

………。

交流汇报:。

生1:我量的是长方形的长和宽,长是6厘米,宽是4厘米,面积是24平方厘米.因为长方形的面积就是平行四边形的面积,所以平行四边形的面积是24平方厘米.

生2:我量的是平行四边形的底和高,因为我认为平行四边形的底等于长方形的底,高等于长方形的宽,那么平行四边形的面积等于底×高.底是6厘米,高是4厘米,面积是24平方厘米.

师:两个同学都说的很好,同学们你们会了吗。

生:会了.

生:3×6=18(平方厘米)。

三,应用新知,深化理解。

2,。

3,综合练习。

生:等底等高,面积相等.

师:和这两个面积相等的平行四边形你还能在画几个吗。

生:有无数个,只要等底等高就行了.

四,引导回顾,师生总结。

板书设计:转化图形寻找联系推导公式。

五,课后反思:。

1,数学课堂教学中教什么比怎样教更重要,在平行四边形面积计算的教学中,我们是让学生掌握平行四边形面积的计算方法还是在平行四边形面积计算方法的教学渗透转化的数学思想,两者中我侧重于后者.

如何渗透数学思想呢从一开始,我让学生把不规则的图形变成已熟悉的图形,触动学生思维的联结点,凸显"转化"的动因.接着出示平行四边形,学生自然而然想到平行四边形可以转化成长方形.

在"你能将平行四边形转变成我们熟悉的图形吗"这个问题的驱动下,学生在静静的思考后,在"你能用自己的方法把你的想法表达出来吗"这一追问下,学生尝试画一画,剪一剪,拼一拼.操作的轨迹由想象操作到动手操作再到想象操作,学生的转化方法从模糊变为清晰.

3,在练习设计中知识的巩固和思想方法的应用并重.口算题是直接应用平行四边形面积计算公式,让学生进一步巩固知识.变式练习(右图)学生需要判断底和对应的高,此时我在一次提出可以把这个平行四边形看成怎样的长方形,从而能更深刻的理解底和高一定要对应的道理,对数学思想方法的认识也上升为数学思维策略,从而实现学生数学思维的提升.

平行四边形的面积教案篇十四

目标:

1.使学生初步认识四边形,了解四边形的特点,并能根据四边形的特点对四边形进行分类。

2.通过学生动手操作、小组讨论,培养学生独立思考、合作交流的学习精神。

3.通过主题图的教学,对学生进行热爱运动、积极参加体育锻炼的思想教育。

教学重点:

教学难点:

2.根据四边形的特点对四边形进行分类。

教学过程。

一、新课引入。

播放课件:四边形――由国之源提供。

平行四边形的面积教案篇十五

教学内容:教材第79~81页的内容。

知识目标:通过长方形面积计算知识迁移,理解平行四边形面积的计算公式,并能正确计算平行四边形面积。

能力目标:在剪一剪,拼一拼、比一比中发展空间观念;在看一看,想一想中初步感知等积转化的思想方法,提高分析问题、解决问题的能力。

情感目标:通过活动,激发学习兴趣,培养互相合作、交流、探索的精神,感受数学与生活的密切联系。

教学重点:掌握平行四边形的面积计算公式,能正确计算平行四边形的面积。

教学难点:初步认识转化的思想方法在研究平行四边形面积时的作用,并培养学生的分析、综合、抽象。概括能力和运用转化的方法解决实际问题的能力。

探索新知教学片段:

1、比一比,估一估。

生:一样大。

生:长方形比较大。

……。

师:大家都有不同的猜测,有很多同学都说一样大,那么,谁的想法正确呢?我们可以用什么方法来验证呢?四人小组讨论。

生:可以用数格子的方法。(将课本放展示台上。)我先数出整块的,然后这些剩下的小块拼一拼,还可以拼成整块的。

师:请大家看屏幕。(点击课件,边点击边说)。

师:用数方格的方法数数看。数一数,它们的面积各是多少?

……。

师:哦,你们数的结果是都是72平方米,说明……。

师:也就是……。

师:长方形的面积我们可以用公式来计算,那平行四边形的面积是不是也有计算公式呢,这就是我们今天要一起探讨的问题。(板书:平行四边形的面积)。

2、师:还有什么方法可以验证这两个图形的面积哪个比较大呢?

……。

生:我用割一割,补一补的方法,把平行四边形象这样剪开,然后再把它补到另一边去。

师:非常好,有自己的方法。下面我们用割补法来看看平行四边形的面积有多大?请同学们先仔细观察,然后说说你的'发现。

师点击课件,学生观察平行四边形变成长方形的过程……。

师:谁来说说自己的发现?

生:平行四边形的底和长方形的长一样长,平行四边形的高和长方形的宽一样长。

生:无数条。

师:所以,我们沿着平行四边形的任意一条高剪开,再通过平移,都可以把平行四边形转化成一个长方形。(边说边演示平行四变形通过割补法转化成长方形的过程。)。

生:平行四边形的底=长方形的长,平行四边形的高=长方形的宽。

生:我觉得平行四边形的面积与它两条边的长度不完全有关系。因为老师黑板上第一个平行四边形与第三个平行四边形的两条边长度一样,但第一个的面积明显比第三个大。

6、师:刚才应用了“转化”的思想,大家都值得表扬。

(师板书“s=a×h”)。

8、师小结:面对着求平行四边形面积的问题,我们利用割补的方法把平行四边形转化成学过的长方形,用旧知识解决了新问题,以后我们还要用这种思想方法继续学习其他图形的面积计算。

9、实际运用。

师:知道了平行四边形的面积公式,我们就可以利用它方便地计算平行四边形的面积了。

(1)(出示例1)请大家做一做。

谁来说一说你是怎么做的?

师:通过这道题,请大家想一想,要求平行四边形的面积,我们必须知道哪些条件?

学生回答,老师小结:求平行四边形的面积我们只要知道其中一组底和高就能求面积了。

(2)有一块地近似平行四边形,底是43米,高是20。1米。这块地的面积约是多少平方米?(得数保留整数)。

平行四边形的面积教案篇十六

钱老师这节课的教学内容是人教版五年级数学上册中的《平行四边形的面积》,教学目标是使学生在理解的基础上掌握平行四边形面积的计算公式,并能正确计算平行四边形的面积。同时,通过对图形的观察,比较和动手操作,发展学生的空间观念,渗透转化的思想,并培养学生的观察和分析能力。

《平行四边形的面积》这节课的教学重点在于让学生体验面积公式的推导过程。钱老师在教学过程中,很好地体现了这一点。她在学生已有的知识经验基础之上,导入部分通过复习以前所学习的四边形、四边形的面积公式以及计算不规则图形的面积等环节,激发了学生的学习积极性,给学生充分的营造了学习氛围,使他们在自主探究和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得了广泛的数学活动经验,利用学生课前准备的平行四边形模片,让他们自己先观察、再剪一剪、拼一拼,然后比较,讨论,分析,归纳,总结,在了解长方形面积公式的基础上,平行四边形面积的计算就解决了,而且还使学生初步认识了割补法这种转化思想的运用,在此基础上再学平行四边形的面积计算就水到渠成,迎刃而解了。

“学生是学习的主人,教师是学习的组织者、引导者和合作者。”在整个教学过程中,钱老师多次鼓励学生自己去发现,自己去思考,自己找到最好的解决办法,这样不但激发了学生学习的积极性,激活了学生的思维,还让学生最大限度的参与到了探索新知识的教学过程中。

这节课的最大特点就是重操作,让学生自主探索平行四边形面积计算公式,让学生亲身经历平行四边形面积计算公式的探索过程是钱老师本节课的重要目标。在平行四边形面积公式推导这一环节中,教师让学生采用动手实践的学习方式去自主发现平行四边形的面积计算公式。在操作中,学生积极动手、动脑,从不同角度思考,将平行四边形转化成一个长方形,并通过观察讨论,发现了长方形与平行四边形之间的相同点和不同点。这样既充分张扬了学生的创造个性,也为概括平行四边形面积计算公式提供了丰富的感性活动。通过这样一个动手操作的拼剪环节,使其课堂充满了实效性,让学生“知其然,还知其所以然。”

另外,本节课最吸引我的地方就是巩固练习与学习单的设计有层次、有梯度。巩固练习针对本班学生不同的学习程度,也就是针对具体的学情,将学生、习题分层,对不同的学生提出不同的学习要求。在钱老师这堂课上真真体现了“让不用的人在数学上得到不同的教育”,这一核心理念。学习单切合实际教学进度适时出现,不但体现了本节课的教学内容,而且突出了本节课的教学重点。让我深刻认识到“说一百句,不如一张学习单简单有效。”

其他方面,在这次整个听课过程中,我发现教师在课堂上的教学修养与教学内容同样重要,一句“请回”,让我对讲台上的老师肃然起敬,我需要这样的语言来美化我的课堂。

平行四边形的面积教案篇十七

教学目标:1、使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

2、通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括能力,发展学生的空间观念。

教学过程:

一、导入。

1、用数方格的方法计算面积。

(1)我们已经知道可以用数方格的方法来得到一个图形的面积,请大家拿出你准备好的方格纸,用数方格的方法来数出方格纸中平行四边形和长方形的面积。(说明要求:一个方格代表1平方厘米,不满一格的都按半格算)把数出的数据填在方格纸的下面。

(2)同桌合作完成。

(3)汇报结果,可用投影展示学生填好的表格。

(4)观察表格的数据,你发现了什么?(平行四边形与长方形的底与长、高与宽及面积分别相等,这个平行四边形的面积等于它的底乘高,这个长方形的面积等于它的长乘宽。

(1)拿出你准备好的平行四边形和剪刀,自己想办法把平行四边形变成一个长方形。

(2)请学生演示剪拼过程及结果。教师演示剪--平移--拼的过程。

(3)我们已经把一个平行四边形变成了一个长方形,请大家观察,拼出的长方形和原来的平行四边形,你发现了什么?同桌互相说一说,可围绕以下3个问题讨论:

(4)同学交流,教师归纳相机板书。

(5)观察面积公式,要求平行四边形的面积必须知道哪两个条件?

s=ah(7)请大家想一想,我们是怎样推导出平行四边形的面积公式的?(渗透转化思想)。

三、巩固和应用。

1、出示例1,读题并理解题意。学生试做,交流做法和结果。

2、强调用公式计算的格式,s=ah=6*4=24(平方米)。

3、练习,82页1、2。

4、一块平行四边形钢板,底是15米,高是底的1。2北,这块钢板的面积是多少?

5、82页3。

6、出示两个同底等高的平行四边形,让学生讨论:面积相等吗。为什么?

四、小结:通过本堂课的学习,你有哪些收获?对于。

s=ah。

教学反思:1、数方格的方法有些学生忘了,课前铺垫不够好,有些耽误时间了。

2、对于学生动手操作过程中个别人出现的错误情况,如,把平行四边形多出的部分剪掉变成了长方形,因怕耽误时间,没能让他展示,并纠正。

3、让学生观察拼出的长方形与平行四边形有什么关系时,问题设计不好,学生不知道如何回答,因此耽误了时间,以至与后面习题做的也比较少。

平行四边形的面积教案篇十八

本节课的教学模式大部分是在新授时采用先复习长方形的面积计算公式,接着出示一平行四边形,让学生求其面积,学生很茫然而导致不知其面积,老师就教会学生用数方格的方法让学生数出面积,紧接再比较平行四边形和长方形,它们的什么变了,什么没变,长方形长、宽和平行四边形的底、高有什么关系,既而猜测出平行四边形的面积计算公式,最后进行验证。

结合我班的实际情况,我改变了这种教学模式,先出示一已经画过方格的不规则图形,采用数方格的方法知道其面积,紧接我把这一图形反过来,问:“如果没有这些方格,你有办法知道它的面积吗?略停了一会,其中一生说把凸出的部分剪下来补到凹的地方,这样割补的前后图形的面积没有发生变化,同时也把一个不规则的图形转化成已学的图形,学生顿时恍然大悟,明白了“割补”把问题转化的简单一些,学生在不知不觉中感受了“转化”思想在数学学习中的价值,并且轻松快乐地学着。

第二步:我出示一个长方形框架,告诉长和宽,让学生求面积,学生很快完成,我拉动两角,它变成一个平行四边形,它的面积会发生怎样的变化呢?学生兴致很浓地说出它的变化,为什么会变小呢?平行四边形的面积与什么有关呢?带着这些问题,学习今天的内容。

第三步:学生拿出准备好的平行四边形,让他们测量出需要的数据,求其面积,学生充分调动自己的脑、手、口,参与到探究的过程中。

第四步:想办法验证自己求的面积是否正确?有的学生剪、拼,有的学生看书帮忙,有的小组商议,学习气氛热烈,很快验证完毕,并总结出计算公式。

通过本节课的教学,我认为老师应给学生“做数学”的机会,并提供“做数学”的活动,让学生不仅知其然,而且知其所以然,这样的学习才是有效的,也是学生自己需要的。再一方面,在这种总结公式类型的课,我们不妨多给学生充足的时间和空间,把学生放在主体地位上,多让学生自己去探索、去建构数学模型,这样,学生经历了自我探索,自我发现的过程,学生学习的积极性和主动性也充分发挥出来,同时也树立学习的自信心,学习效率也自然高起来。

平行四边形的面积教案篇十九

10月12日我校开展小学数学图形与几何教学研讨活动,特级教师苏云燕为我们展示了一节高效的数学课《平行四边形的面积》,下面我就谈谈自己听课的体会:

1、使学生通过探索、理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

2、通过操作,观察和比较的活动初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。整个教学设计中,注重了学生空间观念的培养,主要体现在让学生经历获取知识的过程,整个教学活动让学生经历“发现问题,分析问题,大胆猜测,动手转化,验证猜想,解决问题”的过程,让学生不止获取了知识,对知识获取的过程更是记忆深刻。学生动手操作,把已知知识运用到未知知识中,将未知知识转化为已知知识。

一、注重数学思想方法的渗透。

苏老师先是课件出示学生喜爱的动画卡通人物熊大、熊二,吉吉国王给它们分了两块地(等底等高的长方形与平行四边形),熊二不高兴认为自己的地小了,苏老师先让学生大胆猜测,这两块地,到底那一块大?再让学生通过动手操作、验证平行四边形的面积,发现其实这两块地的面积是一样大的。这样的导入激发了学生学习的兴趣。

二、注重了师生互动、生生互动。

三、注重学生数学思维的发展。

数学教学的核心是促进学生思维的发展。教学中,通过学生学习数学知识,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的`心理活动统一起来。在这节课中,苏老师设计了剪一剪、拼一拼等学习活动,逐步引导学生观察思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?充分利用多媒体课件演示,形象、直观,使学生得出结论:因为长方形的面积=长乘宽,所以平行四边形的面积=底乘高。通过观察、交流、讨论、练习等形式,让学生在理解公式推导的过程中学会解决问题。学生掌握了平行四边形的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。

平行四边形的面积教案篇二十

教学过程:

一、复习旧知。

1、提问:怎样计算长方形的面积?(板书:长方形面积=长×宽)。

2、口算长方形的面积:长6cm,宽3cm。

3、出示平行四边形,提问:这是什么图形?指出它的底和对应的高。

4、揭示课题:我们已经知道了求长方形的面积公式,那平行四边形的面积该怎样计算呢?这节课我们就来一起研究平行四边形的面积的计算方法。(板书:平行四边形的面积)。

二、探究新知。

3、课件演示验证。

5、总结:任何一个平行四边形都可以转化成一个长方形,它的面积与原来的平行四边形面积相等。这个长方形的长与原来平行四边形的底相等;这个长方形的宽与原来平行四边形的高相等。因为长方形面积等于长乘宽,所以平行四边形面积等于底乘高。(板书:平行四边形面积=底×高)。

6、介绍字母公式,每个字母的意义。(板书:s=a×h或s=a·h或s=ah)。

三、巩固练习。

1、试一试。

2、练一练1、2、3、4。

四、拓展提高。

五、课堂小结。

这节课你有什么收获?

六、板书设计。

s=a×h=a·h=ah。

平行四边形的面积教案篇二十一

师:我们一起回忆一下,已经学过关于长方形的哪些知识?(出示长方形,并且让学生回忆有关它的周长和面积的知识)。

师:今天我们来研究平行四边形的面积。这里有两个图形,请大家先测量有关数据,再计算它们的面积。(图略)。

生活动后汇报如下:

长方形的长6厘米,宽4厘米,长方形的面积=6×4=24平方厘米。

(1)平行四边形底6厘米,另一条底4厘米,它的面积=6×4=24平方厘米。

二、否定错误猜想。

1、师:计算同一个平行四边形的面积,大家有几种不同的想法,可以肯定其中必定有错误。请大家看清楚,每种猜想的意思,然后作出判断。

你觉得哪种更合理?能不能举个例子,证明哪种是错误的。

生:我觉得可以用底乘底来计算。我们知道平行四边形容易变形,如果把一条底边拉直,就变成了长方形,长方形的面积等于长乘宽,所以平行四边形的面积等于底乘底。

师:这位同学想到了平行四边形容易变形的特征。大家觉得有道理吗?

生:我发现平行四边形在变形过程中,面积边了,而两条边的长度始终不变。所以用“底乘底”计算平行四边形的面积是错误的。

师:在平行四边形变形过程中,随着面积的变化,什么也同时发生了变化?(再次演示长方形渐变成平行四边形。)。

生:(兴奋地)高!

3、师:用什么办法可以比较它们的面积大小呢?

生:把平行四边形多出来的三角形剪下来,补到另一边,看出长方形大,平行四边形小。

师:变成长方形后,面积大小变了没有?

生:没有。

生:要求出平行四边形的面积,就知道长方形的面积,所以这个平行四边形的面积应是6乘3来计算,而不是6乘4。

生:6是长方形的长,也是平行四边形的底,3是拼成后的长方形的宽,也是平行四边形的高,所以第二种猜想是正确的。

师:这位同学把“计算平行四边形的面积”这个问题转化成了“计算长方形的面积”,利用旧知识解决了新问题。

三、归纳计算方法。

师:是不是所有的平行四边形都可以剪拼成长方形呢?请同学们任意拿一个平行四边形,想一想,怎样可以把它转化成一个长方形。

根据学生反馈情况进行课件演示,出现几种拼法(略)。

师:这几种剪拼方法有什么相同之处?

生:都是先沿着平行四边形底边上的高剪开,再拼成一个长方形。

生:在剪拼过程中,图形的形状变了,面积不变。

生:因为长方形的长相当于平行四边形的底,长方形的宽相当于平行四边形的高,长方形面积等于长乘宽,所以平行四边形面积等于底乘高。

师:这个平行四边形公式是不是适用于所有的平行四边形呢?为什么?

生:对任何一个平行四边形,只要沿着底边上的高剪开,一定都可以拼成长方形,所以平行四边形的面积=底×高。

师:我们用s表示平行四边形的面积,用a表示底,用h表示高,那么计算平行四边形的面积公式用字母表示为s=ah。

四、反思探究过程。

师:今天我们遇到了一个什么新问题?我们是怎样解决的?有什么收获?

平行四边形的面积教案篇二十二

生1:卡片。

生2:奖品。

……

(学生逐个上台从信封中拿出物品)

生1:我拿出的是剪刀,打算用它剪东西。(师:板书:剪)

生2:我拿出的是一格格的东西,打算用它来量。

师: 我们给它一个名字,透明方格纸,用它量什么呢?

生2:我想用它量书本。

师: 书本的 ……(停顿)

生2:书面有几格?

师: 书的表面有几格其实就是它的面积,我们用1平方厘米的方格纸数它的面积 。(板书:数)

生3:我拿出的是平行四边形(学具),我想知道它的许多秘密。

师: 平形四边形的秘密,这词用得真好!你的写作水平一定高。待会我们来研究它

这节课我们就用刚才这些学具来研究平行四边形的面积。

教学反思

不!俗话说:磨刀不误砍柴功。我认为直接出示学具,不能引起学生对学具的重视,对其作用更是模棱两可,将为小组合作学习埋下“隐患”。学生面对一堆学具,面对要完成的任务手足无措,不知该从哪下手。这样岂不是更浪费时间,或者学具将失去它的作用,平形四边形、三角形的面积公式无法推导。

……

(学生动手操作,不久就纷纷举手)

生1:老师,我把对角一剪就变成了两个三角形。

生2:老师,我剪出的三角形两个一样的.。

师: 你们真厉害!对角一剪就变成了两个完全一样的三角形,你能从平行四边形的

面积公式推导出三角形的面积公式吗?

(学生小组讨论)

生3:就是除以2。

师: 你能完整的说一说什么除以2吗?

生3:平行四边形的面积除以2。用字母表示:s=ab2。

生4:我能把它剪成两个梯形教后反思

现在使用的教材存在着许多的弊端,教师如果只是根据教材按部就班有时就出现事倍功半的现象,而且难以达到预定的效果。而如果教师能运用教材进行灵活的运用,或是根据学生的特点重新组织教材,创设更有效的更能引起学生注意的课题导入设计、问题设计,让学对本节课产生极高的兴趣,让学生自己去发现问题,去解决问题,使教师的教和学生的学达到理想的境界,正如肖川教授所说的“使我们的教学达到完美的教育。”

平行四边形的面积教案篇二十三

本节课是小学义务教育教科书五年级上册第五单元的内容,是在学生(四年级)学习了面积单位和长、正方体的面积的认知基础上展开教学的。本节课既是培养学生空间图形中平面几何观念的奠基课之一,更是给学生渗透“等积转化”重要思想的开启课。

本节课的教学紧扣教材,紧紧贴合教材的呈现顺序,重难点突出,使学生经历了“猜测———验证———得出结论————应用结论————再次论证”的科学探究过程,程序符合学生的认知规律。首先从教材中呈现的生活情境图中提出问题:

1、你能找到那些平面图形?

2、你学过那些平面图形的面积计算?并给两组数据让学生计算,说说计算公式。由此引发学生的认知记忆,找到学生的认知原点或起点,找到学生学习新知识的有效生长点。然后再来认识平行四边形的形、底和相对应的高、邻边等。引发猜想,提出大问题:平行四边形的面积与它的什么有关?有怎样的关系?让学生在保留自己猜想的基础上进行多方法、多角度的探究,用数格子法、割补转化法(等积转化法)等方法来验证自己的猜想,并得出统一的结论或推翻自己原先不合理的猜想,然后再总结提炼计算公式,并及时应用(套公式计算)。最后,再通过拉一拉的方法,让学生观察拉的前后什么没变?什么变了,再一次验证了割补转化法(等积转化法)的合理性与存在的意义。本堂课的半数设计简洁、合理、美观、重难点突出。

从本节课中可以看出,贾老师很注重对孩子阅读教材的能力的培养。只是本节课自始至终老师都让学生看书:

1、看书上的情境图找平面图形;

3、探究出公式后读书例1;

4、练习完成书上的做一做等过程都是看书,在师的一句一句细致的引导下如长方形的长占几格?宽占几格?面积占几格?平行四边形的底是几格?高是几格,面积占几格……一节课就那么35分钟,如何保证大班额下每个同学都能紧跟老师的指导,跟随老师的思路,在翻书与观察老师的演示和板书交替中,回过神来细细品读教材和理解教材的用意呢?本节课有很多好的课件可以借用,为什么老师只有在复习长、正方体面积计算给出两组数据时才应用了课件?课件的辅助教学功能没有体现出来。

平行四边形的面积教案篇二十四

教材分析:

平行四边形的面积计算教学是在学生掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,它同时又是进一步学习三角形面积、梯形面积、圆的面积和立体图形表面积计算的基础。教材以平行四边形的面积计算为重点,先用数方格方法计算图形的面积,帮助学生进一步理解面积和面积单位的含义,为推导平行四边形的面积计算公式提供感性材料。再是通过割补实验,把一个平行四边形转化为一个与它面积相等的长方形,把新旧知识联系起来,使学生明确图形之间的内在联系,便于从已经学过的图形面积计算公式推导出新的图形面积计算公式,使学生明确面积计算公式的意义和来源。在引导学生动手操作的基础上,初步培养学生的空间想象力和思维能力。使他们从“学会”到“会学”,培养学生良好的学习习惯和学习品质。教学中以长方形的面积公式为基础,通过学生比一比、看一看、动一动、想一想得出平行四边形的面积公式,并来在实际生活中用一用。

几何初步知识的教学是培养学生抽象概括能力、思维能力和发展空间观念的重要途径。本节教学中向学生渗透了平移旋转的思想,为将来学习图形的变换积累一些感性认识。

教学目标:

3、培养学生初步的空间观念。

4、培养学生积极参与、团结合作、主动探索的精神。

教学准备:学具、课件。

教学过程:

一、质疑引新。

1、显示长方形图。

2、电脑展示长方形变形为平行四边形。

原来的长方形变成了什么图形?它的面积怎样求呢?

二、引导探究。

(一)、铺垫导引。

出示第42页三幅图,先让学生说出一个小正方形的边长是几厘米,然后数出它们的面积。

小结:用数方格的方法求面积比较麻烦,用什么方法可以很快求出它们的面积呢?

实验、操作(小组合作):把后两幅图转化成长方形。

电脑在学生感到有困难的时候提示,利用闪烁功能,先把两个小长方形比较,表明两个小长方形形状相同。根据学生讨论结果,演示剪、移、拼过程。

集体交流,重点讨论第二幅图的多种剪、移、拼方法(根据学生回答电脑演示不同的剪拼过程)。

讨论:

剪拼前后,图形的形状变了没有?面积有没有变?

做了这个实验你想到了什么?

(二)、实验探索。

学生实验操作。

1、提出实验要求:在平行四边形上找到一条线段,沿这条线段剪开,移一移、拼一拼,把它拼成一个长方形。

2、分小组实验操作,把实验结果填在书上表格内,鼓励多种剪拼法。

3、集体交流,展示不同的剪拼结果。根据学生的回答,电脑分别演示不同的剪拼过程。

结合学生发言提问:

在学生回答的基础上小结:沿着平行四边形底边上的任意一条高,都可以把一个平行四边形剪拼成一个长方形。

(三)总结归纳。

问:

2、剪拼成的长方形的长和宽分别与平行四边形的底和高有什么关系?(电脑演示比较长方形的长与平行四边形的底的长度、长方形的宽分别与平行四边形的高的长度。)。

追问:要求平行四边形的面积,必须知道哪两个条件?

用字母表示公式。

学生自学p44~p45有关内容。

集体交流:s=a×h。

s=a·h。

s=ah。

教师强调乘号的简写与略写的方法。

三、深化认识。

1、验证公式。

2、应用公式。

a)      例题。

学生列式解答,并说出列式的根据。

b)     做练一练。

四、巩固练习。

底5厘米,高3.5厘米           底6厘米,高2厘米。

2、计算下面图形的面积哪个算式正确?(单位:米)。

3×8 3×6  4×8 6×8  3×4 4×6。

面积:56平方厘米。

底:8厘米。

4、开放题:山西地形图。先根据信息猜测是哪个省市的地形图,山西南北大约590千米,东西大约310千米,估计它的土地面积。

以小组为单位探讨多种想法。

五、总结全课(电脑显示、学生口答)。

把一个平行四边形沿着高剪成两部分,通过(    )法,可以把这两部分拼成一个(     )形。这个长方形的( )等于平行四边形的( ),这个长方形的( )等于平行四边形的( ),因为长方形的面积=长×宽,所以平行四边形的面积等于(     ),        用字母表示平行四边形的面积公式(                )。

【本文地址:http://www.xuefen.com.cn/zuowen/14735620.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档