在工作和学习中,总结是提高效率和质量的关键之一。写总结的时候,我们可以结合具体实例,用事实和数据说话,让总结更具说服力。接下来是一些优秀总结的范文,供您参考和学习。
分数乘法人教版教学设计篇一
本单元教学分数乘法,是在理解了分数的意义,掌握了分数加、减法计算的基础上编排的。能进一步理解分数的意义,为教学分数除法打下基础。教学内容以计算为主,包括分数与整数相乘、分数与分数相乘。教学要求是理解算理、掌握算法,能应用于分数连乘计算和解决实际问题中去;在探索算法、总结法则的过程中发展数学思考的能力。
教材在编排上有以下特点。
第一,以计算法则的教学为编排主线,把运算的意义、方法以及实际应用的教学有机结合在一起,优化了全单元的内容结构。
乘法运算的范围从整、小数扩大到分数,其意义、算法以及实际应用都有较大的发展。因此,分数乘法的意义、计算法则、解决实际问题是本单元的三个重要内容。教材以计算为主线,在研究算法的过程中体会运算意义,通过运算概念的完善、发展,进一步理解算法;在解决实际问题的背景中教学计算知识,应用学到的算法解决实际问题。意义、法则、应用三方面的有机结合,优化了知识结构,能充分发挥教学的功能和价值。如,例1从做绸花要用多少米绸带的实际问题引出分数乘整数的计算问题,把原来的乘法概念扩展到分数范围,激活已有的知识经验;应用同分母分数加法的知识,体会并得出分数乘整数的计算方法,既解决了做绸花的实际问题,又解决了新的计算课题。又如,例2为解决做绸花的实际问题列算式10×1/2和10×2/5,联系现实的数量关系体会这些算式的具体含义,得出“求一个数的几分之几是多少,可以用乘法计算”的结论,发展了乘法的意义。在计算两个乘法算式时,巩固了分数与整数相乘的算法。
第二,知识发展线索清晰,前后联系紧密,各道例题的教学任务明确。下图是本单元教材里的计算知识结构图。
先教学整数乘分数,后教学分数乘分数,符合简单到复杂的编排原则。而且,整数乘分数还能与整数乘法建立联系,应用整数乘法知识,为分数乘法的教学开好头。
整数乘分数先是求几个相同分数的和,再是求整数的几分之几是多少。前者在运算意义上与整数乘法一致,算法是例1的重点。正由于运算意义和整数乘法一致,可以把整数乘分数转化成同分母分数相同,体会并得出整数乘分数的计算法则。后者在运算意义上有很大的扩展,乘法不仅能求几个相同加数连加的和,还能求一个数的几分之几是多少,这是例2的教学重点。而例2的算法,在前面已经解决了。
分数乘分数先教学基础知识,再培养计算技能。例4和例5要把“求一个数的几分之几是多少”的认识迁移到分数乘分数,深入理解分数乘法的意义,还要解决分数乘分数的算法,并形成统摄分数乘整数、分数乘分数的计算法则。所以,这两道例题着重教学基础知识。例6教学分数连乘,巩固计算法则的同时,培养分子、分母交叉约分的技能。
第三,编排“倒数”知识,为分数除法作准备。分数除法经常要转化成分数乘法进行计算,转化需要倒数的知识。因此,本单元在分数乘法的教学基本完成以后,编排了有关倒数知识的一节教材和一个练习,为下一单元的教学提前作准备。
分数乘法人教版教学设计篇二
五年级孩子乐于探究,课始,从古代著作引入“为什么一尺长的木棍,每天截一半会永远截不完呢?”既激发孩子们的学习兴趣,调动了学生的探究欲望,又潜移默化的渗透了无限的思想。
2、相信学生,让孩子真正成为学习的主人。
前苏联教育家苏霍姆林斯基说:“在人的内心深处,都有一种根深蒂固的需要,就是希望感到自己是一个发现者,研究者,探索者,而在儿童的精神世界中,这种需要特别强烈。”听了这一课,让我更深刻的理解了这句话。课上教师充分尊重孩子们说的权利和做的权利,开展了折一折,涂一涂,说一说,算一算等活动,给孩子们营造了一个宽松愉悦的学习氛围,教师大部分时间是以参与探索者的身份出现,与孩子们一起研究,师生之间体现了平等、和谐的伙伴关系。
3、数形结合,巧妙突破难点。
理解分数乘分数的意义,是帮助孩子们理解分数乘分数的计算原理,掌握计算方法的基础,也是学生理解的困难之处,如何有效的引导呢?教学中,教师安排了两次折一折,涂一涂的活动,化抽象为具体,充分利用图形语言的直观性这个特点,引导孩子们探索、理解分数乘分数的意义:即一个分数的几分之几是多少。注重将操作过程、图形语言和抽象的算式相结合,鼓励学生通过折纸活动把四分之三乘四分之一用图形表示出来,为孩子们发现和归纳出分数乘分数的计算方法铺好了道路。有了图形的帮助,孩子们就有了思考的拐杖,对分数乘分数的计算就不再是机械的操练和模仿了。
4、让孩子们在操作中学数学。
皮亚杰曾经指出:传统教学的缺点,就在于往往是用口头讲解,而不是从实际操作开始数学教学。可以说,加强动手操作是现代的数学教学与传统的数学教学的重要区别之一。只有让每个孩子都参与到操作活动中来,才能让孩子们了解知识的发生过程。教学中,教师给每个孩子都提供了动手的机会,留足了操作的时间,在折纸过程中,学生们不但体会到分数乘分数的意义,更感受到计算分数乘分数时为什么是“分子乘分子,分母乘分母”的道理。这个过程对学生来说是很重要的,这个符号语言和图形语言相联系的过程,不仅解释了符号语言的意义,也直观形象的展示了分数乘分数的计算方法。
分数乘法人教版教学设计篇三
班级姓名小组小组评价。
学习目标:
1、掌握分数乘分数的计算方法,并能运用计算方法熟练进行计算。
2、掌握分数乘分数的简便算法,掌握积与因数的关系,能灵活运用两者之间。
的关系进行正确判断。
3、激情投入,阳光战示,全力以赴,挑战自我。
重点:分数乘分数的简便算法。
难点:因数与积的关系。
使用说明与学法指导:
先由学生自学课本,经历自主探索总结的过程,并独立完成自主学习部分,通过独立思考及小组合作,能够结合具体情境理解分数乘分数的简便算法,掌握积与因数的关系,能灵活运用两者之间的关系进行正确判断。并独立完成导学案,然后学习小组讨论交流,让同学们进行展示,小组间互相点评,对于有疑问的题目教师点拨、拓展。
一、自主学习:
1、自学课本p11页。
2、计算:
3、填空:
1)、×6表示();
×表示();
2)、一根绳子长81米,剪去,还剩这根绳的,还剩()米,这里是把()看作单位“1”。
二、合作探究:
思考:你想到了几种计算方法,有什么技巧?
小结:分数乘分数的简便算法:
例2、比较大小。
思考;你发现了什么规律?
小结:当一个因数大于1时,积()另一个因数(0除外);
当一个因数小于1时,积()另一个因数(0除外);
当一个因数等于1时,积()另一个因数;
三、学以致用:
1、直接写出得。
2、
3、我能辩对错。(对的打“”,错的打“”)。
1)、一个数乘真分数,积小于这个数。()。
2)、几个假分数相乘的积大于1,几个真分数相乘的积小于1。()。
3)、x××x()。
4)、分数乘法的意义与整数乘法的意义相同。()。
5)、如果a×=b×,那么a大于b。()。
4、解决问题:
1)、一根电线第一次用去米,第二次用去的是第一次的,第二次用去多少米?
将本文的word文档下载到电脑,方便收藏和打印。
分数乘法人教版教学设计篇四
教学过程:
一、复习。
1、5个12是多少?
用加法算:12+12+12+12+12。
用乘法算:12×5。
问:12×5算式的意义是什么?被乘数和乘数各表示什么?
2、计算:
问:有什么特点?应该怎样计算?
3、小结:
(1)整数乘法的意义,就是求几个相同加数的和的简便运算。被乘数表示相同的加数,乘数表示相同的加数的个数。
(2)同分母分数加法计算法则是分子相加作分子,分母不变。
二、新授。
教学例1。
出示例1:小新爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?
用加法算:(块)。
用乘法算:(块)。
问:这里为什么用乘法?乘数表示什么意思?
得出:分数乘以整数的意义与整数乘法的意义相同,
都是求几个相同的和的简便运算。学生齐读一遍。
练习:说一说下面式子各表示什么意思?(做一做第3题。)。
问:那么分数乘以整数方法应该是怎样算?(通过观察例1,得出分数乘以整数的计算法则)。
三、巩固练习。
1.第2页做一做。
2.练习一。
分数乘法人教版教学设计篇五
教学内容:
苏教版义务教育教科书《数学》六年级上册第29~30页例2、练一练,第32~33页练习五第6~9题。
教学目标:
使学生理解一个数乘分数的意义,知道求一个数的几分之几可以用乘法计算。
通过操作,观察,培养学生的推理能力,发展学生的思维。
教学重点与难点:
一个数的几分之几是多少的实际问题的数量关系和解题方法。
教具:长方形纸、彩笔、水杯。
教学过程:
一、创设情境。
同学们,上节课我们学习了分数乘整数的计算方法,你想不想继续往下学?在学新课之前我们先来复习一下上节课的内容。
复习:计算下面各题,并说出计算方法。
上面各题都是分数乘以整数,说一说分数乘以整数的意义以及计算方法。
二、探究新知。
今天,我们来学习一个数乘以分数的意义和计算方法。
教学例2。
出示例2的图,然后出示条件:
小芳做了10朵绸花,其中是红花,是绿花。
引导学生理解:“其中”是什么意思?
使学生明白是10朵中的,然后出示问题。
红花有多少朵?
引导学生看图理解:求红花有多少朵,就是求10朵的。
让学生应用已有的知识经验解决。
学生可能列式:10÷2=5(朵)。
在此基础上指出:求10朵中的是多少,还可以用乘法计算。
教师说明要求,学生列式解答。
在此基础上教学第(2)题,怎样解决。
(2)绿花有多少朵?
可以先让学生在图中圈一圈,借助圈的过程理解求绿花有多少朵,就是把10朵平均分成5份,求这样的2份是多少,引导学生用以前的方法解决。
10÷5×2=4(朵)。
在此基础上告诉学生:求10朵的是多少也可以用10×来计算。
学生独立计算,订正时指出:
计算10×可以先约分。
2、引导学生进行比较。
通过对上述两个问题的计算,你明白了什么?
小组讨论:10朵的,也就是把10朵花平均分成5份,求这样的2份是多少。计算10×时要先约分,实际上也就是先用10÷5,求出1份是多少,再乘2,求出2份是多少。
引导小结:求一个数的几分之几是多少,可以用乘法计算。
三、练习。
1、做练一练的第1题。
先让学生根据题意涂色,然后列式解答。
2、做练一练的第2题。
通过填空使学生进一步明确:求一个数的几分之几是多少,可以用乘法计算。
3、做练习五第6题。
4、做练习五第8题。
提问:求月季和杜鹃各多少棵时,为什么乘的分数不一样?
5、做练习五第9题。
比较三道算式的计算方法,你有什么体会和大家分享?
四、总结。
本节课学习了那些内容?通过学习你有那些收获?还有那些疑问?
五、作业。
完成练习五第7题。
分数乘法人教版教学设计篇六
(至2011上学期)。
六年级数学学科教师:高春枝。
学习。
内容分数混合运算。
学习。
目
标1、通过观察、分析、使学生掌握分数四则混合运算的运算顺序,能应用计算法则较熟练地进行计算。
2、通过练习,培养学生的计算能力及初步的逻辑思维能力。
3、通过观察、类推,使学生进一步理解整数四则混合运算的运算定律在分数四则运算中同样适用,并能应用运算定律及有关性质进行简便运算。
4、通过练习,培养学生观察、类推的思维能力和灵活计算的能力。
重难。
点及。
突破。
措施教学重点:确定运算顺序再进行计算。
教学难点:明确混合运算的顺序。
课前。
准备。
导学案设计个性化设计。
预
习
学
案1、复习整数混合运算的运算顺序。
(1)在一个没有小括号的算式里,只有乘除法或加减法,应该从左往右依次计算;如果既有加减法又有乘除法,应该先算乘除法,后算加减法。
(2)在一个有小括号的算式里,应该先算小括号里面的,后算小括号外面的。
(3)在一个既有小括号又有中括号的算式里,应该先算小括号里面的,后算中括号里面的,最后算中括号外面的。
2、说出下面各题的运算顺序。
(1)428+63÷9―17×5。
(2)1.8+1.5÷4―3×0.4。
(3)3.2÷[(1.6+0.7)×2.5]。
(4)[7+(5.78-3.12)]×(41.2―39)。
自
主
乐
学
合
作
交
流1、学习例4。
(1)读题,明确已知条件及问题,在小组内尝试说说自己的解题思路。
(2)根据每个同学的回答,小组合作归纳出两种思路:
a、可以从条件出发思考,根据彩带长8m,每朵花用m彩带,可以先算出一共做了多少朵花。
b、从问题入手想:要求小红还剩几多花,根据题意,应先求小红一共做了几朵花。
(3)独立列出综合算式后,先说说运算顺序,再进行计算。
2、巩固练习:p34“做一做”
(1)独立完成第一题,然后全班校对。引导学生比较计算分数连除或连乘除的两种算法,通过比较,使学生发现统一约分后再计算比分步计算简便。
(2)学生读题理解题意,指名说说解题思路,再让学生独立列式计算。
三、练习。
1、练习九第1、2、3、4题。
检
测
反
馈
课
外
拓
展作业:练习九第5--9题。
教
学
反
思
审核人:
分数乘法人教版教学设计篇七
教学内容:
人教版小学数学教材六年级上册第14~15页例9及做一做,练习三第4~7题。
教学目标:
1.让学生在解决“求一个数的几分之几是多少”的分数乘法基本问题的基础上,尝试自己学会解决较复杂的“求比一个数多(或少)几分之几的数是多少”的分数乘法问题。初步构建分数乘法问题的知识结构。
2.培养学生的阅读理解分析能力,以及合作意识和相互沟通的能力。养成良好的解决问题的检验习惯。
【目标解析】“求比一个数多(或少)几分之几的数是多少”的分数乘法问题较复杂,是在解决“求一个数的几分之几是多少”这类分数乘法基本问题的基础上发展引申出来的,教师可以放手让学生在旧知识的基础上自主学习,大胆探究。
教学重点:
让学生在解决简单的分数乘法问题的基础上,学会解决较复杂的“求比一个数多(或少)几分之几的数是多少”的分数乘法问题。
教学难点:
初步构建分数乘法问题的知识结构。
教学过程:
一、情境引入,阅读思考。
(一)课件出示信息。
人心脏跳动的次数随年龄而变化。青少年心跳每分钟约75次,婴儿每分钟心跳的次数比青少年多。
(二)阅读信息,思考问题。
1.请学生认真阅读信息,思考:根据这些信息你能提出哪些问题?
预设:(1)婴儿每分钟心跳比青少年多多少次?
(2)婴儿每分钟心跳的次数是青少年的'几分之几?
(3)婴儿每分钟心跳多少次?
2.这些问题中,哪些你能解答出来?
对于前两个问题,学生根据自己学过的知识就能解答。解答完第一个问题时,说说怎样解决“求一个数的几分之几是多少”的问题。
【设计意图】一方面复习解决分数乘法基本问题的方法,对解决分数乘法问题中表示数量关系的句子进行深入理解,为后续学习做好准备;另一方面,让学生学会收集、选择和加工信息。
二、由浅入深,探索新知。
(一)改题。
在课件上补充前述问题(3):“婴儿每分钟心跳多少次?”,呈现例9。
(二)探索解决稍复杂分数乘法问题的方法。
1.认真阅读例9,理解题意。
阅读课本第14页例9及下面的“阅读与理解”和“分析与解答”的线段图,并思考:
(1)你从题目中读懂了什么?把“阅读与理解”栏目的内容填写完整。
(2)从“分析与解答”的线段图中你又读懂了什么?说说每一条线段的意义。
(3)你认为该怎样解决这个问题?尝试自己做一下。
2.同桌讨论。
(1)说说题意和图意。
(2)把你的解题思路说给同桌听。
3.集体讨论。
(1)说说你是怎样理解题意的?(可直接读题理解,也可通过线段图理解。对于遇到困难的同学,可以再次出示线段图辅助理解,尤其是对第二种解法的理解)。
(2)你是怎样解答的?说说解题思路。
方法一:
方法二:
(3)你能用自己的方法检验两位同学的解答是否正确吗?如果有困难可以提示一下(算算135次比75次多几分之几?)。
4.回顾小结。
你是通过哪些途径来理解题意的?(反复阅读,画线段图,找准表示单位“1”的量等,特别强调画线段图在理解题意中的作用。)。
【设计意图】通过学生阅读例题、画线段图等活动培养学生的阅读能力和自主探究的能力。又通过讨论、小结,使每位同学都学有所得,同时培养学生的合作意识和沟通能力。
分数乘法人教版教学设计篇八
教学目标:
1、通过练习巩固稍复杂的分数乘法实际问题的基本方法,明确解题思路。
2、通过变式题、开放题的训练,锻炼学生的思维,提高分析问题的能力。
3、在解决问题中,引导学生认真思考,培养合作精神和克服困难的勇气,激发热爱数学的情感。
教学重点:
一步计算的分数乘法问题和两步计算的分数乘加、乘减问题,用分数表示的数量关系的理解以及解答的方法。
教学难点:
理解分数表示的“分率”和“具体量”的区别。
教学过程:
一、创设情境,切入课题。
朗读诗歌。出示《春》的诗句:
春水春池满,春时春草生。春花绽春蕊,春雨伴春风。春鸟弄春色,春人忙春耕。
例如:“春”的字数占总字数的几分之几?
学生解答后交流解题思路。
小结:通过前面的学习,同学们已经初步掌握了分数解决问题的关键,要找准单位“1”,要理解分数的含义;这节课我们重点来进行有关分数解决问题训练。
二、基本练习,掌握方法。
题目要求:根据下列关键句,你都能想到什么(训练学生从以下四方面说)。
(1)梨子的数量是桔子的五分之二;
五分之二表示()与()的数量关系;
()表示“1”;()表示五分之二;
根据数量关系列示()×()=()。
(2)一袋米,还剩七分之三;(先补充完整“还剩谁的七分之三”)。
(3)火车速度比汽车快三分之一。
(4)实际烧煤比计划节约八分之三。
小结:我们在遇到含有分率的分数问题是要先确定单位“1”和分析数量关系;这是解决此类问题的关键。
三、分类练习。
(一)根据列式补充问题。
根据列式的含义,在每个算式的后面补充合适的问题。
小华看一本168页的故事书,已经看了七分之四,?
(二)补充条件进行题组的对比练习:
选择对应的列示填在括号里,并说出为什么。
某工厂四月份计划用煤135吨,(),实际用煤多少吨?
四、课堂检测:
分数乘法人教版教学设计篇九
班级姓名小组小组评价。
学习目标:
1、结合具体情境理解分数乘整数的意义,掌握分数乘整数的计算方法,能运用计算方法正确进行计算。
2、通过独立思考、小组合作、展示质疑,培养观察推理的能力。
3、激情投入,阳光战示,全力以赴,挑战自我。
重点;分数乘整数的简便算法。
难点:分数乘整数的算理。
使用说明与学法指导:
先由学生自学课本,经历自主探索总结的过程,并独立完成自主学习部分,通过独立思考及小组合作,能够结合具体情境理解分数乘整数的意义,掌握分数乘整数的计算方法,能运用计算方法正确进行计算。并独立完成导学案,然后学习小组讨论交流,让同学们进行展示,小组间互相点评,补充之后由老师进行点拨,最后巩固知识。
一、自主学习:
1、自学课本p8---p9页。
2、想一想,填一填。
1)、5+5+5+5=()×()表示()个()相加。
2)、1.2+1.2+1.2+1.2+1.2=()×()表示()个()相加。
3)、++=()×()表示()个()相加。
4)、×4改写成加法算式是()。
3、看图填空。
1)、
()+()+()=()。
()×()=()。
2)、
()+()+()+()=()。
()×()=()。
二、合作探究:新课标第一网。
小结:分数乘整数的意义:
例2、×5。
小结:分数乘整数的计算方法:
例3、6×=。
思考:你有什么技巧?
小结:分数乘整数的简便算法:
三、学以致用:
1、填空。
1)、分数乘整数,用分数的()和整数相乘的积作(),()不变。
2)、分数乘整数的意义与()意义相同,都是求的简便计算。
3)、×4表示()或表示()。
4)、4个的和是多少?用乘法计算可列式为()。
2、计算。
×4=3×=×8=。
3、列式计算。
1)、6个相加的和是多少?2)、的5倍是多少?
4、解决问题。
1)、一辆汽车每分钟行千米,这辆汽车每小时行驶多少千米?
2)、李师傅加工一个零件小时,加工24个零件需多少个小时?
5、附加题。
1)、计算。
×2=。
2)、把下面的加法算式改写成乘法算式。
分数乘法人教版教学设计篇十
第一课时两位数乘两位数(不进位)。
教学内容:教科书第63页例1及做一做,练习十五。
教学目标:让学生经历两位数乘两位数的笔算过程,学会计算两位数乘两位数不进位的乘法。在学习活动中感受数学与生活的密切联系。
重点难点:掌握笔算方法并正确计算;解决乘的顺序和第二部分积的书写位置问题。
教具准备:例2主题图。
教学过程:
一、复习。
1、口算。
52×1043×30=12×40=31×20=17×20=21×30=。
2、笔算并说出计算过程。
41×7=。
二、新课。
1、教学例2。
出示例2的主题图,让学生说一说,这幅图所展示的情境是什么。(小红的妈妈带着小红去书店买书,小红要买一套12本,每本24元的书,她在想一共要付多少钱。)。
老师组织学生进行讨论,然后展示不同的计算过程和结果。
例:24×12=24024×10=24024×2=28240×28=288。
有些学生会想到把12看成10和2的和,先用24×10,再用24×2,然后把两次乘得的结果相加。
有些学生会想到用笔算乘法。先让学生说他是如何写的,老师家以指导。
老师在指导分析过程中把每步板书,强调每步难点。
例1:24×12=288(24×10=24024×2=48240+48=288)。
24。
×12。
4824×2的积。
2424×10的积。
288(个位的0可不写)。
在总结过程中提问:
(1)两位数乘两位数一种是口算方法,一种是笔算方法,你认为哪种方法好?
(2)笔算中乘了几层,为什么?乘得的结果怎么样?(乘了两层,因为第二因数是两位数,2和24乘完后,1和24还要乘,把两层乘得的结果相加。)。
(3)十位上的1和24乘完后“4”为什么和十位对齐?(因为十位上的1和4相乘乘得的结果是4个十,所以要和十位对齐,个位的0可以省略不写。)。
教师总结完后出示课题,说明我们今天主要学习的是笔算两位数乘两位数的乘法,而且是不需要进位的。
2、指导学习完成“做一做”。
(1)让学生先做前4题,板演,并说出计算过程。
(2)后4题学生做完后,集体订正。
三、小结。
同学们,今天学习的是什么内容,应该注意什么?(今天我们学习的是两位数乘两位数不进位笔算乘法,应注意的是用十位上的数去乘时,乘得的末位数要和十位上的数对齐,也就是和个位乘得的积错开一位。)。
第二课时两位数笔算乘法(进位)。
教学内容:教科书第65页例2、做一做,练习十六第1、2题。
教学目标:让学生经历两位数乘两位数的笔算过程,学会计算两位数乘两位数进位的乘法。在学习活动中感受数学与生活的密切联系。
教具准备:多媒体课件(有下围棋的录像或画面);
多个南瓜形算式卡片(每张上一个算式)。
教学过程:
一、提出问题。
呈现下围棋的录像或画面,介绍有关围棋赛的事例(或战绩)。
放大棋盘,让学生观察棋盘结构。使学生了解到:围棋的棋盘面由纵横19道线交叉组成。
接着,把棋子放在纵横线的交叉点上,引出问题:“棋盘上一共有多少个交叉点?”
请学生说一说用什么方法解决这个问题,从而列出算式19×19。
二、探讨计算方法。
1.各组讨论:怎样计算19×19。
请把想出的计算方法写在纸上。
2.组织交流。
各组展示本组的算法。不容易说清楚的,就写在黑板上。
3.师生评议。
(1)请学生说一说,喜欢哪种方法?为什么?
(2)教师对学生发表的意见作以肯定或补充。使学生了解每一种算法的特点和适用范围。例如:估算的方法能很快算出大约有400个交叉点,但它不能满足解决问题的要求。
(3)重点评议笔算。
用检查竖式每一步计算的方式,再现笔算过程。在此基础上,夸赞学生:能用刚学过的两位数乘两位数的知识解决今天的新问题。并且,能正确解决乘的过程中的进位问题。你们真棒!
三、练习。
1.尝试练习。
用竖式计算第65页“做一做”中的4道题。可以让几个组的学生做前2道,另几个组的学生做后2道题。
完成计算后,组织交流。说出笔算的过程,加深学生对笔算过程的了解。
2.完成练习十六第1题。
独立计算,集体订正。根据班上出现错题的情况,和学生一起讨论错误的原因,请学生订正错题。请学生注意:计算时要认真仔细。
3.解决问题。
请学生独立完成练习十六第3、4题。
完成后,请学生向全班说一说,解决问题的过程和结果。
4.游戏。
贴出写有算式的南瓜卡片。用语言描述菜园里收南瓜的情境,请同学们帮助菜农收南瓜。
让学生自由选择卡片,算对的就收获了这个南瓜。
完成后,先检查是不是算对了,再比一比哪组学生收获的南瓜多。奖励优胜组。
四、总结。
1.请学生讨论笔算乘法时要注意什么问题,并交流。
2.教师强调:用竖式计算时,每次乘得的数的末位应该和那一位对齐。还要注意记住进位数,正确处理进位问题。
分数乘法人教版教学设计篇十一
教学目标:
1.让学生经历探索分数乘整数计算方法的过程,并能正确地进行计算。
2.感受分数乘法与分数加法的内在联系,培养学生的迁移类推能力。
3.增强学生运用已有知识经验探索并解决问题的意识,体验探索学习数学的乐趣。
教学重点:掌握分数乘整数的计算方法。
教学难点:能正确熟练地计算分数乘整数。
教学准备:课件。
教学过程:
一、谈话导入。
1.观察情境图,激发学习兴趣。(多媒体出示生日会分蛋糕情境图)。
(表示把一个蛋糕平均分成7份,每人吃其中的2份。)。
2.导入新课。
同学们对分数已经有了一些了解,并且学会了分数的加法和减法运算,这学期我们还要学习分数的乘法和除法运算。今天我们就先来学习分数乘法的相关知识。
(板书课题:分数乘法)。
二、探索新知。
1.投影出示例题1。____个,3人一共吃多少个?
(1)引导学生读题,并说说____表示什么。____表示把一个蛋糕平均分成9份,每人吃其中的2份。
(2)求“3人一共吃多少个?”实际上就是求什么?先让学生思考,再指名回答。(实际上就是求3个是多少。)。
2.学生独立列加法算式解答。____++==(个)。
3.根据乘法的意义将加法算式转换成乘法算式。
(1)提问:这道加法算式有什么特点?(三个加数都相同。)。
(2)追问:求几个相同加数的和还可以用什么方法来计算呢?
(启发学生得出:3个相加,用乘法表示是×3或3×。)。
(1)提问:3个相加的和,也可以列成算式×3,那么×3样计算呢?
(2)学生思考计算方法。
学生思考,教师巡视观察。如果学生有困难,可以进行必要的启发:是个,2个乘3就是6个,所以就是。
(3)组织全班交流,教师结合学生的回报情况进行板书:×3=++====(个)教师强调:在计算过程中,虚线框起来的思考过程可以不写;分数线要用直尺画。
4)学习计算过程中进行约分。
引导学生观察计算过程中的分子和分母,分子用“2×3”得来,说明分子中含有因数3,而分母是“9”,也含有因数3,所以将“3”和“9”进行约分,即:____×3==____(个)。
观察上面的计算过程,你发现了什么?
(预设:能约分的可以先约分,再计算,结果相同。)。
(5)提问:如果把算式“×3”的两个因数交换位置,变成“3×__”
应该怎样计算呢?学生尝试计算后组织交流。
(6)总结分数乘整数的计算方法。
提问:分数与整数相乘,可以怎样计算?
指名回答,多让学生参与交流。
(分数乘整数,用分子乘整数的(分数乘整数,用分子乘整数的积作分子,分母不变。能约分的可以先约分,再计算。)。
5.练一练。
教材第2页“做一做”第1题。学生独立完成,投影交流。
教师强调:分数与整数相乘时,一定是整数与分母约分。
三、反馈完善。
1.教材第2页“做一做”第2题。
这道题是分数与整数相乘的计算,第三小题是整数乘分数,通过这道计算题,巩固分数乘整数的计算方法。教师也可以借此来发现学生在计算过程中存在的问题。
2.教材第6页“练习一”第1题。
这道题是分数乘整数的意义的练习。通过练习进一步感受分数乘整数与分数加法之间的联系,从而体会到分数乘整数的意义和整数乘法的意义相同。
3.教材第6页“练习一”第2题。
这道题是分数乘整数知识在日常生活中的应用,5kg的衣物就需要5个洗衣粉。
四、反思总结通过本课的学习,你有什么收获和体会?还有哪些疑问?
教学目标:
1.通过直观操作,初步掌握分数乘分数的计算方法。
2.经历探索分数乘分数计算方法的过程,体验数学学习,感受成功的喜悦,激发学习数学的兴趣。
教学重点:理解一个数乘分数的意义,掌握分数乘分数的计算方法。
教学难点:理解分数乘分数计算的算理。
教学准备:课件。
教学过程:
一、谈话导入。
2.导入。今天我们继续研究分数乘法的问题。(板书课题)。
二、探索新知。
(一)一个数乘分数的意义。1.投影出示例题2。
(1)问题一:3桶水共多少升?指名列出算式:12×3。提问:你是怎么想的?想:求3个12l,就是求12l的倍是多少。
分数乘法人教版教学设计篇十二
教学目标:使学生学会分析分数乘法应用题的数量关系,会应用一个数乘分数的意义解答两步计算的分数乘法应用题;培养学生解决问题的能力,提高学生的分析能力;进一步提高学生思考问题的逻辑性。
教学重,难点:掌握分数连乘的计算方法,突出一次计算,会解答分数连乘计算的实际问题。
教学过程:
(一)、导入。
1、说出下面各题算式所表示的意义,再口算各题。
1/2×2=2/5×3=2/3×1/2=3/4×5=。
2、说出下面各题中的两个量,应该把谁看着单位“1”。然后再给每题补充一个已知条件和一个问题,使它成为一道一步计算的分式乘法应用题。
母牛的头数是公牛的1/3,公牛头数的2/3和母牛相等。
母牛的头数相当于公牛头数的3/4,公牛的头数相当于母牛头数的1/2。
小组完成,集体订正。
(二)、教学实施。
1.板书:公牛有30头,母牛的头数相当于公牛的1/3,小牛的头数相当于木牛的2/5,小牛有多少头?(认真读题,弄清题意)。
2.指导学生画线段图:怎样用线段图表示已知条件和问题?要求小牛的头数,就要知道哪个量?(母牛的量)母牛的头数又和哪个数量有关?(公牛的头数)先画一条线段,表示哪个数量?(公牛的头数)崽化一条线段,表示哪个数量?(母牛的头数)画多长?根据什么?表示小牛的头数的线段应该怎样画?板书:
公牛:|||||||||||。
30头。
母牛:||。
小牛:
头
3.分析数量关系:
4.列式解答:根据以上分析,这道题应该怎样解答?怎样列综合算式解答?板书:
30×1/3×2/5=。
根据综合算式让学生说说每一步分别求的是什么,每一步分别是把哪个数量看着单位“1”。同时强调:分数连乘不必像整数,小数连乘那样,逐次计算,可以一次计算,遇到整数和分数相乘,要用整数与分数的分母约分,不能约分的直接与分数的分之相乘。
(三)巩固练习。
完成第18页第4、5、9、10题,学生要说明每一步所表示的意义,每一步是把哪个数量看着单位“1”。
(四)课堂小结:解答两步计算的分数乘法应用题与解答一步计算的分数乘法应用题的相同点都是求一个数的几分之几是多少的应用题,不同点是分数连乘应用题要连续求一个数的几分之几是多少。解题关键是要找准每一步的单位“1”。
教学反思:
第三课时求比一个数少几分之几的数是多少的实际问题。
教学目标:使学生认识“求比一个数少几分之几的数是多少”的应用题的结构特征,学会利用线段图来分析数量关系,掌握解答这类应用题的思路和方法,并能正确列式计算;培养学生分析问题及综合运用所学知识的能力。
教学重、难点:了解“求比一个数少几分之几的数是多少”的应用题的结构特征;正确分析数量关系,比较熟练的画出线段图。
教学过程:(一)导入。
板书:超市运来花生油和豆油共600桶,花生油的桶数占总桶数的2/5。
(二)、教学实施。
1.根据以上两个条件,我们可以提出以下数学问题:
2.能用图表示豆油的部分吗?板书:
“1”
花生油占总桶数的。
||||||。
豆油?桶。
600桶。
3.分析数量关系;看图想想,豆油占总桶数的几分之几?求豆油的桶数就是在求什么?交流讨论得出:豆油的桶数占总桶数的,求豆油的桶数也就是在求600的是多少,用乘法计算。
后者方法很容易理解,主要是从“总桶数-花生油的桶数=豆油的桶数”这个数量关系入手分析,也就是“和-一个量=另一个量”
“1”
原来:||||||||。
85分贝。
降低了。
现在:||||||||。
分贝。
根据线段图想到了什么?
3.分析数量关系:求现在听到的声音是多少分贝该怎样计算?先求什么,再求什么?(先求降低了多少分贝,再求现在听到的声音分贝是多少;还可以先求现在声音的分贝占原来声音分贝的几分之几,再求现在听到的声音是多少分贝。)。
4.列式解答:
=70(分贝)=70(分贝)。
(三)、深化练习。
完成教材20页的“做一做”;完成练习五的第2、4、5、8、10题。
(四)课堂小结。
今天我们学习了“求比一个数少几分之几的数是多少”的应用题,这类题需要两步完成,通过今天的学习我们能够准确地分析并计算出这类题。
课后反思:
将本文的word文档下载到电脑,方便收藏和打印。
分数乘法人教版教学设计篇十三
《分数乘分数》对于学生而言是新的内容,它的计算方法与整数、小数的计算方法有很大区别,记住分数乘法的计算法则并不困难,但让学生理解分数乘法的算理,尤其是分数乘分数的算理,是本节课教学的难点。
《标准》指出,有效的学习活动不能单纯地依赖模仿与记忆。教学中要改变以往以例题、示范、讲解为主的教学方式,改变以记忆法则,机械训练为主的学习方式,引导学生投入到探索与交流的学习活动之中。
学习这节课前,我先让学生自学,让他们试着去解决课本上的几个问题:
课上让学生交流探索的结果。我发现大部分学生能在前一问的基础上可以类推出分数乘分数的方法。
有的学生采用了折纸的方法,一步步的给大家讲解,效果也不错。
学生讲解的头头是道,说实话,这节课给了我很大的震撼,千万不要低估学生的能力,该放手时一定要放手让学生去做,很多时候他们会给你意想不到的惊喜!
整节课的大部分时间都是安排学生的探究、讨论活动,让学生在讨论研究中提出猜想,最后在举例中检验猜想后达成共识,得到分数乘分数的计算法则,理解算理,由于学生的探究花了大量时间,最后只是对法则进行了总结,从时间的分配上来说,后面的巩固练习时间很少,学生对分数乘分数到底掌握到什么情况心中没数。这让我想到,我们在课堂上无论事先设计的多么完善,都要根据学生的实际情况,跟着学生的思路走,而不能死套教案,一定要灵活处理。
遗憾的地方:能讲解的学生毕竟是少数,大部分的孩子是听会的,个别学生对算理仍然不能很好的理解,对后续学习会有一定影响,对这部分学生要多帮助、多鼓励,树立他们的信心!
将本文的word文档下载到电脑,方便收藏和打印。
分数乘法人教版教学设计篇十四
教学内容:教科书第96~97页,练习十八第5~14题。
教学目标:
1、通过练习,使学生进一步掌握一个数除以小数的计算方法,能真确计算。
2、使学生在练习中感受商的一些变化规律,在解决简单实际问题的过程中,体会除法计算的实用价值,发展学生的数学思考能力。
教学过程:
一、基础训练。
1、完成第5题。
集体口答,说说0.1÷0.05、0÷0.24的思考过程。
2、完成第6题。
独立完成,比一比每组中的三道算式和结果,说说有什么发现?
引起商的变化的原因是什么?
3、完成第7题。
独立计算,按要求比较。
什么情况下,商比被除数小?什么情况下,商比被除数大?
4、完成第8题。
你根据什么判断的?
二、提高训练。
1、独立完成第(1)题的计算。
你还能提出用除法计算的问题吗?怎么解决呢?
2、完成第10题。
先计算每组中的两题,再比价,说说有什么发现?
哪一道题计算比较简便?
3、完成第11题。
每一题应该先算哪一步呢?
运算顺序是怎样的?和整数四则混合运算顺序相同吗?
4、完成第12题。
你怎样理解“层高”的意思的?
你是怎样想的?怎样列式呢?
每一步什么意思?为什么要加1?
独立完成计算。
5、完成第13题。
你能列表整理条件和问题吗?
白色奶油5.6?克。
彩色奶油2.5克100克。
在小组中列表整理并交流方法。
6、完成第14题。
你准备怎样解决这些问题呢?
还有其它的方法吗?
三、课堂小结。
通过这节课的练习,同学们的计算又有了进步,解决问题的能力也提高了。
发现了小数除法中的规律,并且能把这些规律应用在计算上,在后面的学习中,还要多思考,多练。
分数乘法人教版教学设计篇十五
2、能解决简单的分数乘整数的实际问题,体会数学与生活的密切联系。
1、分数和分数相乘的意义和计算法则。
2、求一个数的几分之几是多少的应用题。
一、创设情境激趣揭题。
1、出示课本上的对话请境框。
2、整理、归纳问题,并出示完整的题目。
3、顺势导入新课,板书课题:分数乘法(二)。
二、扶放结合探究新知。
1、巡视、指导小组讨论学习。
2、提问:怎样用算是表示6个1/2?
3、6×1/2这个乘法算式的意义是什么?
4、归纳小结分数乘法(二)的算式意义:求一个数的几分之几是多少?
5、6×1/3如何计算呢?
6、总结计算方法。
三、反馈矫正落实双基。
1、出示教材第5题试一试第1、2题。
2、组织学生做第6页练一练1—3题。
四、小结评价布置预习。
引导学生进行课堂小结。
分数乘法人教版教学设计篇十六
教学内容:课本第102页回顾与整理以及练习与应用1-6题。
教学要求:使学生进一步理解小数乘法的意义,掌握计算法则,能够比较熟练进行小数乘法、除法笔算和简单的口算;会用“四舍五入”法截取积、商是小数的近似值。
教具准备:小黑板。
教学过程:
回顾与整理。
(一)计算:
学生计算后集体订正。
小组讨论然后汇报交流:
1、小数乘法和整数乘法有什么相同和不同的地方?
2、计算小数乘法时,怎样确定积的小数位数?算出积后,积的小数位数不够应该怎么办?
(2)计算:1.89÷0.547.1÷2.50.51÷0.22学生做完后集体订正。
二、练习与应用。
1、第1题:学生独立计算,教师巡视指导。集体订正。
2、第2题:先分组完成题目,然后通过计算和比较,让学生进一步整理小数乘除法的计算方法。
3、第5题:学生独立审提题解答,教师巡视。让学生根据平均数的意义估计得数范围。
4、做第6题。主要让学生练习根据具体的问题情境合理截取商的近似值。
小结。
三、作业设计。
完成整理与练习第3题和第4题。
分数乘法人教版教学设计篇十七
第一单元:小数乘法—解决问题(1)。
教学内容:
教材p15例8及练习第1~5题。
教学目标:
知识与技能:
能用所学小数乘法的知识解决一些简单的问题,从中掌握一些解决问题的途径和方法。
过程与方法:让学生经历用列表的方法整理信息的过程,及运用多种方法解决问题的过程,探索解决问题的有效方法。
情感、态度与价值观:让学生感受所学知识的应用价值,提高学习数学的兴趣,增强学生学好数学的信心。
教学重点:
灵活运用所学知识解决实际问题。
教学难点:
熟练正确地计算,灵活运用所学知识解决实际问题。
教学方法:
创设情境,启发探究,合作交流。
教学准备:
多媒体。
教学过程。
一、复习引入。
计算下列各式:
教师找三名学生板演,其他学生在稿纸上独立完成,然后集体订正。
师:刚才同学们完成得都很好!这三题都是有关小数的乘法计算,今天这节课我们来进一步学习小数乘法在实际问题中的应用。(板书课题)。
二、探究新知。
1.出示教材第15页例8的情境图。
师:请同学们认真观察情境图,并说说从情境图中能获得哪些信息。
学生观察情境图,然后说说自己的发现。
生1:图中的这位妈妈买了2袋大米和0.8kg肉,每千克肉26.5元。
生2:鸡蛋有10元一盒的和20元一盒的。
生3:图片中的这位妈妈只带了100元。
师:很好!为了方便大家更好地解决问题,我们可以将这些信息用表格的形式表示出来。如下表所示:(教材第15页表格)。
单价。
数量。
总价。
大米。
30.6。
2
肉
26.5。
0.8。
鸡蛋。
10。
1
师:同学们能将上表中的空格填写完整吗?
学生独立计算,并填写教材第15页表格。
师:题中的问题是什么呢?
师:那么怎么解决第一个问题呢?
学生先独立思考,然后说说自己的方法。
生1:我是用计算器算的。买2袋大米和0.8kg肉所花去的钱是61.2+21.2=82.4(元),1够买10元一盒的鸡蛋。
生2:我是估算的。1袋大米不到31元,2袋大米不到62元;肉的价钱不到27元;再买一盒10元的鸡蛋,总共不超过62+27+10=99(元),所以用剩下的钱还够买一盒10元的鸡蛋。
师:剩下的钱够不够买一盒20元的鸡蛋呢?
生3:我也是用估算的方法解决这个问题的。1袋大米超过30元,2袋大米超过60元;lkg肉超过25元,0.8kg肉也就超过25×0.8=20(元)。如果再买20元一盒的鸡蛋,总共就超过了60+20+30=110(元),110100,所以用剩下的钱不够买一盒20元的鸡蛋。
2.回顾与反思。
对比用计算器和估算两种方法,我们很容易发现,有时用估算的方法解决生活中的实际问题比较简单。
比较估算的两种方法,我们发现,第一种方法是把数往大了估,还没有超过100元,说明带100元钱够买这些东西了,第二种方法是把数往小了估,正好等于或大于100元,说明带100元钱不够。
三、巩固练习。
1.完成教材第17页练习四的第3题。
这个房间地面的面积为:
8.1×5.2=42.12(平方米)。
一块地砖的面积为:0.6×0.6=0.36(平方米),
所以100块这样的地砖不够铺这个房间的地面。
2.完成教材第17页练习四的第4题。
0.25×15=3.75(千米),所以王老师家离学校3.75千米。
5×0.8=4(千米),43.75,所以王老师步行0.8小时能到学校。
四、课堂小结。
师:通过这节课的学习,同学们有什么收获?可以与大家分享一下吗?
学生发言,教师点评。
作业:完成教材第17页练习四的第1、2、5题。
板书设计:
解决问题。
单价。
数量。
总价。
大米。
30.6。
2
61.2。
肉
26.5。
0.8。
21.2。
鸡蛋。
10。
1
10。
分数乘法人教版教学设计篇十八
1、结合具体情境,进一步探索和理解分数乘整数的意义,并能够熟练准确的计算。
2、能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的`能力。
3、使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。
理解整数乘以分数的意义,并能证确计算。
运用所学的知识解决分数乘法的实际问题。
1、2/3×2表示的意思是()。
2、计算分数乘整数时,用分数的()和整数相乘的积作(),分母()。
3、请学生计算下列分数乘法运算题。
1/8×3。
3/10×4。
7/24×12。
1、教师让学生思考这个题,并对学生进行提问。
3、教师提问学生说一说自己是怎样计算的?
4、学生自己动手填完课本例题上的方格。
5、怎样表示笑笑的苹果数?
6、教师板书(笑笑:6×1/3=2)。
7、总结分数乘法的意义就是求一个数的几分之几是多少。
8怎么计算呢?6×1/2=6×1/2=36×1/3=6×1/3=2教师和学生对比这两个题目的区别和联系。学生初步理解整数乘以分数的计算方法。
1、计算8×3/10。
4×3/10。
24×3/8。
2、做课本5页试一试1题,36的1/4和1/6分别是多少?
注意让学生体验求一个整数的几分之几是多少的数学意义。
3、试一试2,学生说说:“打折”的意思?八折、九折分别表示什么意思?学生计算。
同学们,这一节课你学到了哪些知识?(提问学生回答)。
整数乘以分数的意义:就是求整数的几分之几是多少?
整数乘以分数的计算方法:用整数与分子相乘的积作分子,分母不变。能约分的要先约分。
本节课有以下优点:
1、针对教材提供的情境,引导学生理解整数乘以分数的意义通过课堂活动使学生认识到分数乘法就在我们的生活中,学生对分数乘法的意义有了更深的理解。
2、抓住了图形语言的直观性,借助图形理解整数乘以分数的意义,是自己的小课题研究落到了实处。
分数乘法人教版教学设计篇十九
教学目标:。
1、能根据一个数乘分数的意义,理解“求一个数的几分之几是多少”的问题的数量关系。
3、经历分析数量关系的过程,提高学生分析能力与解决问题的能力。
教学重点:。
经历“求一个数的几分之几是多少”的问题的数量关系分析过程。
教学难点:。
掌握“求一个数的几分之几是多少“的解答方法。
教学方法与手段:。
小黑板、多媒体。
教具准备:。
主题图、小组练习纸。
教学过程:。
一、创设情境,生成问题。
师:同学们,我国人多地少的矛盾日益突出,所以应控制人口增长并需要保护好耕地。据统计,世界人均耕地面积为2500平方米,我国人均耕地面积仅占世界人均耕地面积的2/5。我国人均耕地面积是多少?谁愿意帮老师解决这个问题吗?(学生积极举手发言)。
师:这是用分数乘法的知识来解决生活中的实际问题,这节课我们一起来进行有关的知识的.学习,揭示并板书课题:解决问题(一)。
二、探索交流,解决问题。
1、从题目里你知道了哪些信息?需要解决的问题又是什么?
2、要解决我国人均耕地面积是多少平方米,就要分析其中的条件和问题,怎样分析呢?(用线段图分析数量关系)。
师出示课本的线段图。
3、你会表示我国人均耕地面积吗?(生动手画图指名板演)。
4、给大家说说你是怎样表示的?
5、从线段图中你还知道什么?(师出示)“要求我国人均耕地面积,就是求……”(指多名说)。
(师出示)“求2500的2/5是多少?“。
6、你们会算吗?动手试试。(指名板演):。
2500x2/5=1000(平方米)。
为什么要这样算?还有其它方法吗?(预设:2500÷5×2)。
结合计算结果,让学生说说自己的想法,培养学生分析数据的能力,进行国情教育。
三、巩固应用,内化提高。
1、一头鲸长28米,一个人的身高是鲸体长的2/35。这个人的身高多少米?
2、找出单位“1”,谁能解决,动手试试。
3、列式解决,讲评。
4、练习四第2题:让学生先找出题目中隐藏的单位“1”——全世界的丹顶鹤数只。
5、练习四第3题:让学生先找到单位“1”,再独立列式解答。
四、回顾整理,反思提升。
师:这节课你们一定有不少的收获吧,谁能说说?
分数乘法人教版教学设计篇二十
第一课时:小数乘整数(1)。
教学内容:p55页例1及“试一试”、“练一练”;练习十第1—4题。
教学目标:
1、在具体情境中探索并初步掌握小数乘整数的计算方法,会用竖式进行计算。
2、能在探索计算方法的过程中,进一步体会数学知识之间的内在联系,培养初步的抽象、概括以及合情推理能力,感受数学探索活动的乐趣。
教学重点:探究并学会小数乘整数的计算。
教学难点:探究并学会小数乘整数的计算。
教学准备:课件、展台。
教学过程:
一、引入新课。
1、谈话:在炎热的夏天,你喜欢吃西瓜吗?随着农业生产技术的不断进步,现在的人们不仅能在夏天吃到西瓜,在寒冷的冬天也能吃到西瓜。
2、出示例题的场景图,提问:从图中你能知道什么?
3、引导:根据图中的信息,要求“夏天买3千克西瓜要多少元”这个问题,你会列式吗?“0.8×3”是求几个0.8相加的和?这个乘法算式和我们以前学习的乘法算式有什么不同?(有一个因数是小数)板书课题:小数乘整数。
二、探索计算方法。
1、启发:你能用以前学过的知识算出“0.8×3”的得数吗?先想一想,再算一算。学生各自思考、计算,师巡视,了解学生用什么方法。
2、交流:谁先来说说,你是怎样计算的?算出的结果是多少?
学生回答后继续提问:谁用不同的计算方法?
3、指出:“0.8×3”也可以用乘法竖式计算.
讨论:看着竖式,说说用竖式计算“0.8×3”的过程?
比较:0.8是几位小数?2.4呢?
4、提出要求:冬天买3千克西瓜要多少元?先列加法。
竖式计算,再列乘法竖式计算。
5、交流:列出的加法计算式是求几个2.35相加的和?
列出的乘法算式呢?谁来说说用乘法竖式计算的过程?
2.35是几位小数?2.35×3的积是几位小数?
6、猜想:如果用一个三位小数乘3,积会是几位小数?如果用一个四位小数乘3呢?
三、教学“试一试”归纳计算方法。
1、出示4.76×12,2.8×53,103×0.25,。
3、小结:计算小数乘整数时,先按整数乘法计算,再看因数里有几位小数,就从积的右边起数出几位,并点上小数点。
四、指导练习。
1、完成练一练第1题。(集体交流、订正)。
提问:四道题中,有哪些题目的计算结果需要化简的?
2、指导完成练一练第2题。先在书上填一填,指名交流。
3、要求学生在课本上完成练习十第1题。
4、完成练习十第2题(板演,其他学生在作业本上完成)。
5、完成练习十第3题。
6、完成练习十第4题。
学生列式计算后,组织交流。
六、全课小结:你认为计算小数乘整数时要注意什么?
第二课时:小数点向右移动引起小数大小变化的规律。
教学内容:p56—57例2、3及相应的“试一试”“练一练”,练习十第5—8题。
教学目标:
1、使学生理解并掌握由小数点向右移动引起小数大小的变化规律;能应用规律正确口算一个数乘10、100、1000……的积。
2、培养学生初步的观察、比较、归纳、概括的能力。
教学重点:能应用规律正确口算一个数乘10、100、1000……的积。
教学难点:小数点向右移动引起小数大小变化的规律。
教学准备:课件、展台。
教学过程。
一、复习引新。
1、口算。5×1050×105×10050×100。
2、比较每组两个小数的大小。4.53○45.30.7○0.07。
3、导入新课:比较一下,刚才每组的两个小数有什么相同的地方?有什么不同的地方?
为什么每组里的数字相同,数字排列顺序也相同,而组成的数的大小却不同呢?
揭示课题:小数点移动引起小数大小变化的规律。
二、探究新知。
1、教学例2。
(1)出示例2:5.04乘10、100、1000各是多少?
学生用计算器计算。
(2)指名说说计算结果,并板书。
(3)引导观察比较:50.4和50.4比,小数点向什么方向移动了几位?
504和5.04比,小数点向什么方向移动了几位?
(4)验证:以小组为单位,每组任意找一个小数,分别把它乘10、100、100,看看小数点位置的变化情况于我们猜想得是否一样。
分数乘法人教版教学设计篇二十一
教学目标:
1.分数乘以整数的意义,掌握计算法则,正确计算分数乘以整数的算式题。
2.渗透事物是相互联系、相互转化的辩证唯物主义观点。教学重点:
教学难点:
分数乘以整数的计算法则的推导。
教具准备:
多媒体课件。
教学过程:
一:复习。
1.口算:
问:怎样计算?(分母不变分子相加)。
2.根据题意列出算式:
(1)5个12是多少?
(2)3个14是多少?
列式:
(1)12+12+12+12或12×5。
(2)14+14+14或14×3。
题中的两个式子哪个简便?(12×5,14×3)。
它们各表示什么意思呢?(5个12是多少?3个14是多少?)能用一句话概括这两个乘法算式的意义吗?(就是求几个相同加数和的简便运算。)。
这是整数乘法的意义,它对于分数乘法适用吗?
二:讲授新课。
1.出示课题明确学习目标。
2.出示自学题纲,让学生自学课本。
(1)分数乘以整数的意义是什么?与整数乘法的意义相同吗?
(2)分数乘以整数的计算方法是怎样的?它是怎样推导出来的?
(3)分数乘以整数的意义。
例1小新和爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共。
吃多少块?
(1)读题,找已知条件和问题。(第人吃块,3人一共吃多少块?)。
(2)分析,问:块是什么意思?(把一块蛋糕平均分成9分,
取其中2份。)。
听回答,老师边重复边电脑演示(三层复式演示)。
把一块蛋糕(出示一个圆)平均分成9份(覆盖平均分的9。
份),取其中2份(覆盖2份是红色的)。平均分成9份取其2份。
师:(结合图)说:“那块”是多大?(边说边演示)。
师:每人吃一块(出示一块),3人一共吃了多少块?(再翻出两个块的投影。)。
问:3个块是多少呢?(边说边翻投影)。
平均分9份,取6份。
(3)根据图意列出算式。
问:这个加法算式有什么特点?(三个加数相同。)。
问:还可以怎么列式?(×3)。
问:为什么?(三个加数相同)。
问:这个算式你们学过吗?它是什么数乘以什么数?(分数乘以整数。)。
×3的意义。(讨论)。
(分数乘以整数的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。×3就是求3个是多少。)。
(1)推导法则。
我们了解了分数乘以整数的意义,你想知道怎样计算吗?
a.导出计算方法。
你会计算吗?看哪些同学不用老师讲解就能依据转化思想把分数乘以整数这个新知识转为已经学过的旧知识来进行计算。(可以互相说互相看。)。
如果学生写出这个步骤时,老师继续追问。
问:这道只是3个可以这样写,如果是100个或更多个,那该怎么办呢?
引导学生讨论得出:
又可以转化成什么式子呢?因为分子2+2+2=2×3,分母9=9,所以,可以转化成。
只是为了说明算理,计算时省略不写。(边说边加上虚线框。
b.归纳法则。
通过以上几个式题的计算,想一想分数乘以整数怎样计算呢?师:比一比,看哪个组的同学总结的语言准确又简练。小组讨论,总结出法则。
分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。(板书)。
c.应用法则计算。
计算(做本上,投影反馈)。
(约分数位对齐)。
讨论,这两种方法哪种简单?为什么?
强调:能约分,要先约分;结果是假分数一定要化成整数或带分数。
(三)巩固练习。
投影出示练习题。
(四)回顾整理:
教师引导学生回顾本届所学的内容。
(五)布置作业。
自主练习的题目。
教学目的:
使学生理解分数乘以整数的`意义,在理解算理的基础上掌握分数乘以整数的计算法则,并能正确运用“先约分再相乘”的方法进行计算。
教学重点:
让学生理解算理,掌握计算法则。
教学过程。
一、复习。
1.5个12是多少?
用加法算:12+12+12+12+12。
用乘法算:12×5。
问:12×5算式的意义是什么?被乘数和乘数各表示什么?
2.计算:
问:这两个算式有什么特点?应该怎样计算?
教师总结:整数乘法的意义,就是求几个相同加数的和的简便运算。被乘数表示相同的加数,乘数表示相同的加数的个数。同分母分数加法计算法则是分子相加作分子,分母不变。通过将算式:改写成乘法算式,引出课题。
二、情境引入新课。
1.教师出示例题图示:
例题:人跑一步的距离相当于代数跳一下的。人跑三步的距离是代数跳一下的几分之几?
(1)首先让学生分析题意,试着描述场景图。
师:我们用线段帮助我们理解:画一条线段,表示袋鼠跳一下的距离。“人跑一步的距离相当于袋鼠跳一下的”,就要把袋鼠跳一下的距离即这一条线段看作单位“1”,把这条线段平均分成11份,其中的2份就表示人跑一步的距离。求“人跑3步的距离相当于袋鼠跳一下的几分之几?”就是求3个是多少?(教师在学生讨论的基础上将线段图逐步表示完整。)。
(3)如何解决这个问题?
学生独立思考,开展讨论与交流。(基础好的学生可以提出加法和乘法两种解决方法)教师引导学生思考与讨论如何计算。因为分数加法的计算学生已经掌握,重点讨论×3如何计算。
引导学生列出乘法算式。得出分数乘整数的计算方法:分母不变,分子与整数相乘的积作分子。
强调:分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数和的简便运算。
(4)让学生自主总结归纳出分数乘整数的计算方法,并用比较简洁的语言表达出来。
2、延伸强化。
教师出示例题2:,让学生先计算,再讨论。
问题:乘得的积是不是最简分数?应该怎么办?你是怎样约分的?有没有不同的方法?
教师总结:通过不同约分方法的比较,我们知道先约分再计算的方法比较简便。
1.读题,说说块是什么意思?
2.根据已有的知识经验,自己列式计算。
三、交流、质疑。
(一)学生汇报,并说一说你是怎样想的?
方法1:++===(块)。
方法2:×3=++====(块)。
(二)比较这两种方法,有什么联系和区别?
联系:两种方法的结果是一样的.。
区别:一种方法是加法,另一种方法是乘法.。
教师板书:++=×3。
(三)为什么可以用乘法计算?
加法表示3个相加,因为加数相同,写成乘法更简便.。
(四)×3表示什么?怎样计算?
表示3个的和是多少?
++====,用分子2乘3的积做分子,分母不变.。
(五)提示:为计算方便,能约分的要先约分,然后再乘.。
四、归纳、概括:
(一)结合=×3=和++=×3=,说一说一个分数乘整数表示什么?
求几个相同加数的和的简便运算.。
用分子和分母相乘的积做分子,分母不变。
五、巩固、发展。
(一)巩固意义。
1.改写算式。
+++=×()。
+++++++=()×()。
2.只列式不计算:3个是多少?5个是多少?
(二)巩固法则。
1.计算(说一说怎样算)。
×4×6×21×4×8。
思考:为什么先约分再相乘比较简便?
2.应用题。
(三)对比练习。
1.一条路,每天修千米,4天修多少千米?
2.一条路,每天修全路的,4天修全路的几分之几?
六、课后作业。
(一)的3倍是多少?的10倍是多少?
(二)一个正方形的边长是米,它的周长是多少米?
(三)一种大豆每千克约含油千克,100千克大豆约含油多少千克?1吨大豆呢?
七、板书设计。
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.。
例1.小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?
用加法算:xx+xxx(块)。
用乘法算:x×3=++xxx(块)。
答:3人一共吃了块.。
分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算.。
分数乘法人教版教学设计篇二十二
1、知识目标:继续学习整数乘以分数的计算方法,让学生能够计算整数的几分之几是多少,学生能够熟练准确的计算出一个整数乘以不同分数的结果。
2、能力目标:能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。
3、情感目标:使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。
学生能够熟练的计算出整数乘以不同分数的结果。
师生共同归纳和推理。
教学参考书、教科书。
一、复习导入。
教师出示教学板书,请学生计算下列分数加减运算题。
1/4×34×1/412×1/4。
教师:来回巡视学生的做题情况,并提问学生说说每一道算式的意义。
学生寻找完毕,纷纷举手准备回答问题。
教师提问学生回答问题,并注意更正学生的错误和表扬回答问题的同学。
二、课堂练习。
学生做第1题,教师注意让学生对比好门和小明的高度,并注意进行长度单位的换算。
学生做第2题,教师注意提醒学生及时约分化成最简分数。并同桌之间相互说说每个算式的数学意义。
学生做第3题,教师巡视学生做题情况,并及时对有困难得学生进行帮助。
学生做第4题,教师注意让学生能够区分最少和最多这个数字范围,并提问学生说说自己的答案。
三、课堂小结。
同学们,这一节课你学到了哪些知识?(提问学生回答)。
480×3/81≤80(千克)180×5/6=150(千克)。
分数乘法人教版教学设计篇二十三
1、结合具体情境,进一步探索和理解分数乘整数的意义,并能够熟练准确的计算。
2、能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。
3、使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。
教学重点:
理解整数乘以分数的意义,并能证确计算。
教学难点:
教学过程。
一、复习导入:
1、2/3×2表示的意思是()。
2、计算分数乘整数时,用分数的()和整数相乘的积作(),分母()。
3、请学生计算下列分数乘法运算题。
1/8×3。
3/10×4。
7/24×12。
二、情境创设。
1、教师让学生思考这个题,并对学生进行提问。
3、教师提问学生说一说自己是怎样计算的?
4、学生自己动手填完课本例题上的方格。
5、怎样表示笑笑的苹果数?
6、教师板书(笑笑:6×1/3=2)。
7、总结分数乘法的意义就是求一个数的几分之几是多少。
8怎么计算呢?6×1/2=6×1/2=36×1/3=6×1/3=2教师和学生对比这两个题目的区别和联系。学生初步理解整数乘以分数的计算方法。
三、巩固练习:
1、计算8×3/10。
4×3/10。
24×3/8。
2、做课本5页试一试1题,36的1/4和1/6分别是多少?
注意让学生体验求一个整数的几分之几是多少的数学意义。
3、试一试2,学生说说:“打折”的意思?八折、九折分别表示什么意思?学生计算。
四、课堂小结:同学们,这一节课你学到了哪些知识?(提问学生回答)。
【板书设计】。
分数乘法(二)。
整数乘以分数的意义:就是求整数的几分之几是多少?
整数乘以分数的计算方法:用整数与分子相乘的积作分子,分母不变。能约分的要先约分。
教学反思:
本节课有以下优点:
1、针对教材提供的情境,引导学生理解整数乘以分数的意义通过课堂活动使学生认识到分数乘法就在我们的生活中,学生对分数乘法的意义有了更深的理解。
2、抓住了图形语言的直观性,借助图形理解整数乘以分数的意义,是自己的小课题研究落到了实处。
【本文地址:http://www.xuefen.com.cn/zuowen/14732475.html】