小学五年级数学点阵中的规律教案(优秀18篇)

格式:DOC 上传日期:2023-11-24 18:55:19
小学五年级数学点阵中的规律教案(优秀18篇)
时间:2023-11-24 18:55:19     小编:翰墨

教案能够提供教学评价的依据,帮助教师改进教学效果。在编写教案时,要注重教学内容的有机衔接和教学方法的选择,提高教学的连贯性和系统性。教案的编写应遵循教学规律和教育教学原则,符合教学实际。

小学五年级数学点阵中的规律教案篇一

新世纪小学数学教材(北师大版)五年级上册第五单元第四课时。

教学目标。

1、结合具体的图形,明确什么是“点阵”。

2、能在具体的观察活动中,发现点阵中隐含的规律,体会到图形与数的联系。

3、发展归纳与概括的能力。

4、了解数学发展的历史,感受数学文化的魅力。

教学重点。

直观感知“点阵”的有序排列。

教学难点。

发现“点阵”中隐含的规律,体会图形与数的联系。

教材分析。

教材结合20xx多年前希腊数学家们利用图形研究数的情境,先引导学生直观感知有序排列的点阵,再要求学生尝试用算式的方法研究给出的四个点阵,从而归纳出这四个点阵所隐含的规律。然后利用知识的迁移特点,依次往后类推第五个点阵的图形画法及划分方法,让学生体会通过点阵研究数的形式是多种多样的。

教学思想。

教材设计本活动的目的旨在通过学生对生活中常见现象的观察与思考,发现在点阵中前后图形中点的变化规律,类推出后续图形中点的数量和排列规律,学会推理、归纳和概括的学习方法,体会数学学习中举一反三的教学思想。

教具准备。

点阵图片、多媒体课件等。

教学过程:

活动一:交流课前搜集的资料信息。

1、对于数字的发明和发展过程,你都有哪些了解?

如:我们现在使用的数字是哪个国家的人发明的?

最初人们是怎样计数的?

数字在使用过程中又增加了哪些功能?

你都了解数字的哪些特征?

……。

2、阿拉伯数字的发明,是我们的记录和计算更加方便,然而在表现一些数字的特征方面,图形更加直观。早在20xx多年前,古希腊的数学家们就已经利用一些有序排列的点子图形来研究数,发现和总结数的一些特征,因此人们又叫它“点阵”。

1、认识“点阵”。

(1)出示有序排列的三个点阵,引导学生观察并思考:

下面三个点子图中各有几个点?在排列上有什么特点?

(三个点阵按1、4、9的顺序排列)。

(2)你能不能尝试画出第四个图形、第五个图形?

学生独立思考并在小组内交流画法。(16个点、25个点)。

(3)像这样有序排列的点子图在数学上又叫它“点阵”。点阵可以分为方形点阵、三角形点阵、螺旋点阵等几种形式。

2、探究规律。

(1)大家都能用数字来表示各个点阵中点的个数,能不能尝试用算式来表示点阵中点的个数,从中发现一些隐藏的规律?(小组内交流)。

(2)展示:第一个――1×1=1。

第二个――2×2=4。

第三个――3×3=9。

第四个――4×4=9。

第五个――5×5=25。

小结:每个点阵的点子数可以看作是相同的数字相乘。

(出示第五个点阵图,多媒体课件分别按照1个点、3个点、5个点……的递加规律演示)。

(4)交流总结:

1=1。

1+3=4。

1+3+5=9。

1+3+5+7=16。

1+3+5+7+9=25。

小结:按照划分方法这个点阵的点子数可以看作是连续奇数的和。

(5)你还有哪些划分的方法?尝试说明理由。

(学生自由讨论交流)。

活动三:延伸应用。

教材第83页“试一试”中的1、2两题。

学生自主探索,讨论交流。

课堂总结。

1、这节课你有什么收获?

2、除了以上方形点阵、三角形点阵以外,你还见过其他形式的点阵吗?课后继续调查、搜集并研究其规律。

随堂检测题(10分)。

1、按下面的方法划分点阵中的点,并填写算式。(图略)。

1=14=1+2+19=16=。

2、观察已有的几个图形,按规律画出下一个图形。(图略)。

板书设计。

第一个――1×1=1。

第二个――2×2=4。

第三个――3×3=9。

第四个――4×4=9。

第五个――5×5=25。

教学反思。

修改意见。

小学五年级数学点阵中的规律教案篇二

1、感受点阵的数学、生活魅力。

2、数形结合,解决问题。

板书设计:

正方形数相同数连续奇数连续自然数倒加。

1=11。

4=22=1+3=1+2+1。

9=33=1+3+5=1+2+3+2+1。

16=44=1+3+5+7=1+2+3+4+3+2+1。

25=55=1+3+5+7+9=1+2+3+4+5+4+3+2+1。

长方形数?

教后反思:

在对教材进行了深入的分析、挖掘和整合后,结合本次活动研究主题,把《点阵中的规律》分两课时进行,本课时以数形结合为主线,着重让学生通过研究正方形点阵、长方形点阵,发现相同数之积和连续数之积的特点;然后让学生在练习中感受到图形的直观形象,数的简洁细致;最后激发学生运用数形结合的思想解决一些有挑战性的问题。学习形式和课堂呈现上,高段学生对学习有用的数学应该更加感兴趣,所以,这节课主要用数学本身的内容来吸引学生,在研究几何形数的过程中丰富学生对数学发展的认识,感受数学文化的魅力。教学主要分三个层次:在教师帮助下研究正方形点阵,发现正方数的.特点;运用这种研究方法自主研究长方形点阵;运用数形结合思想解决实际问题,感受数学的魅力。

在课堂实践中,给了学生极大的探索自由,学生的思维非常活跃,对正方形点阵进行了多种角度的分析,深刻体悟到正方形数的奥妙,也获得了借助点阵分析数的方法。虽然课堂内未能按预设让学生对长方形数自主探索(时间不够,学生对正方形点阵很着迷,研究了很久),但相信他们已经有了自主发现的能力,课后,定能运用学到的研究方法去独立地研究长方形数的特点。

小学五年级数学点阵中的规律教案篇三

教学内容:

北师大版小学数学五年级上册。(教科书第82、83页。)。

课标分析:

本节课的主要内容是使学生能在观察活动中,发现点阵中隐含的规律,体会到图形与数的联系,发展学生的归纳与概括的能力,渗透数学建模的思想,从中感受数学文化的魅力。

教材分析:

本课的内容是独立成篇的,这节课与本单元的其它知识之间没有必然的前后联系,是一节相对独立的数学活动课。教材提供的学习内容对于五年级的学生来说比较容易。但本课知识虽然简单,却是帮助学生建立数学模型的好题材,即是让学生能在观察活动中,发现点阵中隐含的规律,又是让学生体会到图形与数的联系,发展学生归纳与概括能力,渗透数学建模思想。

学生分析:

1、学生的知识基础。

五年级学生在数的方面,已经认识了自然数和整数,倍数因数,奇数偶数,质数合数,小数、分数等。在形的方面,对长方形、正方形、平行四边形,三角形,梯形的特征也有了深刻的认识。但是学生对利用图形研究数,寻找数和图形之间的联系,还有困难。学生对线围成的基本图形有深刻的认识,但是点阵中的几何图形,只有点,没有线,学生要利用自己的想象加以补充和延伸,这对学生来说会感觉比较陌生。

2、学生的能力基础。

学生在一年级学过找规律填数,二年级学过按规律接着画,四年级学过探索图形的规律。因此五年级学生具备一定的观察能力、抽象概括能力、逻辑推理能力等。然而小学生的思维特点是从具体形象思维逐步向抽象思维过渡,这种抽象逻辑思维在很大程度上仍然依靠感性经验的支持。而这节课完全是数学思想、数学方法的教学,极为抽象,因此对部分学生来说还是会感觉有点困难。

教学目标:

1.能在观察活动中,发现点阵中隐含的规律,体会到图形与数的联系。

2、培养学生推理、观察、归纳和概括能力。

3、感受“数形结合”的神奇之美,并获得“我能发现”之成功体验。

教学重点:

教学难点:

总结概括规律。

教学准备:

课件,五子棋,磁扣等。

教法学法:

教学过程:

一、展示图片,引出课题。

1、展示图片,(投影)今天老师给大家带来了几幅图片,请同学们欣赏。

师:这些图片有什么特点?

生:好像都是由点组成的。

师:是呀,不要小看了这样一个小小的点,点是几何图形中最基本的图形,许许多多的点按照一定的规律排列起来就构成了点阵。

早在20xx多年前,古希腊的数学家们就是从这样一个小小的点开始研究,并且发现了有许多个这样的点组成的点阵中许多有趣的规律。这节课,我们也来尝试研究点阵的规律。(板书课题――点阵中的规律)。

二、细心观察,探求规律。

1、出示正方形点阵,探索正方形点阵的规律。

a、第一个规律。

师:(出示点阵),这就是他们当时研究过的一组点阵,请大家用数学的眼光仔细观察,思考这样两个问题:(出示思考题)(指名读)。

(1)每个点阵可以看成什么图形?

(2)每个点阵中分别有多少个点?你是怎样观察出来的?

小组讨论,指名回答。

师:每个点阵可以看成什么图形?(正方形),同意吗?

生1:我认为第一个点阵不能看成一个正方形,是一个圆形。

师:其他同学也同意他的观点吗?

师:其实第一个点阵虽然只是一个点,但是我们可以把它看成边长是1的小正方形。是吗?

师:每个点阵中分别有多少个点?

生2:第一个点阵有1个点,第二个点阵有4个点,第三个点阵有9个点,第四个点阵有16个点。

师:你能说一说你是怎么得到每个点阵中点的个数的吗?你是怎样观察出来的?

生:我是通过数出每个点阵中点的个数得到的。

师:谁还有不同的方法?有没有更快一些的方法?

生:我是通过计算得到的。

师:能具体说一说是怎样通过计算得到的吗?

生:第一个点阵有1个点;第二个点阵横着看,每行有2个点,有2行,共有2×2=4个点;第三个点阵每行有3个点,有3行,共有3×3=9个点;第4个点阵每行有4个点,有4行,共有4×4=16个点。

生:我们分析了前面几个点阵图的特点,认为在这个点阵图中,点的个数的规律是:1×1,2×2,3×3,4×4,也就是n×n师:这种数法真是又快又方便!照这样下去,能不能根据你们的发现画出第5个点阵呢?(学生画,指名说,教师投影显示)。

师:第6个呢、第7个第100个点阵的点的个数都能瞬间求出来。也就是说:“是第几个点阵,就用几乘几”(板书)。

师:如果一个点阵它有81个点,它应该是第几个点阵?每行有几个点?每列有几个点?

(这个画点阵的过程虽然简单,但体现了由数――形的转换。培养了学生主动进行数形转换的意识。)。

b、第2个规律。

师:刚才我们是怎样观察的?(横着数和竖着数)。

正方形点阵还有没有其它的观察方法呢?能不能换个角度观察?

“斜着看又可以得到什么新的与序号有关的算式呢?请同学们独立思考,写出算式,然后汇报。”(投影)。

观察并思考。

(1)分别用算式表示每个点阵点的个数。

(2)你发现了什么规律?

学生汇报,教师板书。

第1个:1=1。

第2个:1+2+1=4。

第3个:1+2+3+2+1=9。

第4个:1+2+3+4+3+2+1=16。

第n个:1+2+3+n++3+2+1。

师:“谁发现什么规律呢?”

生:“如第2个点阵就从1加到2再加回来,第3个点阵就从1加到3再加回来,第4个点阵就从1加到4再加回来”。

师小结:“第几个点阵就从1连续加到几,再反过来加回到1”这个规律。

刚才是横竖数,“第几个点阵就是几乘几”。

c、第3个规律。

师:我们把第1个折现内的点看成第一个点阵,该用什么算式表示?其他呢?小组讨论,列出算式,全班汇报。

小组代表汇报。

生:(总结)每用折线画一次后,点阵中的个数是。

1=11+3=41+3+5=91+3+5+7=16。

师:(总结)这样划分后,点阵中的规律是:1,1+3,1+3+5,1+3+5+7,

师:第1个点阵是1,第2个点阵是在第1个的基础上多3个,第3个点阵呢?有的学生可能说:“这次都是奇数相加。”

教师问:“从奇数几加起?加几个?是随意的几个奇数相加吗?”

通过这样的提问,引导学生说出“第几个点阵就从1开始加几个连续奇数”。

师:真了不起。这种划分方法,我们可以叫做“折线划分法”。

第几个点阵,就是从1开始加几个连续奇数。

通过研究点阵,我们发现这组正方形点阵中有很多规律。这3种规律是从不同的角度观察出来的,无论你从什么角度去观察,得到的结论都与它的序号有关系,所以我们以后再研究点阵的时候,都要想一想跟它的序号有什么关系,这样才能更简单。

(在这里,教师不是让学生发现规律就结束了,而是让学生活学活用这些规律。让学生体会到我们刚才发现的正方形点阵中的规律,其实就是一个完全平方数的规律,它可以应用到所有的完全平方数。)。

(在刚才的新课教学的环节中,学生经历了观察、思考、合作、交流、表达等过程,培养了观察能力、想象能力、概括能力。并深刻体验到数与形,数与式,式与式之间的联系,培养学生利用数形结合的思想来解决问题的意识和能力。)。

三、牛刀小试。

生:竖排×横排:1×2,2×3,3×4,4×5师:与它们的序号有什么关系?都是序号和它后面相邻的两个自然数的乘积。在点子图上画出第5个点阵。

小组交流,研究:上面的点阵还有其他的规律吗?

生:(1)两个两个数:1×2,3×2,6×2,10×2,15×2(2)斜着一层一层数:1+1,1+2+2+1,1+2+3+3+2+1,1+2+3+4+4+3+2+12.师:同学们真善于发现和创造规律。除了正方形和长方形点阵外,还有很多其它形状的点阵,我们研究他们,同样会有很大的收获。看看,这是一组什么形状的点阵?(课件出示试一试第2题三角形点阵图)你能用一层一层数的方法,表示你发现的规律吗?展示,根据你发现的规律画出第五个点阵。

生;1,1+2,1+2+3,1+2+3+4。

师:其他同学看明白了吗?有什么规律?(第几个点阵,就从1加到几。)。

上面的点阵还有其他的规律吗?学生思考,指名说。(投影显示)。

四、兴趣优在:(课件出示教材第83页练一练)。

第2题:按规律画出下一个图形。

师:这道题就象梅花桩,指第一个,走了几个梅花桩?

生:3个。

师:指第二个,共走了几个梅花,增加几个桩?

生:7个,增加了4个。

师:指第三个,共走了几个梅花桩,又增加了几个桩?

生:13个,又增加了6个。

师:如果再往下走,你们想想会再多走几个桩,你能写出算式吗?写完算式,学生自己独立画出点阵。小组合作,讨论点阵中蕴涵的规律,然后汇报交流。

生:交流,探索总结规律。

(这一题与前几个题区别很大,前几题的点阵可以看作规则的几何图形,这一题点阵图不规则,要画出下一个图形,既要抓住数量的变化,又要抓住形状的变化。进一步体会到数形结合的重要。)。

五、知识拓展。

欣赏生活中的点阵图片。思考:生活中有哪些地方运用点阵的知识?(座位、站排做操、楼房的窗子等。

师:点阵不只是点,很多有规律的排列,都可以看成点阵。

投影跳棋、围棋、十字绣、花坛里的鲜花、水晶灯等图片。

六、课堂小结。

师:同学们今天学习了这么多的点阵,有没有收获,哪些收获?

七、课后操作。

自创新的点阵图,并说出点阵规律。

小学五年级数学点阵中的规律教案篇四

本节课是一节比较独立的活动课,是《课标》中的数形结合思想在教材的具体体现。我教学确定的重点是:引导学生发现和概括点阵图中的规律,难点是:从多角度去思考解决问题的方法,感受数形之间的联系。在整个教学活动中,我采取教师引导,学生合作学习,大胆交流为主的学习方法和教学方式。

课前引导:利用记忆电话号码,让孩子们大胆参与课堂,激发学生学习数学的兴趣,以及动脑的好习惯。并夸张的宣扬数学之美,数学来源于生活,并且指导生活,给我们的生活带来太多的美,太多的享受,太多的.乐趣。

新授:一共分为三个角度。

1.直接用正方形的点阵,让学生观察,并且计算。很容易就得出点阵的数量,在这样的基础上,拓展6个,7个,8个…100个,第n个?因为第二个角度的需要,我让学生画出第五个点阵,并计算其数量。

2.从另外的角度观察,将正方形的点阵,数着引导,看看又能找出什么规律。这算是本节课的难点的体现,如果在这一节课能有效把握学生的思维过程,并能合理引导学生参与课堂,把其中的规律找出来,如果能很好的表达那已经是很难的了。通过以前教学经验,我发现学生在发现规律的时候:1+3+5+7时,孩子们总是认识到:每次增加2,而不是说增加3,增加5,这样连续奇数相加的认识。在这个角度我一直犯难,特别是去年在上这一节课的时候,不知道怎样去引导,自己很紧张,在这里浪费的很长的时间,并且学生还没有掌握其中的规律。导致于后面内容不能完成教学。今天的课,我在学生讨论的时候,主动参与学生的讨论,感觉学生还是能很好的认识,我就让孩子停止交流,结果一位学生站起来还是说出了:“减2”的观点,我以为这会给其他学生一次思维的撞击,没有想到:全体同学都同意这位学生的观点,让我不知所措,我只有临时安排学生再次讨论。这次我就有意思的去引导个别小组:从1开始连续几个奇数相加。这个时候需要充分与图形合理的结合起开,。仔细观察图形的变化规律。

4.小结前面三维观察的结果。感受规律带来的结果。

最后我设计了5个练习,有独立思考的,有合作的,有动手的,学生参与率还比较高,达到的效果还比较明显。

总结:其实在两千多年前,希腊数学家们已经利用图形来研究数。由于图形具有直观形象的特点,会使抽象的数学问题变得生动具体,是我们学习数学的一大法宝,我们以后在研究数学问题时,要学会利用图形来帮助解决。

小学五年级数学点阵中的规律教案篇五

本节课是一节相对独立的数学活动课,教材所提供的内容较简单,所以这一教学活动的设计思路是:使学生通过动手实践、自主探索、合作交流,发现点阵中点的变化规律,进而概括出数的规律,并运用规律解决问题。对此有几点想法和大家交流。

1、创设一个好的数学问题情景,能使学生达到预想不到的效果,上课开始利用整齐的队列,引起学生的关注,也很自然的引出了课题:点阵的规律。为此我们在教学中要充分调动学生的积极性,使他们在愉快的氛围中学习。

2、为学生创设探索问题的空间。开始教师给学生提供了理解数学的模型和材料,这只是教学设计活动的第一步,但更重要的是让学生“看到”其中所蕴涵的数学观念,因此,我放手让学生自己观察,发现规律。事实证明只要给他们提供空间,留充裕的`时间,学生会从不同的角度发现规律,经过同学相互交流,互相补充对点阵又有了一个新的认识,在此也体现了20xx多年前希腊数学家们用图形研究数的意义,最后学生有了研究其它图形数的欲望。为此,在实际教学中,我们要不遗余力地为学生创设探索问题的空间,并鼓励学生能够积极探索和交流。

3、考虑不同学生的差异。由于学生的生活背景、数学知识、能力和思考问题的角度不同,在探索数学问题时,必然会出现多种不同的思考方法。如,在探索点阵中的规律时,我并没有局限于书上的方法,而是让学生根据自己的情况去发现规律,正是考虑到学生的差异,充分肯定不同学生的探索成果,鼓励他们多角度的思考方法,才能使解决问题的策略多样化,体现尊重学生个性发展的教学理念。

4、充分体现教材图形结合研究数的思想。学生在找规律的过程中首先发现的是正方形面积的求法,这种发现,对于找到其它的方法提供了基础。同时从不同角度观察也使学生思维发散,最后得到:可以看作是相同的数字相乘,也可以看作是连续奇数的和,还可以看作是n个连续数的对称数列求和。此过程虽然时间长了一些,但收获是无法用时间衡量的。

本课也有一些遗憾,如:最后的发散练习----研究自己喜欢的图形数,发现其中的规律,学生已经有了研究的想法,但时间的原因没能过多交流。

小学五年级数学点阵中的规律教案篇六

1、通过学生对一些日常生活中的现象的观察与思考,从中发现一些特殊的规律。

2、帮助学生建立数学模型,从直观的操作中发现一些规律。

[教学重、难点]帮助学生建立数学模型,从直观的操作中发现一些规律。

[教学过程]。

一、探索与发现。

1、指导学生观察书上提供的图形的基本形状。

2、指导学生观察前后图形点的个数是如何增加的。

3、指导学生观察前后的算式。

4、小结:发现的规律。

二、试一试:

第一题:先让学生独立思考,然后组织学生进行交流。

第二题:让学生独立完成,并交流发现的规律。

第5课时。

1、通过整理复习对所学知识进行归纳总结。

2、通过整理复习巩固所学知识。

[教学重、难点]培养总结、归纳能力。

[教学过程]。

一、整理复习组合图形面积。

主要知识:组合图形面积的计算和不规则图形面积的计算。

归纳基本的解题思路:举例说明“分割”、“添补”法的适用对象。

二、整理复习分数加减法。

主要知识:异分母分数的加减与实际应用,分数加减法的混合运算,分数与小数的互化。

归纳基本的计算方法。

三、练一练:

第2题:学生独立完成。

可以让学生自己画线段图进行分析解答。

小学五年级数学点阵中的规律教案篇七

1、通过观察、操作等活动使学生能找出事物变化规律,激发学生感受数学、发现美的情感。

2、培养初步观察、推理等能力,提高学生合作交流与创新意识。

3、通过学习使学生感受数学与生活的联系,并能运用规律解决一些能够学会找简单规律的方法。

1、使学生在活动中找出事物的变化规律。

2、会运用规律解决一些简单问题,并激发学生的创新思维,

一、情景导入,初步感知规律。

1、小朋友,今天这节课老师带来了一些小奖品,要奖给上课表现好的小朋友,你们想看看老师带了哪些奖品呢?(实物出示)。

2、猜一猜,林老师拿出来的下一个会是什么?(学生猜,师演示)。

3、小朋友,真聪明,别急,还有其他奖品呢!(再次演示课件)你猜下一个是什么奖品呢?(学生猜,师演示)。

4、咦,老师刚刚夸你们聪明,怎么现在猜不准了呢?为什么?(学生可能会说出第一排是按有顺序的排列,第二排是没有规律,乱放的。)。

二、自主探究,进一步认识规律。

1、下面我们一起去看看一年级小朋友正在举行联欢会呢!(课件出示主题图:小朋友在漂亮的教室里跳舞)。

2、仔细观察这幅图,你看到了什么?(让学生充分发表意见)。

3、小朋友们观察得真仔细,这些彩旗、花朵和灯笼的摆放是怎样的?

4、他们都是按照一定的顺序、有规律摆放的,那他们有什么规律呢?现在我们大家一起来找一找。

5、我们先来找找彩旗排列的规律吧!(课件出示彩旗,猜一猜,最后这面彩旗会是什么颜色?)。

7、师小结:这组彩旗的排列就是这样一红一黄,又一红一黄有规律地出现(课件以红黄为一组,逐组闪动)。

8、彩旗的排列规律我们已经找到,那么灯笼、彩花的摆放和小朋友的队伍又有什么规律呢?把你发现的秘密小声的告诉同桌。

9、学生思考交流,师巡视。汇报:谁愿意把你的发现向全班宣布?(根据学生的回答,随机点击)。

(1)在学生汇报顺序的摆放时,引导哪几种颜色为一组?下面是什么?(课件演示)。

10、小结:小朋友通过看一看,想一想,说一说,知道了彩旗、灯笼、彩花的摆放和小朋友的队伍都是有规律的,都按照一定的规律排列的。

三、练习巩固规律。

第一关:(形状)。

第二关:(颜色与形状)。

第三关:(颜色与个数)。

第五关:(出示没有规律的图形)那你们有办法让它们变成有规律吗?四人小组利用学具摆出有规律的组合。

四、联系生活,运用规律。

找找藏在我们身边的规律。

(1)谁知道生活中哪些事物是有规律的?学生分组交流、汇报。

(2)欣赏规律的美:看来规律无处不在,它就在我们的身边,我们一起来看一看这些有规律的事物。(课件出示:花池里的灯,教学楼的瓷砖、门窗,建筑物、房间的瓷砖,条形的背心,有规律的图案等)。

小朋友,规律无处不在,那你们会创造规律吗?接下来就发挥你们的聪明才智,可以用自己的声音或自己身边的材料或水彩笔或是老师这里的材料,看哪组小朋友创造的规律最特别。

1、学生分组讨论交流,创造规律。

2、学生汇报,展示作品,并自己当小老师,提问题。(如:猜猜我们是按什么规律排的?再猜后面会是什么?)。

3、小结:刚才我们根据颜色、形状、个数不同创造了许多规律,在生活中还可以用其他规律排列,我们以后再学。

六、全课总结。

今天我们研究了什么?你有什么收获?

小学五年级数学点阵中的规律教案篇八

1.使同学借助计算器,探索并掌握“一个因数不变,另一个因数乘几,积也随着乘几”的变化规律,能应用规律解决简单的实际问题。

2.让同学体验“猜测-验证”这一探索数学规律的基本过程和方法,从而发展同学思维,培养科学的探究素质。

3.使同学在探究过程中获得胜利的喜悦,增强学习数学的兴趣和自信。

一、导入因数。

12。

12。

12。

12。

120。

120。

120。

因数。

2

4

20。

400。

2

40。

200。

指名口答,并说说怎么想的。

二、猜测。

同学猜测。师引导说出需举例验证。

三、验证。

1.师引导运用表格来举例验证。

因数。

因数。

积的变化。

36。

30。

1080。

指名举例,师板书,在此过程中指导填表:积怎样算,积的变化是什么,又怎么表示。

师:观察整张表格,你发现了什么?符合猜测吗?

小结:在36×30=1080中,一个因数不变,另一个因数乘一个数,积也会乘这个数。

2.在其他乘法算式中是否也存在这样一个结论呢?再次猜测、验证。

同学任意举例填表。

因数。

因数。

积的变化。

展示作业纸,你发现了什么?符合猜测吗?

四、应用。

1.用规律解释:

(1)口算:24×30=?你是怎么算的?你能用刚才的规律解释吗?

(2)笔算:250×15=?(简便算法)。

2.用规律计算:“想想做做”1、2。

3.数学日记。

4.自然界的计算专家。

五、总结。

师:你能总结一下今天学习的内容或学习的感受,为这节课定个题目吗?

六、拓展(导入中的口算题)。

因数。

12。

12。

12。

12。

120。

120。

120。

因数。

2

4

20。

400。

2

40。

200。

24。

48。

240。

4800。

2400。

4800。

24000。

你还看到了什么?你想说点什么?

大家的表示让我想起这样一句话“仅仅拥有知识的人从石头里只能看到石头,拥有智慧的人就能从石头里看到风景,从沙子里看到灵魂”。

小学五年级数学点阵中的规律教案篇九

在执教过后,我认为本课实现了预期的教学目标,是一堂扎实有效的数学课,成功之处主要有以下几点:

1、准确定位学习起点,保证学生有效起步。

维果茨基认为,教学必须立足于学生的最近发展区,才能促进学生的发展。作为学习起点的数学活动,必须是不用老师教,每个学生都能达到的学习水平。教师紧扣教材,把教材中探索正方形点阵的第一问和第二问当成学生的学习起点,让学生自主解决,探索规律,保证了每一位学生都能尝到成功的喜悦,为下面的学习做好知识上的、心理上的铺垫。

2、以探索活动为主线,实现学生自主学习。

著名数学家弗赖登塔尔认为“数学是一种活动”,据此原理,教师设计了五个层层递进、环环相扣的数学探索活动,活动目的明确,由浅入深。学生在第一个数学探索活动取得成功时,教师十分重视引导他们总结学习方法,正方形点阵的成功探索为长方形点阵和三角形点阵的探索提供了活动经验、方法步骤,学生的自主学习便有了依据、有道可循。

3、设计精心提问的问题,引导学生有效探究。

课堂上的提问是否有效往往决定着课堂的实效性。在每一个探索活动中,教师都精心设计了符合学生学情的提问。如第一个探索活动中“交流:(1)为什么可以用乘法算式来表示点阵中的点数?(2)在解答过程中,你认为正方形点阵有什么规律?”第三个探索活动中“你能尝试用不同的形式划分正方形的点阵,看看有什么新发现吗?”这样的课堂提问适时,能促进学生思考,利于学生进一步探究。

4、注重数学思想渗透,发展学生能力。

本课主要引导学生体会“数形结合”的思想。华罗庚先生说过:“数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。”教师在导入设计了“形可以表示数,用形还可以研究数”的环节,引导学生初步感受形与数的关系,再通过观察一列数与观察拐弯分的正方形点阵,让学生再次感受数与形的`结合,感受到形的直观,发展数感和空间想象力。

有缺憾的课堂才是真实的课堂。这堂课的不足主要有:

1、在探索出正方形点阵的三个不同的规律后,教师和学生一起对这三个规律的探究过程做了回顾,却忘了在三个算式之间划上等号。

2、在探究正方形点阵的第二个规律时,教师采用讲解的方式直接出示拐弯分的第五个正方形点阵,省去了学生探究的时间,当时是考虑全然放手让学生自主探究,难度太大,且未必能有所发现,即使有所发现,也将是个别学生的发现,更多的学生的学习将是低效甚至是无效的。但如果教师设计了学生的反思活动,将更有利于学生的“再创造”。如教师可提出要求:“请画出每次增加的点数对应的正方形点阵中是哪几个?”这样,学生便能通过动手画一画,画出拐弯分的正方形点阵来,而非教师直接出示,更能让孩子们感受到“我是创造者”的喜悦。

小学五年级数学点阵中的规律教案篇十

1、使学生结合具体情境,能正确计算按周期规律排列的某类物体或图形共有多少个。

2、使学生主动经历自主探索、合作交流的过程,体会计算方法解决问题的最优策略。

引导学生采用计算的`方法解决问题。

观察场景图,解决例2。

说说:兔子是怎样排列的?

学生自主交流观察所得。

“每3只兔为一组”,“每组中有1只灰兔、2只白兔”

想想:18只兔子排成这样的几组?

学生交流结果。

18只兔刚好排成“这样的6组”。

算算:18只兔中有几只灰兔,几只白兔?

学生讨论,交流结果。

共有6组,每组有1只灰兔,2只白兔。

所以灰兔一共有6个1只,1x6=6(只)。

白兔一共有6个2只,2x6=12(只)。

试一试。

问题:如果有20只兔参加跳高,照这样排列,应该有几只白兔和几只黑兔?

小组内讨论你是怎样想的。

一共有几组?余下几只?

20÷3=6(组)……2(只)。

余下的2只是怎样排列的?

按照1灰2白的顺序排列的,所以余下的2只为1只灰兔,1只白兔。

方法:20÷3=6(组)……2(只)余下的2只为1只灰兔,1只白兔。

灰兔:1x6+1=7(只)。

白兔:2x6+1=13(只)。

所以20只兔里有13只白兔,7只灰兔。

第1题:棋子是按照什么规律摆放的?

(每4枚棋子一组,每组有3枚黑子,1枚白子。)。

学生独立计算,交流结果。

26÷4=6(组)……2(枚)余下的2枚为2枚黑子。

黑子:3x6+2=20(枚)。

白子:1x6=6(枚)。

第2题:瓷砖是按照什么规律贴的?

(每2块一组,每组有1块正方形瓷砖和1块长方形瓷砖。)。

35块瓷砖里有多少正方形瓷砖和多少长方形瓷砖?

35÷2=17(组)……1(块)余下的1块为正方形瓷砖。

正方形:1x17+1=18(块)。

长方形:1x17=17(块)。

练习十第4—7题。

第4题:学生独立计算,汇报思路。

第5题:

明确:信号灯亮的顺序依次是红灯、绿灯、黄灯;从10时到10时15分,信号灯一共亮了42次。

每3个为一组,每组中有一个红灯,一个绿灯和一个黄灯。

42÷3=14(组)。

所以红灯、绿灯和黄灯各亮了14次。

第6题:

提示:通常把7天看作一组,11月份共有30天。

每7天为一组,每组中为2天休息、5天工作。

30÷7=4(组)……2(天)余下的2天为休息日。

休息:2x4+2=10(天)。

工作:5x4=20(天)。

第7题:

学生独立完成,汇报计算结果。

小学五年级数学点阵中的规律教案篇十一

本节课是在学生已经学学会用计算器进行计算的基础上,通过用计算器计算来探索与发现算式背后的规律。教材例题3,先让学生用计算器计算前面三题,然后进行观察比较、分析思考,找出算式中蕴含的规律,再根据规律直接填出后面四道算式的得数。本节课的重点是鼓励学生对算式及其得数的特点进行比较,从中发现一些数学规律。教学时,充分利用学生已有的经验,放手让学生通过自主探索、合作交流等方式,比较算式的特点,从而发现一些数学规律。

苏教版2013义务教育教科书四年级数学下册第42页例3和“练一练”,完成第43页练习七第5-8题。(第四单元第2课时)。

1.使学生探索一些特殊算式计算的规律,能根据发现的规律写出同类算式或同类算式的得数,能用计算器验证一些算式计算得数的规律。

2.使学生经历用计算器计算、观察、比较和抽象、概括计算规律的活动,体会数学规律的发现过程,积累探索规律的经验,培养观察、比较和抽象、概括等思维能力,提升归纳推理能力。

3.使学生在发现一些特算式计算规律的观察中,感受数学的奇妙,产生对数学的好奇心,激发学生学习数学的兴趣和积极性。

发现、归纳算式的特点和蕴含的规律。

1.师:上节课,我们认识了计算器,学会了用计算器进行计算。

出示题目:用计算器计算下面各题。

学生独立完成。完成后,指名学生回答,并说说计算时的注意点。

【设计意图】通过用计算器进行四则运算的计算,为课堂中用计算器探索规律作准备。

2.游戏激趣。

同学们,你们喜欢做游戏吗?我们用计算器玩“猜数字”游戏。

从“1—9”这9个数字中选一个你喜欢的数字记在心里,不能说出。接着,在你的计算器上连续输入9次,然后用它除以“12345679”,把得数告诉老师,老师就能知道你最喜欢的数字是几。同学们,相信吗?请你试一试。

【设计意图】利用游戏导入,激发学生的学习兴趣和求知欲。同时,也为新知设疑,为本节课的学习埋下伏笔。

3.导入新课。

今天我们要用计算器来寻找算式中的蕴含的规律,探索其中的奥秘。(板书课题:用计算器探索规律)。

1.教学例3。

出示第42页例3。

26640÷111=。

26640÷222=。

26640÷333=。

学生读题,并要求用计算器独立计算。

交流汇报得数,教师板书。

26640÷111=(240)。

26640÷222=(120)。

26640÷333=(80)。

2.观察比较,发现规律。

师:观察这三道题之间有什么关系,有没有什么规律呢?

请将下面两题和第一题比较,看被除数、除数和商是怎样变化的,你有什么发现?完成表格。小组讨论,交流发现。

交流:你发现什么规律吗?

学生1:第二道题和第一道题相比,被除数不变,除数乘2,商等于原来的商除以2。

学生2:第三道题和第一道题相比,被除数不变,除数乘3,商等于原来的商除以3。

学生得出:被除数不变,除数乘几,得到的商就等于原来的商除以几。(板书)。

3.运用规律并验证。

引导:如果除数继续变化,商会怎样呢?这个规律适用于其他算式吗?(出示后四道题)。

26640÷444=26640÷555=。

26640÷666=26640÷888=。

根据发现的规律,你能直接填出下面各题的得数吗?

学生直接填写得数。

提问:填写这几道算式的得数时,你是怎么想的?

填写的得数对不对呢?请你用计算器验算,看做对了没有。

4.归纳小结。

通过计算器计算,我们发现在除法算式里,被除数不变,除数乘几,得到的商等于原来的商除以几。反过来,被除数不变,除数除以几,得到的商等于原来的商乘几。

【设计意图】引导学生经历“计算器计算—发现规律—应用规律—计算器检验”的探索过程,初步体验除法算式中商的变化规律,体会计算器强大的计算功能,积累一些探索和发现简单规律的经验,感受数学的形式美和结构美,激发用计算器计算的兴趣。同时,帮助学生进一步加深对除法运算的理解,又有利于学生体验探索规律的过程,积累归纳、类比等数学活动经验,感受学习成功的喜悦。

1.完成“练一练”

出示第42页“练一练”。

111111÷37037=。

222222÷37037=。

333333÷37037=。

444444÷37037=。

666666÷37037=。

999999÷37037=。

(1)先让学生用计算器算出前三题的得数,交流并呈现得数。

教师板书:111111÷37037=(3)。

222222÷37037=(6)。

333333÷37037=(9)。

(2)观察、比较算式中各数的变化。

(3)提问:比较这几道算式,你发现了什么规律?

学生发现:除数不变,被除数乘几,得到的商就等于原来的商乘几。(板书)。

(4)应用规律完成后三题,并说说你是怎样想的。完成后,再用计算器验证。

【设计意图】让学生再次经历探索和发现规律的过程,并在这一过程中进一步体验由特殊到一般、由此及彼的认识过程,积累探索简单数学规律的经验,感受计算器的学习与应用价值,增强探索意识和创新意识。

2.完成“练习七”第5题。

出示第5题。

34×357-9018÷48。

学生用计算器完成。输入过程中,输入要准确。

“开火车”的形式,指名学生回答。看谁回答得又快又好。

【设计意图】本题呈现的是一组由四则运算构成的计算流程图,学生按要求用计算器进行运算,有利于学生进一步巩固用计算器计算的步骤,形成必要的操作技能。

3.完成“练习七”第6题。

(1)出示题目。

要求学生结合方格中的数,观察每组算式的特点。

交流:你发现每组算式的特点了吗?各有什么特点?举例说一说。

引导说出:这里的每道算式里的数都是按表里各数排列位置的相应顺序列出的。每组里两道算式的数字和符号顺序正好相反,把其中一道算式的数字和符号的顺序倒过来,就是另一道算式。

(2)计算比较,发现规律。

让学生计算每道算式的得数并填写。

提问:比较各道算式的得数,你发现了什么现象?

引导:你能再写出一组这样的算式吗?自己再列出一组两道连加算式,算出得数,或者一组三位数连加的算式计算。

交流:你列的什么算式,得数是多少?

提问:这里的算式和得数符合你发现的规律吗?你对上面这些算式和计算有什么感受?

(3)分析表格,延伸思考。

大家感觉这里的计算非常有趣,

提问:你发现什么了吗?方格中横行、竖行和斜行的三个数的`和是多少?

三个数的和都是15,三个两位数的和是165,三个三位数的和是1665。它们之间有什么规律呢?感兴趣的学生课后可以讨论。

【设计意图】本题取材于我国古代神话传说中的“洛书”,它是世界上最古老的幻方,是我国古代劳动人民智慧的结晶。本题重在发展学生观察、比较、分析、类比、归纳的能力,感受数学的神奇和美妙,激发对数学学习的兴趣。

5.完成“练习七”第7题。

1×8+1=91234×8+4=。

12×8+2=9812345×8+5=。

123×8+3=987123456×8+6=。

先出示左边三题的算式,让学生观察算式有什么特点。

根据规律,直接写出右边算式的得数,再用计算器验证。

提醒:乘加算式要注意运算顺序。

【设计意图】通过练习,在巩固计算器的使用方法的同时,让学生进一步感受计算器的作用,并培养学生观察、分析、推理的能力。

6.完成“练习七”第8题。

出示第8题,

1×9+2=。

12×9+3=。

123×9+4=。

1234×9+5=。

×+=。

×+=。

让学生先用计算器算出前四题的得数,再直接填写后两题横线上的数。

【设计意图】让学生通过计算,观察,总结出算式各部分的关系,进一步巩固用计算器进行四则混合运算的步骤和方法,积累一些类比与归纳推理的经验,发展初步的合情推理能力。

7.科学探索。

学生选择一个三位数进行计算,发现有没有什么奇妙的现象。如果还没有发现,再继续这样算。

提问:你发现了什么奇妙的现象?

引导:任何不同的数都会这样吗?再任意找一个三位数这样试一试,看看结果这样。

【设计意图】这是一道开放性的题目,意在巩固学习的新知和培养学生对知识拓展延伸的应用能力。学生任意写的数字可能计算两次或三次就可以找出规律,或者更多次才能找出规律。因此,在计算的过程中,要充分鼓励学生,树立能够解决问题的信心。

8.游戏揭秘。

师:同学们还记得老师在课的开始和大家做的“猜数字”游戏吗?

完成本题后,你就知道其中的奥秘了。

出示题目。111111111÷12345679=。

222222222÷12345679=。

333333333÷12345679=。

444444444÷12345679=。

555555555÷12345679=。

学生用计算器计算。你发现了什么规律,和同学说一说。

运用规律,你还能再说出一些算式吗?

【设计意图】此环节与本课的游戏激趣相呼应,揭秘题中的奥妙。联系算式之间的规律,学生豁然开朗。鼓励学生说出更多的算式,培养学生的应用能力。

这节课你有哪些收获?与同学们分享。

小学五年级数学点阵中的规律教案篇十二

能熟练的将分数和小数互化;

3.情感态度价值观

分数与小数互化的方法;

课件、投影仪。

教学环节

设计意图

教学预设

一、复习准备

通过两个题的复习,为这节课的学习做铺垫,这节课会用到这些解题的方法。

1.读出下面各小数,并说出它们的意义。

0.3,0.25,0.14,1.34,4.06,0.08,1.042,0.315。

2.求下面各题的商。(小数、分数。)

3÷4 15÷45 1÷8

5÷10 9÷10 6÷15

在我们的日常生活和进一步的学习中,常会遇到一些比较分数和小数大小的实际问题,今天我们就来学习怎么比较分数和小数的大小。(板书课题)

二、探索发现

通过两种动物的赛跑比赛,沟通分数与小数的联系,让学生在自主的学习中发现小数与分数互化的方法。

先让学生自己来做,教师巡视,看学生的计算情况,同桌之间可以互相交流,然后找学生回答自己的作法。

生1:根据小数的意义,把0.9写成分数,0.9=,这时只要比较和这两个分数的大小即可。

生:在比较和的大小时,需要先把这两个数通分,它们的公分母是10,所以,,由此可得0.9,所以羚羊比鸵鸟跑的快。

师:这种方法很好,是先把小数化成了分数,然后再比较分数的大小。谁还有不同的方法?

生一齐:也可以把分数化成小数,然后比较两个小数的大小。

师:对,谁是用这种方法做的,来说一说。

生:把化成小数是:=4÷5=0.8,0.8

师:通过上面的分析过程,我们可以看出,在比较分数和小数的大小时,既可以把分数化成小数,也可以把小数化成分数。

[议一议]:怎样把分数化成小数?怎么把小数化成分数?

我们再来看下面的几个例题,通过例题我们来总结规律。(教师演示课件“分数与小数的互化”)

三、课堂练习

通过练习熟练这节课所学知识。

课本p86“试一试”:

1.把下面的分数化成小数。(除不尽的保留两位小数)

2.把下面的小数化成分数。(能约分的要约分)

0.4 1.5 0.12 2.8

四、课堂小结

这节课你有哪些收获,同桌之间相互交流一下。

五、课后作业

课本p86“练一练”1、2、3题。

板书设计:

课题:分数、小数互化

1.复习

2.1分钟赛跑

3.例题

4.课堂练习

小学五年级数学点阵中的规律教案篇十三

2、掌握除数是小数除法的计算法则,并能运用法则进行正确的计算。

3、培养学生的概括能力。

把除数转化成整数后,利用除数是整数的除法来计算。

小数点的移动。

小黑板、卡片、幻灯。

口算:(卡片)。

8.1÷34.84÷40.56÷43÷5。

1÷80.75÷150.25÷50.045÷1。

小学五年级数学点阵中的规律教案篇十四

该内容是在学生已经学习了“约数和倍数的意义”、“质数和合数、分解质因数”、“公约数”等的基础上进行教学的,既是对前面知识的综合运用,同时又是学生学习“通分”所必不可少的知识基础。因而是本单元的教学重点,是本册教材的核心内容。本课的教学,对于学生的后续学习和发展,具有举足轻重的作用。借鉴前面的学习方法学习后面的内容是本课设计中很重要的一个教学特色,这样设计不仅使教学变得轻松,而且能使学生在学习知识的同时掌握一些学习方法,这些学习策略和方法的掌握,对于今后的学习是很有帮助的。

五年级学生的生活经验和知识背景更为丰富,动手欲较强,学生认识数的概念时更愿意自主参与,自己发现。再者,学生个人的解题能力有限,而小组合作则能更好地激发他们的数学思维,通过交流获得数学信息。

(体现多维目标;体现学生思维能力培养)。

1、让学生通过具体的操作和交流活动,认识公倍数和最小公倍数,会用列举法求两个数的最小公倍数。

2、让学生经历探索和发现数学知识的过程,积累数学活动的经验,培养学生自主探索合作交流的能力。

3、渗透集合思想,培养学生的抽象概括能力。

公倍数与最小公倍数的概念建立。

运用“公倍数与最小公倍数”解决生活实际问题。

为了实现教学目标,达到《标准》中的要求,也为了更好的解决教学重、难点,我将本节课设计成寓教于乐的形式,将教学内容融入一环环的学生自主探索发现的过程中,引导学生动手、动脑、动口。

媒体运用。

任务导学。

明确任务。

师:课前我们来做个报数游戏,看谁的反应最快。请两大组的同学参加。

师:请报到3的倍数的同学起立,报到4的倍数的同学起立。你们发现了什么?他们为什么要起立两次?(因为他们报到的号数既是3的倍数又是4的倍数)是吗?咱们一起来验证一下。(师板书:12、24)。

师:像这些数既是3的倍数,又是4的倍数,我们就把这些数叫做3和4的公倍数。(板书:公倍数)今天这节课我们一起来研究公倍数。

一、课堂探究,自主学习。

1、出示例1。

师:同学们,仔细读要求,你们认为解决这个问题要注意什么?

生独立思考,领会题意和要求。

课件出示。

合作。

探究。

2、合作交流,动手操作。

我们每一对同桌都准备了一张方格纸和一些长3厘米、宽2厘米的长方形,下面就用这些长方形来代替瓷砖在方格纸上来摆一摆、画一画或直接算一算。

3、汇报交流。

师板书:2的倍数:2、4、6、8、10、12、14……。

3的倍数:3、6、9、12、15、18……。

2和3的公倍数:6、12、24……。

二、交流展示。

1、明确意义。

(设计意图:这几个问题连环递进,通过第一问使学生理解4只是2的倍数,9只是3的倍数,不论是边长4厘米还是9厘米均不符合题意,从而使学生深刻理解"公"字的含义;通过第二、三问使学生发现能铺成的正方形的边长必须是2和3的公倍数,而只要符合这个条件的正方形是有无数个的,从而渗透了数形结合与极限思想。)。

2、找最小公倍数。

师:是不是只有2和3才有公倍数呢?其你也举个例子里找一找他们的公倍数,有一个要求:看谁能在规定的时间里找到的公倍数最多,用的方法最巧。

汇报交流。

师:请找到最多的同学说一说,你有什么好方法介绍给大家。

3、发现特殊关系的两个数的最小公倍数的特点。

师让学生举例,然后将学生所举的例子分成了3类。启发学生:我是根据什么标准来分的?你所举的例子属于哪一类?咱们再来看一看,他们的最小公倍数有什么特点?(让举例的学生汇报最小公倍数)。

得出规律:两个数是互质关系的,它们的最小公倍数就是他们的乘积;。

两个数是倍数关系的,它们的最小公倍数就是较大的那个数。

如果以后让你找两个数的最小公倍数,你会怎么做?

三、反馈拓展。

1、拓展提升。

13和2()1000和25()。

18和6()8和9()。

1和12()9和15()。

师:为了能同时出发,你认为周老师该选择哪些时间出发?

3、求三个数的公倍数。

四、课堂总结。

这节课我们学习了什么?你有什么收获?

五、评价检测。

练习十七2、3、4题。

小学五年级数学点阵中的规律教案篇十五

教学目标:

1、在用小正方形拼长方形的活动中,体会找一个数的因数的方法,培养有条理思考的习惯。

2、在1~100的自然数中,能找出某个自然数的所有因数。

教学重点:会找一个数的因数。

教学难点:提高有序思考的能力。

教学过程:

一、创设情境,激情导入。

师:同学们喜欢做拼图的游戏吗?

也可以使用自己喜欢的方式拼摆或涂画的方式独立操作,边摆边做好记录.然后,把你拼摆的过程和你的伙伴说说。

二、合作交流,探索新知。

1、学生:用12个小正方形自由拼(画)长方形。

(教师巡视,指导个别有问题的学生,搜集学生中出现的问题.)。

师:你是怎样拼的,说说好吗?

学生代表一边汇报,一边将所拼的图在黑板上进行演示。

注意让学生指图说明。

师:我发现同学们真的很聪明,谁愿意把你的想法说给大家听?

(每个小组由一名代表在全班汇报思考的过程,再次体会“想乘法算式”找一个数的因数的方法。)。

同学们用12个小正方形摆出了各种各样的长方形,你能用算式表示出你一。

共摆了多少个吗?

学生回答,老师同时板演:

(3种,算式一样的可选择其中的一种说出来。)。

及时板书:1×12=122×6=123×4=12。

或:12=1×12=2×6=3×4。

师:由黑板上整理出的算式可见,12的因数有哪些呢?

(1、12、2、6、3、4)。

引导思考:找一个数的因数怎样做到即不重复又不遗漏呢?

(通过以上的拼、画、小组交流,学生已经有所发现。)。

学生的答案:

(1)我发现积是12的乘法算式中,它们的因数都是12的因数。

(2)我发现可以利用乘法口诀一对对的找12的因数。

师:谁能按顺序说出来?

(1、2、3、4、6、12)。

3、小结:找一个数的因数,可以用乘法依次一对一对的找。这样有顺序的给一个倍数找因数,好处就是不重复、不漏找。

三、巩固练习。

1、独立完成第38页“练一练”第1题,注意关注学生是否注意有序思考。

2、师:同学们已经掌握了找因数的方法,现在看看谁找得快,请同学们做课本第38页的练一练的第2题。

四、总结与评价。

师:这节课你学会了什么呢?用学到的方法我们都可以做些什么?

教学反思:

这节课上下来以后我感想很多,感触也很深。回顾整堂课的教学过程,我认为需要改进的地方还有很多,我只有不断地进行反思,才能不断地完善教学思路,才能更好达到教学目标。下面我就说说我对本课在教学设计上的一些想法和反思。

本课的教学重点是找一个数的因数,在学生已掌握了因数、倍数的概念及两者之间的关系的基础上,对学生而言,怎样找一个数的因数,难度并不算大,因此教学例题“找出12的因数”时,我先让学生自己动手拼长方形,让学生们直接感知两个自然数的积等于12的几种情况,使他们在独立思考的过程中,自然而然的会结合自己对因数概念的理解,找到解决问题的方法(培养学生对已有知识的运用意识),然后在交流中不难发现可用乘法或除法来求一个数的因数(列出积是12的乘法算式或列出被除数是12的除法算式)。在这个学习活动环节中,我留给了学生较充分的思维活动的空间,有了自由活动的空间,才会有思维创造的火花,才能体现教育活动的终极目标。特别是用除法找因数的学生,正是因为他们意识到了因数与倍数之间的整除关系的本质,才会想到用除法来解决问题。

新课标实施的过程是一个不断学习、探究、研究和提高的过程,在这个过程中,需要我们认真反思、独立思考、交流探讨,学习研究,与学生平等对话,在实践和探索中不断前进。

小学五年级数学点阵中的规律教案篇十六

“量一量、找规律”是小学五年级“实践与综合应用”领域中的一节主题性学习内容。“实践与综合应用”领域是《课标》的一个特色,向学生提供了进行一种实践性、探索性和研究性学习的课程渠道。这一领域沟通了生活中数学与课堂上的数学的联系,使得几何、代数、统计和概率的内容有可能以交织在一起的形式出现,使发展学生综合应用知识的能力成为必须的学习内容,这对于改变学生的学习方式,让学生在学习过程中接触到一些有研究和探索价值的题材和方法,帮助学生全面认识数学、了解数学,使学生在未来的职业和生活中发挥作用等方面具有重要意义。就本人教学《量一量、找规律》这节课的课堂实况,我认为这节数学活动课,教师要在课堂上创设让学生自主探索、亲身实践、合作交流的氛围,让学生在活动中思考,在合作中探索,从而掌握知识、发展技能、获得愉快的心理体验。

一、在活动中掌握知识与技能。

在这节课中,调动了每一位学生的学习积极性,让他们“量”得有效,“想”得有价值,整节课落实“动”、注重“趣”、渗透“用”。“动”是实现目标的基础,只有让学生亲自动手“量一量”,使学生在活动过程中亲身体验,学生才能发现、概括和运用规律,而通过自己动手操作发现了规律,不论在学习情感上,还是在学习兴趣上都比教师直接给出要强烈的.多;“趣”是学生课堂的“调味品”,用有趣的数学活动吸引学生参与,有了它,学生才愿学、乐学、爱学;“用”是活动的目的,发现规律的目的在于灵活应用规律,“用”也是手段,让学生在应用中不断巩固提高知识技能。

二、教学目标明确化。

活动课的教学往往容易形式化,只顾着让学生体验过程,而忽视知识目标在课堂教学中的最终实现。这节课在教学时就摆脱了这个不利的问题,“双管齐下”,既有过程性的目标,也把握住了知识、技能目标,从而较好地体现了《课标》对数学教学所作的要求。课堂上充分利用了实验记录表及关系图,为学生提出明确的活动目的和要求,使实验的过程有步骤、有计划地进行,增强了学生科学实验的意识。填写实验记录表、绘制关系图的过程,使自主学习更加落实,也使执笔者和参与探索者增强了责任感。

三、在小组合作中共同提高。

合作学习、生生互动是学生获得提高的有效途径,是教学获得成功的不可缺少的重要因素。在课堂上以小组为单位,每三位学生一组,并按学习能力上的不同进行合理组合,以求在课堂上“人人有事做”,从而让各类学生得到应有的发展。学生在这样的小组中进行合作学习,成员之间能互相交流、互相尊重,既洋溢着温情友爱,又充满竞赛气息。在小组中,同学之间通过提供帮助而满足自己、影响别人的需要,每个人有机会发表自己的观点,也乐于倾听别人的意见,学生们一起合作融洽,学习因此变得更加愉快,从而激发了学习数学的兴趣,提高了学习效益。

当然,本节课的教学也存在着诸多的不足,如对知识、技能的拓展不够深入、课堂上的引导过于零散,造成总结性不强等等,对此会引以为重,以便在今后的课堂教学中寻求完善。

小学五年级数学点阵中的规律教案篇十七

1、通过教学,使学生初步理解同分母分数加法的算理。

2、掌握同分母分数加法的计算法则并能正确熟练地计算。

学生在掌握整数加法的基础上,探索同分母分数加法的过程,理解同分母分数的计算法则。

1、分数加法的意义。

2、能正确进行同分母分数加法的计算。

活动1【导入】创设情境

1、(录音内容)我是妮妮,今天想请哥哥、姐姐帮我一个忙。我妈妈烙了一张饼,爸爸把它平均分成八份,爸爸吃了八分之三张饼,妈妈吃了八分之一张饼,我想知道爸爸、妈妈一共吃了多少张饼呢?谁要是能帮我,就奖给大家一个赞,我先谢谢哥哥、姐姐了。

2、师:同学们,能帮助小妹妹吗?那怎么列式(板书式子),今天就让我们共同学习同分母分数加法。

活动2【讲授】学习目标

1、理解、掌握同分母分数加法的计算法则。

2、能正确进行同分母分数加法的计算。

活动3【活动】提示预习内容,学生自主学习

1、自主探究、小组讨论:

(一)师:俗话说:“三个臭皮匠,顶个诸葛亮”,四个人的智慧,一定是很大的,下面就让我们小组合作来探究同分母分数加法。

(二)学生先自主学习,再小组讨论

(三)学生讨论,师个别指导

(讨论中鼓励学生大胆提出个人见解,提示可以借助辅助工具来解题。)

2、汇报交流

生1:同学们,下面由我来代表我们组跟大家分享我们组的做法,大家请看,我是把这张长方形纸当成妈妈烙的饼,我也把它平均分成8份,爸爸吃了3份,我把它折回去,妈妈吃了1份,我也把它折回去,还剩4份,吃了也就是4份,占整张饼的八分之四,结果能约分的要约成最简分数,也就是二分之一。

生:老师,我想对赵红俐的讲解做下点评,你的想法真奇特,能想到加法的逆运算减法来解决问题,你真棒,希望在以后的学习中你能继续发挥你的聪明才智。

生2:大家请看,我们组是用折纸法,我把这张圆看作是妈妈烙的饼,我把它对折三次,平均分成8块,这3块是爸爸吃的,也就是八分之三,这1块是妈妈吃的也就是八分之一,一共吃了4块,也就是八分之四,结果能约分的要约成最简分数,也就是二分之一。

生3:我来为大家讲解说意义的方法,大家请看,我是把这张饼看作单位“1”,把它平均分成8块,爸爸吃了3块,相当于吃了这张饼的八分之三,妈妈吃了1块,相当于吃了这张饼的八分之一,两个人共吃了4块,也就是这张饼的八分之四。结果能约分的要约成最简分数,也就是二分之一。

生4:我们组是用画线段的方法来解答的,我是把一条8厘米长的线段看成是妈妈烙的饼,把它平均分成8份,这3份是爸爸吃的,用来表示八分之三,这1份是妈妈吃的,用来表示八分之一,一共吃了4份,也就是八分之四,请大家注意结果能约分的要约成最简分数,也就是二分之一。

生5:我们组是用画图法来解决的,我是把一张正方形纸看作是妈妈烙的那张饼,把它平均分成8块,爸爸吃的3块,我是用蓝色表示的,妈妈吃的1块,我是用红色表示的,爸爸、妈妈一共吃了4块,也就是八分之四,结果能约分的要约成最简分数,也就是二分之一。

生6:我们组是用切割法来解决的,请八位同学来帮我完成,请大家手拉手紧密的围成一个圆,我把这个圆平均切成8块,这3块是爸爸吃的,这1块是妈妈吃的,一共是4块,也就是八分之四,结果能约分的要约成最简分数,也就是二分之一。

生:我想对陶梦如的做法做一下点评,你的想法很新颖,但在日常的应用中不实用,我建议你可以用小棒来代替人。

生:我觉得小棒易丢,也不实用,可以用手指来代替小棒,因为手指不会离开我们的身体。

生:我觉得手指算小数可以,假如就没法算了,我觉得还是画图比较好。

生7:大家请看表示3个,表示1个,它们两的分数单位都是,所以分母不变,只把分子相加,结果能约分的要约成最简分数,也就是二分之一。

生:刚才大家用这么多方法来探究同分母分数加法,那到底该怎样计算同分母分数呢?

生:同分母分数相加,分母不变,只把分子相加,计算的结果,能约分的要约成最简分数。

师:同桌互记计算法则。

活动4【练习】能力提升

小学五年级数学点阵中的规律教案篇十八

教学内容:教科书第七页的例五及“做一做”,练习二的第1-4题。

教学目的:使学生懂得求积的近似值的必要性,掌握用“四舍五入”法取积的近似值,并能根据实际需要与题目要求正确地求积的近似值。

教具准备:小黑板准备以下的表格:

保留一位小数。

保留两位小数。

保留整数。

1.283。

5.904。

2.876。

教学过程。

1、口算。

0.840.3220.812.5。

7.80.013.20.2&nb。

sp;0.080.08。

9.30.018.42+5.84.8-0.48。

选其中几题讲一讲算式的意义。

2、出示小黑板。

说明按要求用“四舍五入”法求出每位小数的近似值。指名让学生回答,并说一说是怎样用“四舍五入”法求一个小数的近似值的。

1、引入新课。

师:在实际生活中,小数乘法乘得的积往往不需要保留很多的小数位数,这时可根据需要,用“四舍五入”法保留一定的小数位数,求出积的近似值。今天我们就来学习求积的近似值的方法。(板书课题:积的近似值)。

2、教授新课。

出示例5。指名读题,说计算方法,列式。

问:这道题的数量关系是什么?(单价数量=总价)。

指名学生板演:

0.9249.2=45.264(元)。

问:1)人民币的最小单位是什么?(分)。

2)以元为单位的小数表示`分`的是哪个数位?(百分位)。

3)现在我们算出的积有几位小数?(三位小数)。

教师说明:“在收付现款时,通常只算到`分`。然后问:4)要精确到分该怎么办?(保留两位小数)。

5)那么最后的结果应该是多少?(45.26元)。

教师板书:。

0.9249.245.26(元)。

答:应付菜款45.26元。

3、小结。

在实际生活中,小数乘法乘得的积往往不需要保留很多的.小数位数,这时可根据需要或题目要求取近似值,取近似值的一般方法是保留一位小数,就看第二位小数是几,要保留两位小数,就看第三位小数是几......然后按“四舍五入”法取舍。

例如:3.9523.95(保留两小数或精确到百分位)。

3.9524.0(保留一位小数或精确到十分位)。

3.9524(保留整数或精确到个位)。

1.教科书第七页“做一做”的第一题。

提示:求付款的题目没有要求保留小数位数时,都要以元为单元保留两位小数。

对于第2题,由于这道题只有两位小数,不必再求近似数。在以后做题时,一定要根据题目的要求或实际情况来判断。

2.练习二的第1-4题。

第1、2题的第一小题。

【本文地址:http://www.xuefen.com.cn/zuowen/14725450.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档