最大公因数教学设计大全(15篇)

格式:DOC 上传日期:2023-11-24 17:38:07
最大公因数教学设计大全(15篇)
时间:2023-11-24 17:38:07     小编:笔砚

阅读能够开拓我们的眼界,增长见识,使我们对世界有更深入的了解。写总结时,要注重逻辑性和条理性,使读者能够一目了然。总结范文中的亮点和经验可以为我们写好一篇总结提供借鉴和启发。

最大公因数教学设计篇一

1、通过解决实际问题,初步了解两个数的公因数和最大公因数在现实生活中的应用。

2、在探索新知的过程中,培养学好数学的信心以及小组成员之间互相合作的精神。

初步了解两个数的公因数和最大公因数在现实生活中的应用。初步了解两个数的公因数和最大公因数在现实生活中的应用。

自主学习、合作探究。

(约5分钟)。

课件展示教材62页例3,今天我们要给这个房子铺砖大家感兴趣吗?要求要用整数块。

(约5分钟)。

1、几个数()叫做这几个数的公因数,其中最大的一个叫做()。

2.16的因数有(),24的因数有(),16和24的公因数是(),最小公因数是(),最大公因数是()。

3.a=225,b=235,那么a和b的最大公因数是()。

(约13分钟)。

小组合作学习教材第62页例3。

1、学具操作。

用按一定比例缩小的方格纸表示地面,用不同边长的正方形纸表示地砖,我们发现边长是厘米的正方形的纸可以正好铺满,没有剩余,其它的都不行。

2、仔细观察,你们发现能铺满的地砖边长有什么特点?把你的发现在小组里交流。

3、总结。

解决这类问题的关键,是把铺砖问题转化成求公因数的问题来求。

(约8分钟)。

根据自主学习、合作探究的情况明确展示任务,进行展示。教师引导讲解。

1、达标练习。

2、全课总结。

这节课你都学到了什么知识?有什么收获?

3、作业布置。

练习十五5,6题。

板书设计:

铺砖问题:求公因数。

最大公因数教学设计篇二

本节课的教学内容是求两个数的公因数和两个数的最大公因数的第二课时。教学目标是进一步理解两个数的公因数和最大公因数的意义,比较熟练地求出两个数的最大公因数,包括两种特殊情况。这节课上的非常顺利,课堂气氛活跃,师生互动和谐,取得了较好的课堂教学效果。

上课的第一环节,是复习两个数的公因数和最大公因数的意义。在复习的过程中,我不是单纯地让学生复述两个数的公因数和最大公因数的意义,而是让学生举例说明。学生说出了许多组数,找出了它们的公因数和最大公因数。在学生举例的过程中,对它们的意义有了更深的理解。我择其四组板书在黑板上:4和5,5和6,5和7,7和9。让学生观察,这四组数有什么特点。我的本意是让学生发现两个数的最大公因数的一种特殊情况,即两个数的公因数只有1,那么它们的最大公因数就是1。“我发现两个数中只要有一个质数,它们的最大公因数就是1。”这是一个大胆的猜测,虽说是出乎意料,但更使课堂充满了生机。我让学生判断他的观点是否正确。在小组讨论的过程中,有学生提出了质疑,“这个观点不对,比如2和4,2是质数,但它俩的.最大公因数不是1。”又有学生提出3和6,5和10等。我接着又让学生观察,这几组数又有什么特点。通过通论观察,完成了本节课的另一个教学任务,发现了两个数的最大公因数的另一种特殊情况,即两个数是倍数关系,那么它们的最大公因数就是较小的数,学生发现了两个数的最大公因数的几种情况,当两个数都是质数时,它们的最大公因数是1;当两个数是连续的自然数时,它们的最大公因数是1;两个数的最大公因数是1,这两个数可以是质数,也可以是合数,还可以一个是质数,一个是合数,等等。

最大公因数教学设计篇三

第45—46页。

1、经历找两个数的公因数的过程,理解公因数和最大公因数的意义。2、探索找两个数的公因数的方法,学会正确找出两个数的公因数和最大的公因数。

3、使学生能探索出解决问题的有效方法。

探索找两个数的公因数的方法。

实物投影仪等。

一、填一填。

1、呈现找公因数的一般方法:

(1)让学生分别找出12和18的因数,并交流找因数的方法。

(3)组织学生展开讨论,再引导学生理解“两个数公有的因数是它们的公因数,其中最大的一个是它们的最大公因数”。

(4)小结:找公因数的一般方法是先用想乘法算式的方式分别找出两个数的因数,再找出公有的因数和最大公因数。

2、引导学生讨论其它的方法。

二、练一练。

1、第1、2题,通过这两题的练习,使学生进一步明确找两个数的公因数的一般方法,并对找有特征的数字的最大公因数的特殊方法有所体验。

2、第3题,学生独立完成。

4、让学生用自己的语言来表述自己的发现。

5、第5题,写出下列各分数分子和分母的最大公因数。现自己写一写,然后说一说自己是怎样找公因数的。

三、数学探索。

1、写出1、2、3、4、5、……、20等各数和4的最大公因数。

(1)先让学生填表,找出这些数与4的最大公因数。

(2)再根据表格完成折线统计图。

(3)组织学生观察表格,讨论“你发现了什么规律?”

2、找一找1、2、3、4、5、……、20等各数和10的最大公因数,是否也有规律,与同学说一说你的发现。

四、总结:

谁能说一说找公因数的一般方法是什么?

12=()×()=()×()=()×()。

18=()×()=()×()=()×()。

12的因数:18的因数:

最大公因数教学设计篇四

教学片断:

(黑板出示)求下面每组数的最大公约数,如能简便,请用简便方法计算;如不行,就用短除法来求。

生1:我认为第一组14和15可以用简便计算,它们相差1,最大公约数就是1。

生2:我认为你的想法是错误的,14和15互质。所以它们的最大公约数是1。

生3:(支持第一个学生)我举了好几个例。比如7和8相差1,最大公约数就是1。

生4:我认为只要是两个互质数,它们的最大公约数就是1。因此,最大公约数也是1,例如:第一组中的14和15,第二组中的8和15;而其中14和15的最大公约数是1,也正好相差1,这是一个巧合,也是正确的,但它不能代表所有互质数的求法,只能代表相邻的两个数的求法,有因为相邻的两个数一定互质,我们为何不把它归为一类:两个互质数,最大公约数就是1。

同学们听后纷纷投去赞许的目光。

师:同学们,道理只有越辩越明,经过刚才的讨论,我们得出一个结论:(投影出示)如果两个数是互质数,它们的最大公约数就是1。

生5:我们组认为第三组42和18求最大公约数也可以用简便方法,可以用公约数6去除,再看所得的商海有没有其它公约数,结果没有了公有质因数,所以,42和18的最大公约数就是6。

生6:反对!我们用短除法求最大公约数时,只能用质因数去除,怎么能用公约数去除呢?

生2:就是啊,只能用质因数去除,6是一个合数,不能用6去除。(教室里顿时议论纷纷开了……)。

师:既然这个最大公约数既是42的'约数,又是18的约数,因此就可以用42和18的公约数去除,大家之所以习惯用公有的质因数去除,是因为短除法当时从分解质因数演变过来的,但从最大公约数的意义考虑的话,是可以用它们的公约数去除的。

学生听得非常认真,并且表现出恍然大悟的神情。

生2:我发现第四组21和7也能用简便方法,它们的最大公约数是7,7的约数有7,21的约数也有7,所以它们的最大公约数是较小数7。

生4:我对刚才那位同学说的补充一点,因为21是7的倍数,所以,21的约数必定有7,7又是它本身的约数,因此,它们的最大公约数是7。

师:同学们刚才说得非常好,这就是第二个规律:(投影出示)如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。

经过刚才的发言,举手的人少了,可是有一位同学仍然坚持不懈的高举着手,我便请他说说。

生7:除了老师上面的例子,我还有一个发现,就是相邻的两个奇数一定互质,它们的最大公约数也是1,虽然它包含在互质数这一类中,但仍也是特殊的。

他的回答令我和同学们大吃一惊,对于这个说法是否正确呢?我马上与学生们一起进行了验证,结果说法完全正确,顿时,教室里不由自主的响起了热烈的掌声,而且持续了好久。接下来同学们又认真看了课本中的例题,并积极做了相关的练习。

课后反思:

我在教学《约数与倍数》这个内容时,感觉比较头疼,因为这个内容的概念较多,学生难理解,要想学生学好、掌握好这个内容,除了要认真备好课,还要扎扎实实地上好每一课时。在教学中,如果对学生不放心,束缚学生的手脚,阻碍学生思维的发展,就不能培养学生的探究能力与创新精神。在这节课中,我把主动权完全交给了学生,学生自己在进行观察、假设、探究等高层次的思维活动后,得出的结论是我始料未及的。

在教学中,学生一直处在发现问题、解决问题的状态中,用自己的思维方式进行探究,形成了独特的见解,此时的合作便有了基础。当大家的意见一致时,就会充分展示自己的思想与表现欲;当有了不同意见时,才会擦出创新的火花。

从这节课中不难看出,课本已不能当做惟一不可改变的标准。虽然课本在学习时起到了至关重要的作用,但学生们却在此基础上进行了探索与创新。学生们总结出来的规律可能被分别归入书中的几类,但他们所发现的细微的特征是书上没有的。其实,转变学生学习的方式最关键是在于我们老师,一方面要我们老师不断学习,不断更新教学观念,树立先进的教学理念,另一方面也要求我们老师把先进的教学理念转化为教学行为。只有让学生充分从事探究学习活动,发挥他们的自主性、主动性、选择性与创新性,才能使他们真正成为学习的主人!

最大公因数教学设计篇五

1、使学生通过动手操作理解公因数与最大公因数的概念,并掌握求两个数的最大公因数的方法。

2、培养学生分析、归纳等思维能力。

3、激发学生自主学习、积极探索和合作交流的良好习惯。

理解并掌握求两个数的最大公因数的方法。

课件,长方形纸板,不同边长的正方形纸片(硬卡纸做的)。

一、创设情境,引导动手操作。

1.情境导入。

2.出示问题,明确要求。(理解重点要求,如整分米数,整块)。

3.学生猜测可选用几分米的地砖。

4.介绍教具,明确活动要求。

5.小组活动。

二、自主探索,形成概念。

1.展示学生作品,得出结果。

2.教师将不同铺法展示到课件上。

3.明确王叔叔对地砖的要求必须符合什么条件。(地砖的边长必须既是16的因数又是12的因数。)。

4.引出公因数和最大公因数的概念,揭示课题。

5.巩固练习课本80页做一做。

三、自主探究,掌握方法。

2.出示例2,独立思考,做在练习本上,指名板演,集体订正。

3.归纳方法,找出公因数和最大公因数的之间的关系。(几个数的最大公因数是他们公因数的倍数,他们的公因数是最大公因数的因数。)。

四、巩固练习,总结提升。

1.81页做一做,独立思考,指名回答,集体订正。

2.总结规律。(当两个数是倍数关系时,较小的数就是最大公因数。两个数的公因数只有1时,那他们的最大公因数就是1。)。

五、小结。

谈谈本节课有什么收获。

最大公因数教学设计篇六

教学内容:。

教学目标:。

1、经历找两个数的公因数的过程,理解公因数和最大公因数的意义。2、探索找两个数的公因数的方法,学会正确找出两个数的公因数和最大的公因数。

3、使学生能探索出解决问题的有效方法。

教学重、难点:

探索找两个数的公因数的方法。

教具准备:

实物投影仪等。

教学过程:

一、填一填。

1、呈现找公因数的一般方法:

(1)让学生分别找出12和18的因数,并交流找因数的方法。

(3)组织学生展开讨论,再引导学生理解“两个数公有的因数是它们的公因数,其中最大的一个是它们的最大公因数”。

(4)小结:找公因数的一般方法是先用想乘法算式的方式分别找出两个数的因数,再找出公有的因数和最大公因数。

2、引导学生讨论其它的方法。

二、练一练。

1、第1、2题,通过这两题的练习,使学生进一步明确找两个数的公因数的一般方法,并对找有特征的数字的最大公因数的特殊方法有所体验。

2、第3题,学生独立完成。

4、让学生用自己的语言来表述自己的发现。

5、第5题,写出下列各分数分子和分母的最大公因数。现自己写一写,然后说一说自己是怎样找公因数的。

三、数学探索。

1、写出1、2、3、4、5、……、20等各数和4的最大公因数。

(1)先让学生填表,找出这些数与4的最大公因数。

(2)再根据表格完成折线统计图。

(3)组织学生观察表格,讨论“你发现了什么规律?”

2、找一找1、2、3、4、5、……、20等各数和10的最大公因数,是否也有规律,与同学说一说你的发现。

四、总结:

谁能说一说找公因数的一般方法是什么?

板书设计:

12=()×()=()×()=()×()。

18=()×()=()×()=()×()。

12的因数:18的因数:

最大公因数教学设计篇七

1、理解两个数的公因数和最大公因数的意义。

2、通过解决实际问题,初步了解两个数的公因数和最大公因数在现实生活中的应用。

3、培养学生抽象、概括的能力。

多媒体课件,方格纸(每人一张)。

(一)复习导入。

1.复习。

教师出示一组卡片,让学生说一说卡片上各数的倍数有哪些。

教师再出示一组卡片,让学生说一说卡片上各数的因数有哪些。

2.导入。

师:我们学会了求一个数的因数,想不想学习怎样求两个数或三个数公有的因数呢?今天我们就通过游戏来学习公因数和最大公因数。

(二)创设情境,引出问题。

今天我们来玩一个找伙伴的游戏。(课件出示游戏规则:学号是12的因数的同学站到讲台左边,学号是16的因数的同学站到讲台右边)同学们想好了吗?1~16号同学现在开始找伙伴。

学生开始找伙伴,站好后发现问题,有三个同学不知道该站在哪边才好。

师:你们3个为什么没有找到伙伴?

生1:我的学号是1,既是12的因数,又是16的因数,不知道该站在哪边才好。

生2:我的学号是2,既是12的因数,又是16的因数,不知道该站在哪边才好。

生3:我的学号是4,既是12的因数,又是16的因数,不知道该站在哪边才好。

师揭示概念:1,2,4是12和16公有的因数,叫做它们的公因数。其中,4是最大的公因数,叫做它们的最大公因数。

设计意图:游戏环节的设计在教学中能为学生营造一个轻松、愉悦的学习氛围,学生们在这样的氛围中积极地参与数学活动,既体验了成功的快乐,又提高了自己的判断能力。

1.明确方法,提出要求。

课件出示教材60页例2:怎样求18和27的最大公因数?

2.学生试做后,组内交流。

3.讨论:如果只找出一个数的因数,你能找出两个数的最大公因数吗?

(先找较小的数18的因数,再看因数中哪些是27的因数,最后找出最大的一个)。

4.反馈练习。

教师巡视,了解学生的做题情况。学生做完后,指名汇报,集体订正。

师:做完这道题,大家发现了什么?

(学生讨论后汇报)。

(四)课堂小结通过本节课的学习,我们主要认识了公因数、最大公因数的意义。

公因数和最大公因数在现实生活中有着广泛的应用,我们初步了解了它的应用价值。

(五)谈谈这节课你有什么收获?

最大公因数教学设计篇八

1、探索找两个数的公因数的方法,会用列举法找出两个数的公因数和最大公因数。

2、经历找两个数的公因数的过程,理解公因数和最大公因数的意义。

3、通过观察、分析、归纳等数学活动,体验数学问题的探索性和挑战性,感受数学思考的条理性。

二、重点难点。

重点:经历找最大公因数的过程,正确找两个数的公因数和最大公因数。

难点:探索并掌握找最大公因数的方法。

三、教学设计。

(一)回顾旧知,导入新课。

1、之前我们学习了找一个数的因数,你们还记得吗?

2、我们来做个游戏,回顾一下。学号是20因数的同学请起立。

3、同学们掌握的真好,这节课我们来学习《找最大公因数》。

(二)自主学习,探索新知。

2、同学们找得真快真好,同学们认真观察它们的全部因数,你有什么发现,小组讨论。

3、师总结:1、2、3、6即是12的因数,又是18的因数,像这样的公共因数我们称之为公因数。

4、那最大的那个因数叫什么?——最大公因数。

(三)巩固新知,继续练习。

1、教科书p45练一练1—2,看哪组做的又快又准。

2、师小结,强调重点。

3、继续练习,练一练3—4。可让学生到黑板做,易错的集体纠正、强调。

4、在练习中,针对错误比较多的,进行集体讲解,少的则个别讲解。

(四)课堂小结。

1、今天我们在复习因数的基础上又认识了公因数和最大公因数。

四、板书设计。

即是12的因数,又是18的因数,像这样的数称为公因数。

五、教学反思。

本节课,我采取小游戏的形式勾起对旧知的回忆,再通过写出12和18的全部因数来引起学生的注意(1,2,3,6),既是12的因数又是18的因数,像这样的因数是12和18的公因数;6是12和18的最大公因数。

通过让学生在玩中学,学生们掌握的很好,在实践中学生们也能很好的应用。

最大公因数教学设计篇九

学生的方法可能有:

a、找对应因数。

b、从18的因数中找27的因数。

或者从27的因数中找18的因数。

c、排序法。

d、短除法。

e、分解法。

总之:不论采用哪种方法,我们都要:先找出它们的因数,

再找出它们独有的和公有的因数,然后找出在公有的因数中,谁最大?

4、总结;这节课,我们学了什么?

(整个议一议环节,体现了生生互动、师生互动。体现了以学定教。)。

(五)练一练:

(为了检测学生的学习情况,我进行了分层训练。第一层:基本性练习。第二层:综合性练习。第三层:发展性练习。实现层层深入,由浅入深。使学生深刻体会到数学来源于生活,并为生活服务的道理。)。

(出示课件)第一层:基本性练习。

1、把下面的数填到合适的位置。

1,2,3,4,6,9,12,18,

12的因数:

18的因数:

12和18的公因数:

2、填一填:

8的因数:

16的因数:

8和16的公因数:

最大公因数教学设计篇十

理解两个数的公因数和最大公因数的意义。

通过解决实际问题,初步了解两个数的公因数和最大公因数在现实生活中的应用。

理解公因数和最大公因数的意义。

一、预习砺能。

1、提问:什么是因数?怎样找一个数的所有因素?

2、写出16和12的所有因数。

提问:从16和12的所有因素中你发现了什么?

二、导学砺能。

1.出示例1。

(2)、以小组为单位,探究如何拼剪正方形。

(3)、多媒体演示剪小正方形的过程,进一步验证学生动手操作的情况。

(4)、通过交流,得出结论:要使所剪成大小相等的正方形且没有剩余,正方形的边长必须既是30的因数,又是12的因数。

2、教学公因数和最大公因数。老师用多媒体课件演示集合图。

1,2,3,6是12和30公有的因数,叫做它们的公因数。其中,6是最大的'一个公因数,叫做它们的最大公因数。

3、引导学生用短除法找两个数的最大公因数。

三、巩固砺能。

1、达标练习。

完成教材第12页“试一试”。学生完成后归纳出规律。

2、总结评价。

通过本节课的学习,我们主要认识了公因数、最大公因数的意义.公因数和最大公因数在现实生活中有着广泛的应用,我们初步了解了它的应用价值。

最大公因数教学设计篇十一

教学内容:

青岛版数学四年级下册第七单元分数加减法信息窗一。

教学目标:

1、在合作探究活动中了解公因数和最大公因数的意义,能用列举法和短除法找出100以内两个数的公因数和最大公因数。

2、会在集合图中表示两个数的因数和它们的公因数,体会数形结合的数学思想。

3、在探索公因数和最大公因数意义的过程中,经历列举、观察、归纳等数学活动,进一步发展初步的推理能力。感受数学思考的条理性,体验学习的乐趣。

教学重点:

理解公因数和最大公因数的意义,掌握求两个数公因数和最大公因数的方法。

教学难点:

评价任务设计:

1、教师对学生能够利用列举法、短除法找公因数和最大公因数学习情况的评价。

2、教师对学生在学习活动中体会数形结合思想的评价。

3、教师对学生参与学习活动的评价,及时评价不同水平的学生参与学习活动的实际表现。

教学过程:

一、复习导入。

师:昨天,老师布置了这样一项课前作业。

师:谁能拿着你的作业到前面来说一说你是怎样分的?(指名答)。

师:这个同学把自己的想法表达的非常清楚,我们再来看看他是怎么分的。(课件演示)。

问:还有不同分法吗?(生答师演示)。

师:其他同学还有不同意见吗?

同位互相看一看各自是怎样分的,交流一下自己的想法!

师:这些小正方形的边长1、2、3、6与长方形的长24和宽18之间有什么关系啊?

生:1、2、3、6是18的因数也是24的因数。

师:我们把18和24的因数都找出来,对比着看一看吧!

师:谁能快速找出18的因数?24的因数又有哪些呢?(指名说)。

师:对比观察18和24的因数,你有什么发现?

生:它们的因数中都有1、2、3、6、

师:看来,这和我们刚才的想法是一样的,1、2、3、6既是18的因数,也是24的因数,我们就把1、2、3、6叫做18和24的公因数。

师:公因数中哪个最大啊?生:6最大。

师:其实在前面的课前作业中,小正方形的边长就是长方形长与宽的公因数。今天这节课,我们就来研究公因数和最大公因数。

2、教学集合圈。

师:为了让大家更直观的看出它们的关系,我们还可以用集合圈的形式表示出来。

24的因数。

18的因数。

【课件出示】。

123612346。

91881224。

师:左边的集合圈表示的是18的因数,右边的集合圈表示的是24的因数、因为它们有公因数1、2、3、6,所以我们就把两个集合圈合在一起。

问1:现在你知道左边这一部分表示的什么吗?(指名答)。

师:下面请同位互相说一说集合圈中每一部分表示什么。

师小结。

师:现在给你一个集合圈你会填了吗?

师:看到这道题你能不能直接填呢?那应该先怎么办?

生:先找到16和28的因数和公因数,再填集合圈。

师:请同学们先在作业纸上列举出16和28的因数,再填集合圈。

(生独立完成,师巡视)。

展示与评价。

师:谁来说一说你是怎么填的?(指名汇报)。

给大家说说你先填的什么?又填的什么?

指名说一说,及时评价。

师:我们再来看看这位同学的作业。

师:同位互相检查一下,不对的改正过来。

三、认识短除法。

1、讲解短除法。

师:请大家先把18和24分解质因数。

师:谁来说说你分解质因数的结果?

师:请同学们仔细观察这两个式子,你有什么发现?

生:我发现它们都有质因数2和3、

师:根据这个发现我们就可以把两个短除式合并在一起,用短除法来求18和24的最大公因数。

师边板书边讲解……。

师:最后把所有的除数连乘起来,就能得到18和24的最大公因数了。

问:现在谁能说说我们是怎样用短除法求18和24的最大公因数呢?(指名学生说一说)。

2、练一练。

师:下面请你用这种方法求下面每组数的最大公因数,快速的完成在你的作业纸上!

师:谁来说说你是怎么做的?(指名学生展示汇报)。

问:你认为他做的怎么样?

四、练习与应用。

1、练一练(苏教版p27t1)。

师:接下来你能用今天所学的知识解决下面这个问题吗?(课件出示)把它完成在你的作业纸上!

展示汇报。

师:我们在找两个数的公因数和最大公因数的时候,除了列举法和短除法以外,我们还可以用这种方法(课件演示、介绍)。

2、扎花束。

师:同学们!春季运动会马上就要到了,学校花束队买来了两种颜色的花准备来扎花束。(课件出示,师读题目要求)。

问:同学们想一想这道题其实在求什么?

师:选择自己喜欢的方法把它完成在练习本上。

问:大家一起告诉我最多能扎多少束?这样每一束花里面有几朵红花?几朵黄花呢?

2、数学知识。

师:同学们!早在很久以前,我国古代的数学家就已经在研究我们今天所学的知识了!

五、课堂总结:通过这节课的学习你有哪些收获?

最大公因数教学设计篇十二

1、在合作探究活动中了解公因数和最大公因数的意义,能用列举法和短除法找出100以内两个数的公因数和最大公因数。

2、会在集合图中表示两个数的因数和它们的公因数,体会数形结合的数学思想。

3、在探索公因数和最大公因数意义的过程中,经历列举、观察、归纳等数学活动,进一步发展初步的推理能力。感受数学思考的条理性,体验学习的乐趣。

理解公因数和最大公因数的意义,掌握求两个数公因数和最大公〖〗因数的方法。

理解用短除法求最大公因数的算理。

1、教师对学生能够利用列举法、短除法找公因数和最大公因数学习情况的评价。

2、教师对学生在学习活动中体会数形结合思想的评价。

3、教师对学生参与学习活动的评价,及时评价不同水平的学生参与学习活动的实际表现。

一、复习导入。

师:昨天,老师布置了这样一项课前作业。

师:谁能拿着你的作业到前面来说一说你是怎样分的?(指名答)。

师:这个同学把自己的想法表达的非常清楚,我们再来看看他是怎么分的。(课件演示)。

问:还有不同分法吗?(生答师演示)。

师:其他同学还有不同意见吗?

同位互相看一看各自是怎样分的,交流一下自己的想法!

1、教学公因数和最大公因数的意义,总结列举法。

师:这些小正方形的边长1、2、3、6与长方形的长24和宽18之间有什么关系啊?

生:1、2、3、6是18的因数也是24的因数。

师:我们把18和24的因数都找出来,对比着看一看吧!

师:谁能快速找出18的因数?24的因数又有哪些呢?(指名说)。

师:对比观察18和24的因数,你有什么发现?

生:它们的因数中都有1、2、3、6、

师:看来,这和我们刚才的想法是一样的,1、2、3、6既是18的因数,也是24的因数,我们就把1、2、3、6叫做18和24的公因数。

师:公因数中哪个最大啊?生:6最大。

师:我们就把6叫做18和24的最大公因数。

师:其实在前面的课前作业中,小正方形的边长就是长方形长与宽的公因数。今天这节课,我们就来研究公因数和最大公因数。

师:刚才我们分别列举出了18和24的因数,又找出它们的公因数和最大公因数,这种找公因数和最大公因数的方法叫列举法。

2、教学集合圈。

师:为了让大家更直观的看出它们的关系,我们还可以用集合圈的形式表示出来。

24的因数。

18的因数。

123612346。

91881224。

师:左边的集合圈表示的是18的因数,右边的集合圈表示的是24的因数、因为它们有公因数1、2、3、6,所以我们就把两个集合圈合在一起。

问1:现在你知道左边这一部分表示的什么吗?(指名答)。

师:下面请同位互相说一说集合圈中每一部分表示什么。

师小结。

师:现在给你一个集合圈你会填了吗?

师:看到这道题你能不能直接填呢?那应该先怎么办?

生:先找到16和28的因数和公因数,再填集合圈。

师:请同学们先在作业纸上列举出16和28的因数,再填集合圈。

(生独立完成,师巡视)。

展示与评价。

师:谁来说一说你是怎么填的?(指名汇报)。

给大家说说你先填的什么?又填的什么?

指名说一说,及时评价。

师:我们再来看看这位同学的作业。

师:同位互相检查一下,不对的改正过来。

三、认识短除法。

1、讲解短除法。

师:请大家先把18和24分解质因数。

师:谁来说说你分解质因数的结果?

师:请同学们仔细观察这两个式子,你有什么发现?

生:我发现它们都有质因数2和3、

师:根据这个发现我们就可以把两个短除式合并在一起,用短除法来求18和24的最大公因数。

师边板书边讲解……。

师:最后把所有的除数连乘起来,就能得到18和24的最大公因数了。

问:现在谁能说说我们是怎样用短除法求18和24的最大公因数呢?(指名学生说一说)。

2、练一练。

师:下面请你用这种方法求下面每组数的最大公因数,快速的完成在你的作业纸上!

师:谁来说说你是怎么做的?(指名学生展示汇报)。

问:你认为他做的怎么样?

四、练习与应用。

1、练一练(苏教版p27t1)。

师:接下来你能用今天所学的知识解决下面这个问题吗?(课件出示)把它完成在你的作业纸上!

展示汇报。

师:我们在找两个数的公因数和最大公因数的时候,除了列举法和短除法以外,我们还可以用这种方法(课件演示、介绍)。

2、扎花束。

师:同学们!春季运动会马上就要到了,学校花束队买来了两种颜色的花准备来扎花束。(课件出示,师读题目要求)。

问:同学们想一想这道题其实在求什么?

师:选择自己喜欢的方法把它完成在练习本上。

问:大家一起告诉我最多能扎多少束?这样每一束花里面有几朵红花?几朵黄花呢?

2、数学知识。

师:同学们!早在很久以前,我国古代的数学家就已经在研究我们今天所学的知识了!

五、课堂总结:通过这节课的学习你有哪些收获?

最大公因数教学设计篇十三

教学内容:

教学目标:

1、使学生在具体的操作活动中,认识公因数和最大公因数,会在集合图中分别表示两个数的因数和它们的公因数。

2、使学生学会用列举的方法找到100以内两个数的公因数和最大公因数,并能在解决问题的过程中进行有条理的思考。

3、使学生在自主探索与合作交流的过程中,进一步发展与同伴进行合作交流的意识和能力,获得成功的体验。

教学重点:

最大公因数教学设计篇十四

教学内容:

课本p79~81例1、例2。

教学目标:

1.知识与技能:理解公因数、最大公因数的意义,初步掌握求两个数的最大公因数的方法。

2.过程与方法:使学生经历理解公因数、最大公因数的意义,初步掌握求两个数的最大公因数的方法的过程,培养学生观察、比较、分析和概括的能力。

3.情感、态度与价值观:在师生共同探讨的学习过程中,激发学生的学习兴趣,体会数学与生活的联系,渗透事物是普遍联系的和集合的数学思想。

教学重点:

理解公因数、最大公因数的意义,初步掌握求两个数的最大公因数的方法,初步了解算理。

教学难点:

教学用具:

自制课件。

教学过程:

一、复习导入。

[从学生的实际生活引入,可以激发学生的学习兴趣。]。

二、探索新知。

1.出示动画8用正方形摆长方形的动画,请同学们帮帮忙,试着设计一下。

2.探究方法。

同学们先独立思考,再小组交流、讨论。

3.全班交流。

(1)说一说你是怎样安排的?

过渡语:今天我们就重点来研究最大公因数。

6.说一说:最大公因数和公因数有什么关系呢?

7.试一试:你能找到18和24的公因数和最大公因数吗?

4和624和85和76和11。

问:你是怎样答出的?能说一说过程吗?

9.除了找因数,求最大公因数的方法外,还有没有其他求最大公因数的方法呢?

分解质因数法。

10.练习:求24和36的最大公因数(用喜欢的方法求)。

三、巩固练习。

12和18。

99和132。

24和30。

39和65。

最大公因数教学设计篇十五

一、说教材:

教材的地位及其作用。

学习本课之前,本册教材已经安排了认识因数和找一个数的所有因数,这些内容与本节课紧密相联,是学习本课的铺垫和基础。同时,找最大公因数又是约分的基础,而约分又是分数四则运算的重要基础,因此,理解和掌握最大公因数就显得尤为重要。由此可见,本课在分数运算中起着承前启后、举足轻重的作用。

教材编写者编写本节课时,贯彻数学课程标准(版)的理念,非常注意促使学生经历观察、操作、比较、讨论、归纳等学习活动,在“找最大公因数”的过程中发展抽象概括的能力,培养学生的实践能力和创新意识,帮助学生实现可持续发展发挥。

这里分析本节课在教材中的地位和作用,同时也是我们确定教学目标和教学重点的一项重要依据。

学情分析:

学习本课之前,五年级学生已经认识了倍数和因数,能找出100以内某个自然数的所有因数;积累了一定的观察、操作、归纳等数学活动经验,具备了初步的抽象概括能力。但是,这个年龄阶段的学生处于从具体的形象思维向抽象逻辑思维过渡的阶段,他们的数学学习一个重要特点是:探索发现和抽象概括的过程中需要具体的、形象的数学例证作支撑;同时他们在进行数学概括时往往不够完整,在数学表达上往往不够严谨,这些都需要精心的引导。

以上学情,是我们确定教学目标和教学重点、难点以及确定教法、学法的一项重要依据。

教学目标:

1、在解决问题的过程中理解公因数和最大公因数的意义,探索找公因数的方法,会正确找出两个数的公因数与最大公因数。

2、渗透集合思想,体验解决问题策略的多样性。

3、培养学生分析、归纳等思维能力,激发学生自主学习、积极探索的热情,培养合作交流的良好习惯。

教学重、难点:

教学重点:能理解公因数和最大公因数的意义,探索找公因数的方法。

教学难点:能正确找出两个数的公因数与最大公因数。

教材处理:

教材首先呈现了找公因数的一般方法:先用想乘法算式的方式分别找12和18的因数,再让学生将这些因数填入两个相交的集合圈中,引导学生重点思考的问题是:两个集合相交的部分填哪些因数?在此基础上,引出公因数与最大公因数的概念。教材用集合的方式呈现思路,让学生经历知识的形成过程,引发学生的数学思考。

教材在练一练中,呈现了两组找因数、公因数和最大公因数的练习,一组是8和16,另一组是5和7。第一组是两个数存在倍数关系找最大公因数;第二组是找互质数的最大公因数。我在教学这两种特殊情况时,给出更多的数字,安排了三对数,第一组4和8,16和32,6和24,每对都存在倍数关系,先让学生找一找公因数和最大公因数,然后观察最大公因数,发现每组的最大公因规律。第二组安排了三对数3和7,8和9,15和16,都存在互质的关系,也先让学生找一找公因数和最大公因数,然后观察、发现每组的最大公因数都是1,然后现去想一想,每组数都有些什么特点,从而概括这两种特殊情况组找最大公因数的方法。

二、说方法。

教法、学法选择:

依据《数学课程标准(版)》,数学教学活动要注重把四基目标有机结合,整体实现;要重视学生在学习活动中的主体地位,我对本节课主要选用了探究性学习方式。同样的,依据《数学课程标准(2011版)》,为了使学生主体地位和教师的主导作用达到和谐统一,我还选用了启发式的教学方式。

教学手段:

我使用了现代信息技术,以手段多样化,促进学生的探索研究。主要使用了四种教学手段:

1、学具操作:合理的使用学具能促进学生的亲身经历与体验,帮助学习建立数学建模。

2、白板运用:恰当的演示,给课堂带来清晰的层次感,体现教师的主导作用和引导方式。强大的.电子白板可以更好的辅助教师和学生之间的互动。

4、课堂板书:必要的板书有利于实现学生的思维与教学过程同步,有助于学生更好地把握教学内容的脉络。

三、说过程。

一、复习导入。(复习找因数的方法)。

回忆旧知识,又是为向新知识的延升做好铺垫。

让学生找出12的所有因数。并说说是怎样找的?找因数的时候需要注意些什么?

(白板上出示1、2、3、4、5、6、7、8、9、10、12、15、18、20数字和集合圈1)。

让学生将12的因数拖入集合圈中,回忆找因数的方法。怎么找因数才能又快又有顺序?

用乘法算式,有序、不易遗漏。

二、探究。

再找一找18的所有因数,并出示集合圈2,让学生将18的所有因数拖入集合圈2中。

9、18。

移动集合圈。展示交集动态的过程。

师:左边的集合圈填的是什么?(12的因数)右边的集合圈填的是什么?(18的因数)中间的圈里是?(即是12的因数也是18的因数)。

那我们可以给他取个名字?(公因数)。

我们可以将4放到中间的集合圈中吗?为什么?

根据学生的回答,小结:即是12的因数也是18的因数,我们就称他为12和18的公因数。

巩固练习。

你学会了找两个数的公因数了吗?试一试吧。

找6和9的公因数找30和45的公因数。

如果请你找出12和18的最大公因数,你会觉得是哪一个数字呢?

巩固练习。

我们学会了找最大公因数,那同学们能找出这三组数的最小公因数吗?你有什么发现?

1、4和816和326和24。

2、3和78和915和16。

做完后分小组相互交流,从中你能发现些什么?

每组的两个数有些什么特点,和他们的最大公因数有什么关系?是不是有这些特点的两个数,它们的最大公因数都有这些规律呢?分小组验证。

反馈得出结论:两个数是倍数关系的,较大的数是两个数的最大公因数。

两个数只有公因数1时,他们的最大公因数为1。

三、练习反馈:

四、归纳总结。

1、这节课我们学到了那些知识?

2、我们是运用什么方法获得这些知识的?

(不但让学生谈知识技能方面的收获,还着重让学生谈谈了学习方法、情感态度方面的收获,再一次激起良好的情绪体验。)。

【本文地址:http://www.xuefen.com.cn/zuowen/14704659.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档