2023年三角形的面积计算数学教案(优秀14篇)

格式:DOC 上传日期:2023-11-24 14:45:18
2023年三角形的面积计算数学教案(优秀14篇)
时间:2023-11-24 14:45:18     小编:GZ才子

教案的编写需要考虑学生的个体差异和学习特点,以确保教学活动的个性化和差异化。教案的编写需要注意教学资源的合理利用,充分利用多媒体和信息技术手段。教案是一份教师为指导和实施教学而编写的教学设计和安排的书面材料。它包含了教学目标、教学内容、教学方法、教学过程以及评价方式等内容,是教师教学的重要依据之一。每一份教案都应该根据不同的课程和学生特点进行个性化设计,以达到教育教学的最佳效果。为了编写一份较为完美的教案,教师们应该首先熟悉教学大纲和课程标准,了解学生的知识水平和学习能力,以确保教学内容的合理性和可行性。此外,教师应尽量将教学内容与学生的实际生活相结合,增强学习的可感知性和可操作性。以下是小编为大家收集的教案范文,仅供参考,希望能对教师们编写教案提供一些借鉴和启示。希望这些范文能够帮助你更好地理解和运用教学设计,提升自己的教学水平。

三角形的面积计算数学教案篇一

作者:李胜国邮箱:lghmjl@作者单位:河北省临城县鸭鸽营乡忠信中心小学简介:课件名称:三角形、梯形基础知识及面积推导。

适用于人教版五年制数学第七册。

课件通过“基础知识”来演示说明三角形和梯形各部分名称及高的画法,

“巩固应用”中设计了三道练习题以巩固所学的知识。

说明:因为自己非常喜欢“枯枝”这个名字,所以在开头加了一个“枯枝作品”的动画。

相关课件:

三角形的面积计算数学教案篇二

“三角形的面积”是一节常见的课,一般的做法是在由学生拼组后直接推导出三角形的面积计算公式。本设计最大的特点是改革了这一常见的做法,在拼组后,通过对三角形与拼成的平行四边形之间的联系的探究,指导学生直接利用这种关系尝试计算三角形的面积,在积累了一定的感性认识后,再引导学生归纳、总结三角形的面积计算公式,更能为学生所接受。

苏教版标准实验教科书《数学》五年级上册p15~p16的内容,三角形的面积。

1、探索并掌握三角形的计算面积公式,能应用公式正确计算三角形的面积;

3、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

重点是探索并掌握三角形的面积公式,能正确计算三角形的面积。难点是理解三角形面积公式的推导过程和公式的含义。

cai课件、红领巾、每个小组准备相同的直角三角形、锐角三角形、钝角三角形各两个。

一、创设情境、导入新课。

1、提出问题。

2、揭示课题。

师:那我们今天就一起来研究怎样计算“三角形的面积”?(板书课题:三角形的面积)。

二、操作“转化”,推导公式。

1、寻找思路。

师:大家想想,怎样“转化”呢?可不可以用“割补”的方法呢?

2、动手“转化”。

师:看来用“割补”方法很难“转化”。那我们可不可以用拼一拼的方法来“转化”呢?老师为每个小组的同学都准备了两个完全一样的三角形,请大家拼一拼,看看能不能把三角形“转化”成一个我们已经学过的图形。开始吧。

小组合作拼组图形,教师巡视指导。

[应变预设:一般情况下学生会拼出如下几种形状,老师选择其中三个图形贴到黑板上。]。

[评析:引导学生观察三角形的不同类别,弄清拼成不同形状的原因。]。

3、尝试计算。

师:同学们真棒,大家都发现,用两个完全相同的三角形可以拼成一个平行四边形或一个长方形。现在请同学们看图1。

师:知道了平行四边形的底和高,你们能求出所拼成的平行四边形的面积吗?算一算吧。

师:算完了吗?它的面积是多大?

师:我们知道,这个平行四边形是用两个完全一样的三角形拼成的,平行四边形的面积是20平方厘米,那这个绿色三角形的面积是多大呢?想一想,小组同学商量商量吧。

师:同学们太了不起了,开动脑筋,已经算出了这个绿色三角形的面积。

师:现在请同学们看屏幕,(课件出示,如下图)你们会计算屏幕上这个蓝色三角形(底3cm,高2cm)的面积吗?算一算。

4、推导公式。

师:同学们,刚才大家已经尝试着求出了三个三角形的面积,大家都算得很好。那么现在你们能把三角形的面积计算公式写下来吗?先写一写,同桌同学再商量商量吧。

5、理解公式。

6、用字母表示三角形的面积公式。

师:同学们,如果用a表示三角形的底,h表示三角形的高,s表示三角形的面积,你们会不会用字母表示三角形的面积公式呢?请写一写吧。

师:同学们,你们知道吗?今天我们一动手起推导出的三角形的面积计算公式,很早以前,我们的祖先就已经发现了,请看大屏幕。(课件出示如下图,课本p85页的数学常识。)。

[评析:这样表面是介绍数学常识,但实际渗透了爱国思想教育。]。

三、应用公式,解决问题。

师:那就请大家动手量一量它的底和高吧。

师:量完了吗?请大家算一算,看看做这样一条红领巾到底需要多少红布?

[应变预设:指导学生运用公式进行正确的计算,展示学生的算式,集体订正。]。

四、联系生活,适当拓展。

[应变预设:指导运用公式进行正确的计算,,然后集体订正。]。

师:同学们,你们还能算出这三个三角形的面积吗?(课件出示如下图1:底3厘米,高4厘米;图2:底4厘米,高1。5厘米;图3:底2。5厘米,高2。8厘米)看谁算得又对又快!

四、全课总结,反思体验。

教师:这节课你们学习了什么?有哪些收获?

三角形的面积计算数学教案篇三

三角形面积的计算方法是小学阶段学习几何知识的重要内容,也是学生今后学习的重要基础。《数学课程标准》中明确指出:利用方格纸或割补等方法,探索并掌握三角形、平行四边形和梯形的面积公式。为落实这一目标,这部分教材均是以探索活动的形式出现的,加强了动手实践、自主探索,让学生经历知识的形成过程,自己得出结论。学生在学习三角形面积的计算方法之前,已经亲身经历了平行四边形面积计算公式的推导过程,当学生亲身经历了三角形面积计算公式的推导过程时,不仅可以借鉴前面“转化”的思想,而且为今后逐渐形成较强的探索能力打下较为扎实的基础。教学目标:

知识与能力:运用已有的知识、转化的数学思想,推导出三角形的面积公式并能正。

1、经历三角形面积公式的推导过程,培养学生分析、归纳、交流、

推理的能力和实际操作的能力。

2、通过动手操作和对图形的观察、比较,培养学生的形象思维和逻辑思维能力,发展学生空间观念。

情感态度与价值观:

1、通过小组合作、交流,培养学生爱学数学,乐学数学的情感。

2、在解决实际问题的过程中体验数学与生活的联系。

教学重点:理解并掌握三角形面积的计算公式,正确计算三角形的面积。

教学难点:动手操作推导三角形面积计算公式的过程学情分析在实际问题情境中认识三角形面积必要性,在自主探究中体会有计划、有目的的选择适当的探究方法,锻炼学生动手操作的能力,,进一步感知转化的数学思想和方法,学会用数学语言与他人交流,体验数学公式建立的过程,发展观察对比的'能力、归纳概括能力及空间想象力。能正确地利用三角形面积公式计算,解决实际问题。

教学用具:教师准备课件与三角形教具。

学生准备同样大小的直角三角形两个、锐角三角形两个、钝角三角形两个。

活情境引出问题,激发学生学习的兴趣。然后从学生已有的知识和经验出发,利用三角形与学生熟知的平行四边形之间的联系,把学习的主动权交给学生,让学生通过小组合作动手操作,自主探究,发现新知识,解决新问题,在获得知识的过程中发展了能力。

一、创设情境,生成问题。

1、创设情境:

师:老师遇到了一个问题,同学们愿意帮助老师解决吗?生:愿意。

生:一条红领巾的大小。

师:也就是一条红领巾的什么?

师:红领巾是什么形状的?

2、导入课题:

师:怎样才能算出三角形的面积呢?这节课我们就来共同探究三角形面积的计算方法。(板书:三角形的面积)。

二、探索交流,解决问题。

师:同学们还记得我们学过的平行四边形的面积公式吗?生:s=ah。

师:回忆一下是怎样推导出来的?(学生口述)。

(1)第一次探索操作。

师:好,我们先来试试三角形能不能转化成我们已学会的计算面积的图形,请同学们拿出准备的三角形,四人一小组,利用手中的学具进行操作。动手前,注意老师提出的这几个问题:

你选择两个怎样的三角形拼图?能拼出什么图形?拼出的图形的面积你会算吗?拼出的图形与原来的三角形有什么联系?(屏幕出示)好,开始。

(学生小组合作操作,教师参与到小组中进行指导。)。

师:三角形能转化成我们已学会的计算面积的图形吗?

生:能。

师:那你们是怎样转化的?哪个小组上来说说,他们汇报的时候,其他小组的同学要认真听,听听他们的结果与你们的有什么不同,如果有疑问可以向他们提出。

生1、我们小组用两个直角三角形拼成一个长方形。

师:我这儿也有两个直角三角形,可是拼不成,你用的是两个什么样的三角形?(师演示)。

生1、我们用的是两个完全一样的直角三角形。

师:你怎么知道是两个完全一样的三角形?

生2、我们组用两个完全一样的锐角三角形拼成了一个平行四边形。

师:你们是怎么拼的?

生2、把两个三角形重合,找到相等的边,再把两个三角形反方向对齐,就可以拼出平行四边形。

生2、三条边。

生3、我们用两个完全一样的钝角三角形拼成一个平行四边形。生4、我们用两个完全一样的直角三角形还可拼成一个平行四边形。

生5、我们用两个完全一样的等腰直角三角形可拼成一个正方形。师:好,同学们有这么多的拼法,都贴到黑板上。

【设计意图:学生在前面学习的基础上,运用转化的数学思想,通过动手操作,将三角形转化成已学过的计算面积的图形上。在操作过程中,教师把自主学习的权利还给了学生,使学生学得积极主动。

三角形的面积计算数学教案篇四

关于第三步:教材上只有一句话:能不能把三角形转化成已经学过的图形再计算面积。这是化未知为已知的思维方式,我们常给初中学生提起这些认知策略,但它的基础却在小学阶段和学生的日常生活经验中。教材把这个重要的数学思想一笔带过,把挖掘其内涵,为学生建立辩证观念的重任留给了老师。但很多老师并不特别重视这句话,只是把它当作一个过渡句,当成进入下面环节的引言。

第四步。转化是一定的。但是,转化成什么?怎么转化?把三角形转化成“能计算的图形”大致有五种情况。教材推荐的是第五种(如图)。教材上的引导方式只有教师的主导性,而忽视了学生的主体位置。

前面提到,学生计算三角形面积的首选方法是数格,那么次选方法是什么?他们的第二方案应该还是在自己的经验中寻找帮助。这些经验当中,与计算面积有关的直接、简单、容易操作的内容就是在前面的几节课刚学过的“切割平行四边形成长方形”的方法。他们对“切割”这个动作记忆犹新。因为:一、这个技巧刚刚学过;二、切割是个动作,但这个动作能把不规则变规则,所以印象深刻;三、这个简单的动作能完成面积计算的任务。所以他们的下一步动作会是模仿上一节课的做法,想办法切割三角形的某一角移动填补另一角,变三角形成长方形或平行四边形。按这个说法,学生在寻找计算三角形面积的方法时,他首先会在他手中所拿的三角形卡片上琢磨,对这个三角形进行加工处理。在不得要领,或是找到了办法,问题解决了,但心有余味,继续探索下去时才会考虑到利用其他内容扩展思考空间,再找一个一样的三角形牵线搭桥,把思路引到问题的外面。

教材中还有一点缺失:学生在教师的引导下用两个“全等”三角形进行拼接时,是一个尝试的过程。教材举例说:小华拼出了一个长方形一个平行四边形。小林拼出了两个三角形――一个人拼的全是能利用的,一个人拼的全是不能用的,两个人的对比太大。我们想这不是教材的疏漏,是为了突出教学任务和目标。另外,教材举的例子是两个三角形能拼成一个长方形和一个平行四边形。但实际上能拼成两个平行四边形,加上长方形就是有三个图形是已经学习过的,都能用来推算三角形面积。教材忽略这个没有列出的平行四边形,我们猜可能是因为它的倾斜度过大,在视觉上有一种要“倒”的感觉。如果学生受视觉效果的影响,注意力分散,会影响到他们分析两种图形的底、高和面积的关系。也可能是基于简单化原则,有两个就够了,何必要三个。但是按这个说法,要一个就够了,何必两个。

按照教材设定的思路,我们可以设想:学生手拿三角形,听老师布置完任务。怎么拼,能拼出什么都不太清楚,只能先随便的拼一下试试。如果运气好或者预想能力较强,可能直接拼出平行四边形和长方形。学生在试验时,会发现不等边拼接没有后续效果,因为这些组合图形都不规则,不能把握。然后,学生会把注意力放在那些特殊图形上。一类是那些中心对称的平行四边形,这是学习过的内容;一类是那些左右对称的凸多边形,这是好奇心驱使,随后即会放弃。学生的试验,开始可能是无序状态,随着注意的集中,目标一个一个的出现,学生的意识中必定会对自己刚才的所有拼接进行回顾(很多时候这个回顾是无意识的),找到拼出所有图形的方法得出两个全等三角形能顺次拼出三个形状不同的平行四边形的结论,使自己的思维进入有序状态。

教材把这个过程缩减了,有些教师则更希望把它压缩成一个或几个动作,为后面的讲解和练习挤出时间,不愿把时间精力浪费在这个非目标、非重点、也非难点的中间环节上。认为只要知道了转换的道理,就有了“等底等高,面积2倍”这个重点的突破。在动手操作上延长时间,势必影响教学目标的讲解和强调。

其实这是个误解。公式的推导过程本身也是对公式的熟悉过程,过程熟悉了,结果也就熟悉了。以后也就无须用多的吓人的练习题让学生做,把公式强印到学生的脑子中。举一个化学上的例子:两种物质能发生反应,这是先决条件。但是反应所需要的环境如加热、电击、搅拌或是放在溶液中使其反应更充分,以及催化剂等这些控制反应进行的因素也很重要,甚至是必须的。学生在探寻知识的过程中所取得的经验和教训就是知识发挥作用的控制因素。一般上,我们认为把知识放在问题中,解决问题,知识的作用就发挥出来了。但是,问题从何而来?来自思维。思考什么?思考我们看到的,感觉到的。如果对周围事物的发展、变化、规律、联系、相互作用、矛盾冲突以及相似性、特殊点(这些名词、概念确实存在于我们的意识和思维中)没有任何的反应,就不会产生问题、提出问题。不会发现问题的人,一般也不会主动回答别人的问题。让学生自己动手就是为了训练学生的`动手能力观察能力和感受性。

如果学生在图形的拼接过程中能集中注意力,边拼接边总结,最后达到能快速有节奏的拼出所有图形的程度。那么学生至少有两点除直接为教学目标服务之外的收获。其一是实验精神,这种品质是在面临所有新问题时都必须具备的。这一点不必多说。

第二点是个技巧:要想拼出所有图形,必须以排列组合的方式按照一定的顺序,挨着个的来。如果我们能对这个技巧善加培养,就会形成一种能力或是一种精神品质。在许多新编的实验教材中都安排了很多这样类型的训练内容。这些训练的目的,并不在这些具体的问题本身,而在于让学生扩展自己的思维空间。思维空间的扩展并不是说让学生知道更多的东西,而是说让学生忘记自己已知道的、已掌握的东西――需要的时候,能马上从意识中提取。想达到这种水平,需要做到体系化和结构化。人的思想无限广大,但是如果其中的内容杂乱无章,互无联系,就等于有限的物质占据了无限的空间。就象是如果没有天体星系之间的吸引力和运动造成的动态平衡,就会宇宙大乱。人类就不可能认识这个世界。会毁在这种无序状态之中。但运动能看的见,吸引力却难捉摸。

在我们所有的认识活动中,都有一个从混沌到有序,从不明所以的细节认识到把握事物的结构,确定各部分间的联系和作用方式的整体感知的过程。如果学生拥有了这个过程的心理体验,就会促使他们在个性发展上形成一种良好的精神品质。就会心理坚定,动作迅速,思维敏捷。但我们却常常在课堂上打断学生的这个思维过程,系之以我们认为最佳的知识体系。却不知单纯以逻辑作联结的知识在学生看来只是内容上的堆砌,会对学生造成巨大的精神压力。只有以心理体验做基础才能真正将知识内化,达到“有”既是“无”的空明之境。自己的努力常被别人打断的人,有一种受制于人的感觉。经常这样,学生会变的没有自信,心浮气燥,尝试过程中会产生否定心理:否定错误,固执己见;否定问题:这个问题不可能有解;甚至否定自己:我做不出来了,再努力也是白费工夫。

推导三角形的面积公式,大致有五种方式。根据各种推导方式的不同特点,我们可以帮助学生设定两种学习思路。

第一种:前三种推导方式,适合用“先确定探求目标,然后从已知经验中借鉴和搜寻解决方法”的学习方式:学生手拿一个具体的三角形卡片,经过怎么办,怎么变,怎么算等思维过程,然后通过验证,将怎么变舍去,把怎么算压缩概括为一个计算程序,这就是公式。第二种:用后两种推导方式,可以这样引导学生“长方形和平行四边形的面积公式除了能计算平行四边形和长方形的面积,还可以计算其他图形的面积。大家可以尝试一下……”。学生手拿长方形和平行四边形,经过折叠、剪切逐步转化为三角形和梯形,再总结成公式。这两种引导方式是不应该混杂在一起呈现给学生的。

无论是那一种方法,只要真正是学生的动手操作和思维的成果――教师的责任和义务是导引而非强行推进――对学生来说都有非常重大的意义。除知识的累积外,尚有许多教师可以讲清却无法给予的心理体验和能力。比如:

前面提到的试验精神和以排列组合的方式对事件的发展进行调控,增强思维的有序性。

建立数学模型,把实践问题数学化。这是许多人不了解数学为何物的关键之处。

估算和预想。学生拿着三角形和剪刀,不会直接下手,会先进行比对和预想:从这里下刀,向这个角度截下的角能补到哪?能把顶角补齐吗?估计相差不大,试一下……有许多解决问题和创造活动的前期准备都是在头脑中预演的。预演的过程虽不十分准确,但节奏快,内容多,可以跳过许多不必要的中间程序。

动手能力。这是大家都非常重视的一个词。证据之一:小孩子在玩沙时,大人有耐心看着他们完成自己的作品,直至失去兴趣。在课堂上我们为学生准备了许多学具。这些学具,是根据我们想要学生完成的操作动作精心设计的。能最大限度的体现老师的要求。学生在用学具对老师进行模仿,或参照课本完成老师的细致要求时。时常被我们的“好了!大家停一下。坐好了!”或“现在我们来看……”一类的声音打断。学生们一听到这些话,就会习惯性的把手拿开放到背后。许多老师要求学生坐直,抬头挺胸,手放背后。而且时不时来一句“看谁坐的直!”。学生坐好以后,对自己的劳动成果不再看一眼,眼睛直盯着黑板和老师。就好象桌子上什么东西都没有,刚才自己什么也没做过一样。毕竟,动手能力没有注意听讲重要。

证据之二:有时候我们会很自豪的说:如果学生不会,我就手把手地教。实际上,手把手的作用并不大:老师拿着学生的手,学生的注意和力量被分散了。老师的力量加在学生手上,学生会自然的产生反作用力。但他明白他应该顺应老师所以他要控制自己的反作用力。学生的一部分精力就用在了二者的协调上。学生不可能在手把手的过程中真正体会到老师是如何用力的。感觉只能是自己产生,别人能给的只是外部刺激。手把手的好处可能是能对那些自信心不足的学生以安慰和鼓舞,以及提醒学生模仿参照老师,想象体会老师的感觉。

试验过程中规律和直感经验的应用和把握。在截切三角形时第一次会用较多的时间,失败的可能性很大。第二次找截切点和角度的速度会加快。也可能,第二次还没有进行完,学生就得出结论:这一次是失败的,准确位置应该在那儿。速度加快和直接下刀,表明学生已经感知这个截切点的特殊性,应该就在三角形的半腰处。右边是这样,左边也应该……。

前三种用割补法变三角形为平行四边形,利用的是以前的经验,模仿的形式。想到后两种填充法和拼接法,应该算是通过观察问题存在的周边环境而找到的方法,创造的成份比较多。这是把事件或问题放在背景和环境中考虑,是一种整体认知的意识和能力。既如荀子在《劝学》中说的“善假于物也”,此“物”既存于人的经验意识和周边环境中。

如果发挥学生的主体意识,学生找到后两种推导方法的心理机制比较复杂,我们还难以把握。学生可能是误打误撞找到的,也可能是因为学生有生活方面的此类经验,迁移能力较强。不管学生是怎样找到的,也不论是学生的功劳还是教师的指导,这几种方法所携带的辨证观念是我们应该特别关注的。即便是因为学生的年龄特点不能给予形式内容上的加强,起码可以给学生以精神自由和意志自由,做到不防碍它的发展。

精神意志的自由虽不能直接激发思维和创造,却可以产生真正的积极性和主动性。学生不把自己当学生,当成探索生活和世界的强者,教师不把自己当教师,当作合作者(尤其是备课的时候),由此思想自由而产生的创造,要比我们用装腔作势、花样翻新来吸引学生注意力,以集体、荣誉、表扬、攀比、别人的眼光来束缚学生的思想,以教鞭、纪律来规范学生的言行,高潮迭起、节奏紧凑、有声有色,学生却象是提线木偶的课堂来得彻底、来得有效率。

阿基米德说:给我一个支点,我能把地球翘起来。找到支点和作用方式学生的力量是巨大的。学习知识、掌握技巧、提高能力的作用点不在于紧盯目标和任务,下死工夫塞到头脑里。就好象翘起地球的支点不会在地球上,必须到太空中寻找一样,提高学习效率的支点应该存在于学生们比太空还充实还广漠的精神世界里。它的充实之处在于,学生能随时找到前进道路上的踏脚基石。广漠之处在于,学生愿意并能吸收容纳更多更新的体验。学生课堂学习的基础是他们的精神世界,他们的精神世界植根于生活。所以说提高学习效率的根本方法从丰富多彩的生活中凝练思想。

三角形的面积计算数学教案篇五

六年制小学数学第九册《三角形面积的计算》一节,教材上是这样安排的:一、明确目标;二、用数格的方式不能确定三角形的面积;三、能否转化成以前学过的图形进行计算?四、拿两个全等的直角三角形可以拼成以前学习过的学习过的长方形和平行四边形,直角三角形的面积是长方形和平行四边形面积的一半;五、验证锐角三角形和钝角三角形是否也能拼成平行四边形;六、三次试验确定所有类型的三角形能转化成平行四边形,两者的关系是“等底等高,面积一半”;七、总结三角形的面积公式。

我们在多次的课堂教学实践和课下辅导过程中,发现上面的几个“环节”有些地方不太符合学生的认知特点。具体分析一下:

第一步没什么问题,每个教师都有自己的导入新课的方式。

第二步也没有什么:学生在学习长方形和正方形的面积时用的是“数格”的方式。学习习近平行四边形时用的`是切割再组合的方式,就是所谓的“转化”。在大部分学生对面积这个概念的理解还不十分透彻的情况下,面对三角形,学生们的首选方法就是“数格”。因为这是学生学习有关面积计算的第一经验,第一印象,第一个技巧。也是最简单,最直接(当然也是最麻烦)的方法。

[1][2][3][4][5]。

三角形的面积计算数学教案篇六

九年义务教育六年制小学数学教科书第九册69页至71页。

2.使学生明白事物之间是相互联系,可以转化和变换的。

3.通过交流,观察、比较,培养学生发现问题、提出问题、分析问题、解决问题的能力,发展学生的空间观念。

探究三角形面积公式的推导过程,掌握和运用三角形面积计算公式进行计算。

针对本课的知识特点,课前设计目的性明确、可操作性强的前置性作业,充分调动学生学习的热情,提高课前预习的效果,为成功的课堂教学做好铺垫;在课堂上,运用小组交流的学习方式,每个成员都有机会展示自己,小组交流后再进行全班的汇报,根据学生汇报的情况教师有目的地板书,然后引导学生观察、比较,进而推导出三角形的面积计算公式。

一、导入:

1、平行四边形面积计算公式是怎样推导的?

总结:把没学的图形转化成已经学过的图形从而推导出面积计算公式。

2、今天,我们也用同样的方法推导三角形面积计算公式,板书课题。

二、讨论。

小组交流课前小研究。

三、推导。

1、汇报课前研究的方法,老师根据学生的汇报有目的地板书。

四、应用。

1、教学例1。

2、强调格式。

五、练习。

1、下面平行四边形的面积是12平方厘米,斜线部分三角形的面积是多少?

(口答,并说出理由)。

2、判断:

(1)三角形的面积是平行四边形面积的一半。()。

(2)三角形的高是2分米,底是5分米,面积是10分米。()。

课前小研究。

研究者:班级:

(可以在学具盒或在附图中选材料)。

1、我用的材料是:

我的做法(文字或画图表示):

我的结论:

2、我用的材料是:

我的做法(文字或画图表示):

我的结论:

3、我用的材料是:

我的做法(文字或画图表示):

我的结论:

4、我用的材料是:

我的做法(文字或画图表示):

我的结论:

附图2。

材料一。

材料二。

三角形的面积计算数学教案篇七

通过猜想、验证,了解三角形的内角和是180度。在学习的.过程中进一步激发学生探索数学规律的兴趣,初步感知计算多边形内角和的公式。

出示三角尺中的一个,提问:谁来说说三角尺上的三个角分别是多少度?

引导学生说出90度、60度、30度。

出示另一个三角尺,引导学生分别说出三个角的度数:90度、45度、45度。

提问:请同学们任选一个三角尺,算出他们三个角一共多少度?

学生计算后指名回答。

师:三角尺三个角的和是180度。

提问:是不是任一个三角形三个角的和都是180度呢?请同学们在自备本上任画一个三角形,量出它们三个角分别是多少度,再求出它们的和,然后小组内交流。

学生小组活动,教师了解学生情况,个别同学加以辅导。

全班交流:让学生分别说出三个角的度数以及它们的和。

提问:你发现了什么?

:任何一个三角形三个角的和都是180度。利用三角形的这一性质,我们可以解决许多问题。

要求学生先计算,再用量角器量,最后比较结果是否相同?让学生说说计算的方法。

教师说明:即使结果不完全一样,是因为测量的结果存在误差,我们还是以。

计算的结果为准。

完成想想做做的题目。

三角形的面积计算数学教案篇八

“自主探索、合作交流、亲身实践”是《数学课程标准》大力倡导的学习方式,这种学习方式使学生真正成为学习的主人。本节课在设计时改变了教师“讲”知识,学生“用”知识的教学模式,把学习的主动权交给学生,使学生的主体地位落在实处,使学生学的积极、主动。让学生通过动手实践、自主探索,推导出三角形的面积的计算方法。这也是本节课的一个亮点。

在设计教学环节时我注意了学生已有的知识基础和经验背景,按照学生的认知规律组织教学,先复习了平行四边形面积的推导过程,然后让学生去探究三角形的面积计算方法。根据学生已有的知识由旧引新,衔接自如。

充分体现“动手做数学”的理念是这节课的又一亮点。纵观本节课,处处都充满了“做”。建构主义认为:小学生数学学习应该是一个主动构建知识的`过程。小学生的数学知识不应该完全被动的吸收课本知识,而应该让他们在丰富生动的思维活动中“做数学”。

本节课通过学生的动手操作、实践探索两个环节,时时处处体现了学生在“做数学”,而教师也真正起到了一个好的组织者、引导者和参与者的作用。使学生在一个轻松、和谐、民主的氛围中探索出了三角形面积的计算方法,获得了成功的体验,增加了学好数学的信心,不仅培养了学生的动手操作能力,还培养了学生解决问题多样化的意识。

纵观这个教学过程,初步体现了提出问题---大胆猜测---反复验证---总结规律---灵活应用这一科学探究的方法,让学生通过自身的实践活动对科学探究的方法有了初步的了解,体验到知识的产生都经历了曲折艰苦的过程,由于学生的活动是独立自主的,因此面对同样的问题学生会出现不同的思维方式,让学生在独立思考的基础上进行合作交流,不仅能满足学生展示自我的心理需求,同时能使学生从不同的角度去思考问题在合作中互相启发,互相激励,共同发展.

三角形的面积计算数学教案篇九

教材第910页例4、例5及练一练、试一试、练习二第6-9题。

1.通过操作、观察、填表、讨论、归纳等数学活动,探索并掌握三角形的面积公式,能正确地计算三角形的面积,并应用公式解决简单的实际问题。

2.进一步体会转化方法的价值,培养自己应用已有知识解决新问题的能力,发展自己的空间观念和初步的推理能力。

经历探究三角形面积计算公式的过程,理解并掌握三角形的面积计算公式。

多媒体课件、教材第115页的三角形。

一、自主准备。

()()()。

2.思考:(1)三角形的面积与它拼成的平行四边形的面积有什么关系?

(3)假如要你探究三角形的面积,你打算把它转化成什么图形进行研究?我想转化成。

二、自主探究。

1.拼一拼:从课本第115页上选两个完全一样的三角形剪下来,看看能不能拼成平行四边形。

2.填一填:你剪下的两个完全一样的.三角形能拼成平行四边形吗?如果能,拼成的平行四边形的面积和每个三角形的面积各是多少?请填写下表。

3.想一想。

(1)拼成平行四边形的两个三角形有什么关系?

(3)根据平行四边形的面积公式,怎样求三角形的面积?

三、自主应用。

试一试:完成书上第10页的试一试。

四、自主质疑。

说一说:

(2)你认为本节课应学会什么?

三角形的面积计算数学教案篇十

个有生命的课堂,应该是思维灵动的课堂,既要通过精心的预设,激发思维的灵动,更应巧用生成的教学资源,应情境而变,敏锐捕捉不期而至的生成点,才能演绎不曾预约的精彩应情境而变,提升课堂思维的灵动。

课堂教学是一个动态生成的过程,无论我们预设得如何的充分,都无可避免地存在着许许多多的不确定因素:

记得我在上《三角形的面积计算》一课时,引导学生通过探究得出三角形面积公式后,出示这样一道判断题:等底等高的三角形面积相等。()。

在预设中,我认为这样的判断在前面的探究基础上让学生判断应该是没有什么问题的,可是当我让学生用手势判断时,竟然有三分之一的学生判断是错误的。于是我有意引导持不同意见的学生来一场辩论。

我首先请一名判断错误的学生起来说理由。

生1:等底等高的三角形,就有可能存在形状不同的情况,那就有可能面积不同。

这时持反方意见的一个学生站起来:老师让我来问问他。

生1:要知道三角形相对应的底和高。

生1:用底乘高除以2呀!

这时很多判断错误的学生开始反思了。

生2:那底和高相等,用公式来计算面积会不相等吗?

生1也在反思,但仍坚持:但它们的形状……。

生3:老师,我来画图给他看。

于是,学生上讲台先用直尺在黑板上画了一组平行线,并在两条平行线之间画了几个等底等高的三角形。

生1:哦,我懂了。

这个本来在教学预设中学生应该在可以轻松解决的问题,打乱了我按部就班的教学,但学生的学习积极性和主动性被充分调动起来,迸发出智慧的火花。

我们在日常教学中,要尊重学生不同的思维层次,灵活的利用教学资源进行重组,沿着学生思维的轨迹,多角度地去引导学生,与学生一起生成。在预设中体现教师的匠心,在生成中展现师生智慧互动的火花!让课堂充满生成的美丽。

三角形的面积计算数学教案篇十一

教学内容:人教版第九册第三单元的《三角形面积的计算》。

教学目的:(一)理解三角形面积计算公式的推导过程,掌握求三角形面积的计算方法。

   (二)通过学生动手拼摆,渗透旋转、平移的数学思想,引导学生用多种方法推导公式,发散学生的思维,培养学生求异思维的能力。

教学难点:理解三角形面积计算公式的推导过程。

教具准备:用纸皮剪好的两个完全相同的直角三角形、锐角三角形、钝角三角形。。

教学过程:

三角形的面积计算数学教案篇十二

1、在实际情境中,认识计算梯形面积的必要性。

2、在自主探索活动中,经历推导梯形面积公式的过程。

3、能运用梯形面积的计算公式,解决相应的实际问题。

教学重点:理解并掌握梯形面积的计算公式。

教学难点:理解梯形面积计算公式的推导过程。教具准备:各种梯形各两份,剪刀,课件。

一、揭示课题,明确主题。

1、生活中我们能找到许多平面图形,这个教室里有吗?

2、请大家看看这组图片,看看你发现了谁?找到了就立刻喊出它名字!出现次数最多的是……?(梯形)板书2。梯形,四年级的时候我们已经认识它了,谁来介绍一下它。

3、今天,我们来更深入地了解这位朋友,研究梯形的面积。(板书)。

二、回忆旧知,建立联系。

1、面积,我们现在已经会计算哪些图形的面积了?他们计算方法你们还记得吗?(课件)。

2、回忆一下,平行四边形和三角形的面积计算方法我们是怎样推导出来的?还记得吗?

3、同学们,我们在研究它们面积的计算时候,都用到了一种非常重要的数学思想——转化。(板书)把要研究的图形转化成已经学过的图形来发现他们之间的联系,进而推导出面积计算的公式。这种思想,这节课我们也要用到。

三、转化梯形,推导公式。

(一)应用的需要引出猜想。

1、同学们喜欢什么体育运动?喜欢篮球吗?(课件出示篮球场地)你们知道这一处是什么区域吗?这是3秒钟限制区,是限制对方队员在这个区域内停留不能超过3秒钟。

3、同学们都很有想法,那到底是不是像同学们想的那样呢?让我们来动手验证一下。在动手操作之前,老师提出三点建议:(1)想想能把梯形转化成学过的什么图形。

(2)根据转化图形与梯形的关系,推导出梯形面积计算的方法。

(3)填写好汇报单,比一比,哪个小组的动作快。明白了吗?开始吧!

(二)小组活动十分钟。

(三)汇报。

6、在这个公式中,哪里应该引起我们注意呢?在计算的时候一定不要忘记。四、加深理解,巩固新知。

1、总结:好了,同学们,刚刚大家用学过的知识,通过拼合,分割,旋转,平移等方法,把梯形转化成了学过的图形,根据图形间的联系就推导出了梯形面积的计算方法。

2、这个方法你们记住了吗?那老师可要考考你了!(判断题)。

3、通过刚刚的研究和辨析,相信大家对梯形面积的计算方法一定有了深刻的理解吧!这个三秒限制区到底多大呢?你会求吗?需要什么条件?(课件出示)动笔试试吧。

4、梯形面积的计算方法在生活中经常用到,你们想用新知识来解决一些生活中的问题吗?

5、梯形面积的计算方法在生活中还有更广泛的应用,小到…大到…都会用到它。

五、结语。

转化在数学当中是一种非常重要而又常用的思想。在图形的学习中,同学们多次用到了转化的策略,(课件)其实在学习计算时我们也用到了。那我们转化的目就是化未知为已知。以后你再遇到一个未知的新问题,你会怎样想呢?是不是任何未知的问题都可以转化呢?这个问题留给同学们去思考。

三角形的面积计算数学教案篇十三

尊敬的各位考官:

大家好,我是今天的x号考生,今天我说课的题目是《笔算除法》。

新课标指出:数学课程要面向全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上都能得到不同的发展。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。

本节课选自人教版小学数学五年级上册第六单元第二小节《三角形的面积》的内容。在学习本课之前已经讲授了三角形的特征及平行四边形的面积计算和推导过程,这位本节课的学习奠定了知识基础,同时本节课的学习也为后面探究梯形的面积及组合图形的面积做了铺垫。因为本节课的学习与平行四边形的学习有一定的相似之处,因此,在本节课的教学中教师要注重启发式教学,注重引导引导学生探究、发现、归纳出三角形的面积计算方法。

接下来谈谈学生的实际情况。新课标指出学生是教学的主体,所以要成为符合新课标要求的教师,深入了解所面对的学生可以说是必修课。此阶段的学生已经掌握了三角形的形状特征,并且刚刚学习了平行四边形的面积,知道可以将未知图形转化为已知图形进行求解。学生的动手操作及观察、分析能力也有了一定的发展,同时此阶段的学生还具备活泼好动、注意力不集中的特点。所以教学中我会充分考虑学生的已有知识经验及学生的性格特点,采用灵活多样的教学方式进行教学。

根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:

(一)知识与技能。

探索三角形的面积计算公式,掌握三角形的面积计算方法,能应用其解决相应的实际问题。

(二)过程与方法。

通过三角形面积公式的推导过程,提升动手能力及小组合作能力,发展空间观念,渗透转化思想。

(三)情感、态度与价值观。

在探索活动中获得积极的情感体验,增强学习数学的兴趣。

我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:三角形的面积公式。教学难点是:三角形面积公式的推导过程。

数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础上。教学应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能,数学思想和方法,获得广泛的数学活动经验。学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。所以在这节课中我采用了激、导、探的教学方法。让学生带着问题学、在探索中学、在合作交流中学。在教学中积极培养学生的学习兴趣和动机,明确学习目的。

下面我将重点谈谈我对教学过程的设计。

(一)导入新课。

通过展示红领巾,让学生帮助我计算红领巾大小的问题,不仅回归了教材情境图,同时将教材情境图转化为学生身边真实接触的情境,可以让学生感受到数学知识在生活中的作用,进而激发学生对数学知识的学习情趣。

(二)讲解新知。

接下来是新知探索环节。

因为三角形面积的学习过程,类似于平行四边形面积的学习过程,因此在讲授三角形面积探究前,我会先引导学生回顾上节课学习的平行四边形面积的探究过程,学生能够想到将图形进行转化,进而我会让学生思考是否可以将三角形转化为已经学习过的图形的面积,进而得到三角形面积的计算方法。

我会让学生以小组为单位进行探究,思考如何将图形进行转化,并对比转化前后的图形,我会提示学生不要局限与看一个三角形,可以考虑看几个相同的三角形。同时我也会走到学生中间,观察学生的学习进度,对没有思路的小组我会及时给予提示。操作结束,找小组代表展示分享转化结果。

学生通过探究能够发现,在转化过程中需要用到两个相同的三角形,将相同的边拼接,另外两条相同的边相对,即可拼接出平行四边形。用两个相同的直角三角形还可以拼出矩形。

学生有了平行四边形的面积学习经验,在拼出已经学过的图形面积时,能够有目的的分析拼接前后图形间的联系,即三角形的底和高与拼接后的平行四边形的底和高对应相等,但是三角形的面积等于平行四边形面积的一半。在学生分析出前后关系之后我会让学生自己写出三角形的面积计算公式,并让学生给出字母表示形式。最后找学生分享结果即可。

我深知对于陌生事物的学习中,听到的不如自己探究得到的,同时基于新课标的要求:以学生为主体。因此在三角形面积公式的得出方面,我主要是要求学生自己探究得出,我之所以这样设置也是基于学生在此之前有平行四边形的面积学习经验,因此在这里是可以自己探究得出的,学生不易想到的地方是用两个图形进行转化,因此在这里我会少许给出提示,在学生能够自己总结出结论的地方,我就放手交给学生自己得出,最后找学生分享说明思考过程即可。

(三)课堂练习。

在学生探究出三角形的面积计算公式之后,关键是在应用部分,这里我先给出红领巾的底和高的数值,让学生进行计算。

学生在知道数值之后直接代入面积计算公式即可求出面积的大小,设置的题目不仅加强了学生对于新知的应用意识,还体现了我本节课堂的完整性,解决了导入中留下的疑问。

考虑到本节课的学习中,因为学生已有经验较丰富,因此在探究过程会相对较为轻松,并且用时也会稍短,所以在课堂练习环节,我会再设置一个题目,给出一个三角形的面积及高的数值。

通过这样题目的设置是对三角形面积公式的反向应用,可以在巩固本节课学习的同时,也提高学生的逆向思考能力。并且给出两个练习题目也可以丰富课堂的教学内容。

(四)小结作业。

最后环节,我会提问学生本节课的收获,重点让学生回顾三角形的面积计算公式及探究方法。

对于课后作业,我设置了较为开放的形式,让学生找一找生活中的三角形物体,动手测量出其底和高,利用今天学习的面积计算公式,求出所找物体的面积。

这样的问题避开了单纯计算的形式,加入学生自己寻找计算自己喜欢的物体,不仅让学生感受数学知识在生活中广泛用途,还可以激发学生学习数学的积极性。

三角形的面积计算数学教案篇十四

“三角形面积的计算”是北师大版小学数学五年级第一学期第二单元第5小节的内容。本课内容编排的最大特点是突出实践性、研究性,加强了动手操作。教材让学生通过一系列的操作、研究,使学生逐渐明白所学图形与已学图形之间的联系,达到将所学图形(三角形)转化为已学会计算面积的图形(平行四边形),从而找出三角形面积的计算方法。教材注重培养学生的迁移、推理的学习方法以及操作实践、探索研究等能力。

三角形的`面积属于“空间与图形”领域,在此之前,学生已经有了平行四边形面积公式的推导基础,因此把三角形转化成已学过的图形,通过拼、摆、剪、叠等实际操作,来探索三角形面积的计算。不过,让学生切实理解三角形的面积公式却不是很容易。如:公式中为什么要用“底×高”除以2?这个“底×高”求出来的是什么?要想让学生完全领悟,需要引导学生在探索活动中,循序渐进、由浅入深地进行操作与观察,讨论与交流,从而使学生进一步理解平面图形之间的变换关系,发展空间观念。

1.使学生经历、理解三角形面积公式的推导过程。

2.能正确运用公式进行三角形面积计算,初步学会用转化的数学方法解决实际问题。

2.通过讨论及小组合作学习的方式,培养学生的分析综合、抽象概括能力和相互协作学习的能力。

情感目标:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

教学重点:理解三角形面积计算公式,正确计算三角形的面积。

教学难点:理解三角形面积公式的推导过程。

【本文地址:http://www.xuefen.com.cn/zuowen/14656043.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档