高一数学必修教案(模板16篇)

格式:DOC 上传日期:2023-11-24 13:54:05
高一数学必修教案(模板16篇)
时间:2023-11-24 13:54:05     小编:文轩

教案的编写应注重因材施教,根据学生的学习特点和需求进行个性化设计。教案要注重培养学生的合作精神和团队意识,培养他们的合作能力。分析优秀教案中的设计理念和思维方式有助于拓宽教学思路。

高一数学必修教案篇一

1. 阅读课本 练习止.

2. 回答问题

(1)课本内容分成几个层次?每个层次的中心内容是什么?

(2)层次间的联系是什么?

(3)对数函数的定义是什么?

(4)对数函数与指数函数有什么关系?

3. 完成 练习

4. 小结.

二、方法指导

1. 在学习对数函数时,同学们应从熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质.

一、提问题

1. 对数函数的自变量和函数分别在指数函数中是什么?

2.两个函数如果互为反函数,则他们的值域,定义域有什么关系?

3.是否所有的函数都有反函数?试举例说明.

二、变题目

1. 试求下列函数的反函数:

(1) ; (2) ;

(3) ; (4) .

2. 求下列函数的定义域:

(1) ; (2) ; (3) .

3. 已知 则 = ; 的定义域为 .

1.对数函数的'有关概念

(1)把函数 叫做对数函数, 叫做对数函数的底数;

(2)以10为底数的对数函数 为常用对数函数;

(3)以无理数 为底数的对数函数 为自然对数函数.

2. 反函数的概念

在指数函数 中, 是自变量, 是 的函数,其定义域是 ,值域是 ;在对数函数 中, 是自变量, 是 的函数,其定义域是 ,值域是 ,像这样的两个函数叫做互为反函数.

3. 与对数函数有关的定义域的求法:

4. 举例说明如何求反函数.

一、课外作业: 习题3-5 a组 1,2,3, b组1,

二、课外思考:

1. 求定义域: .

2. 求使函数 的函数值恒为负值的 的取值范围.

高一数学必修教案篇二

3.通过参与编题解题,激发学生学习的爱好.

教学重点是通项公式的熟悉;教学难点是对公式的灵活运用.

实物投影仪,多媒体软件,电脑.

研探式.

一.复习提问

等差数列的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用.

二.主体设计

通项公式反映了项与项数之间的函数关系,当等差数列的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知求).找学生试举一例如:“已知等差数列中,首项,公差,求.”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用等差数列通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上.

1.方程思想的运用

(1)已知等差数列中,首项,公差,则-397是该数列的第x项.

(2)已知等差数列中,首项,则公差

(3)已知等差数列中,公差,则首项

这一类问题先由学生解决,之后教师点评,四个量,在一个等式中,运用方程的思想方法,已知其中三个量的值,可以求得第四个量.

2.基本量方法的使用

(1)已知等差数列中,求的值.

(2)已知等差数列中,求.

若学生的题目只有这两种类型,教师可以小结(请出题者、解题者概括):因为已知条件可以化为关于和的二元方程组,所以这些等差数列是确定的,由和写出通项公式,便可归结为前一类问题.解决这类问题只需把两个条件(等式)化为关于和的二元方程组,以求得和,和称作基本量.

教师提出新的问题,已知等差数列的一个条件(等式),能否确定一个等差数列?学生回答后,教师再启发,由这一个条件可得到关于和的二元方程,这是一个和的`制约关系,从这个关系可以得到什么结论?举例说明(例题可由学生或教师给出,视具体情况而定).

如:已知等差数列中,…

由条件可得即,可知,这是比较显然的,与之相关的还能有什么结论?若学生答不出可提示,一定得某一项的值么?能否与两项有关?多项有关?由学生发现规律,完善问题(3)已知等差数列中,求;;;;….

类似的还有

(4)已知等差数列中,求的值.

以上属于对数列的项进行定量的研究,有无定性的判定?引出

3.研究等差数列的单调性

4.研究项的符号

这是为研究等差数列前项和的最值所做的预备工作.可配备的题目如

(1)已知数列的通项公式为,问数列从第几项开始小于0?

(2)等差数列从第x项起以后每项均为负数.

三.小结

1.用方程思想熟悉等差数列通项公式;

2.用函数思想解决等差数列问题.

四.板书设计

等差数列通项公式1.方程思想的运用

2.基本量方法的使用

3.研究等差数列的单调性

4.研究项的符号

高一数学必修教案篇三

用坐标法解决几何问题的步骤:

第二步:通过代数运算,解决代数问题;

第三步:将代数运算结果“翻译”成几何结论、

重点与难点:直线与圆的方程的应用、

问 题设计意图师生活动

生:回顾,说出自己的看法、

2、解决直线与圆的位置关系,你将采用什么方法?

生:回顾、思考、讨论、交流,得到解决问题的方法、

问 题设计意图师生活动

3、阅读并思考教科书上的例4,你将选择什么方 法解决例4的'问题

生:自 学例4,并完成练习题1、2、

生:建立适当的直角坐标系, 探求解决问题的方法、

8、小结:

(1)利用“坐标法”解决问对知识进行归纳概括,体会利 师:指导 学生完成练习题、

生:阅读教科书的例3,并完成第

问 题设计意图师生活动

题的需要准备什么工作?

(2)如何建立直角坐标系,才能易于解决平面几何问题?

(3)你认为学好“坐标法”解决问题的关键是什么?

高一数学必修教案篇四

教学目标。

1、知识与技能。

(1)推广角的概念、引入大于角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4)掌握所有与角终边相同的角(包括角)的表示方法;(5)树立运动变化观点,深刻理解推广后的角的概念;(6)揭示知识背景,引发学生学习兴趣。(7)创设问题情景,激发学生分析、探求的学习态度,强化学生的参与意识。

2、过程与方法。

通过创设情境:“转体,逆(顺)时针旋转”,角有大于角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习。

3、情态与价值。

通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分。角的概念推广以后,知道角之间的关系。理解掌握终边相同角的表示方法,学会运用运动变化的观点认识事物。

教学重难点。

重点:理解正角、负角和零角的定义,掌握终边相同角的表示法。

难点:终边相同的角的表示。

教学工具。

投影仪等。

教学过程。

【创设情境】。

思考:你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25。

小时,你应当如何将它校准?当时间校准以后,分针转了多少度?

[取出一个钟表,实际操作]我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于之间,这正是我们这节课要研究的主要内容——任意角。

【探究新知】。

1.初中时,我们已学习了角的概念,它是如何定义的呢?

[展示投影]角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。如图1.1-1,一条射线由原来的位置,绕着它的端点o按逆时针方向旋转到终止位置ob,就形成角a.旋转开始时的射线叫做角的始边,ob叫终边,射线的端点o叫做叫a的顶点。

[展示课件]如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角,这些都说明了我们研究推广角概念的必要性。为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角(positiveangle),按顺时针方向旋转所形成的角叫负角(negativeangle).如果一条射线没有做任何旋转,我们称它形成了一个零角(zeroangle).

8.学习小结。

(1)你知道角是如何推广的吗?

(2)象限角是如何定义的呢?

(3)你熟练掌握具有相同终边角的表示了吗?会写终边落在x轴、y轴、直。

线上的角的集合。

五、评价设计。

1.作业:习题1.1a组第1,2,3题。

2.多举出一些日常生活中的“大于的角和负角”的例子,熟练掌握他们的表示,

进一步理解具有相同终边的角的特点。

课后小结。

(1)你知道角是如何推广的吗?

(2)象限角是如何定义的呢?

(3)你熟练掌握具有相同终边角的表示了吗?会写终边落在x轴、y轴、直。

线上的角的集合。

课后习题。

作业:

1、习题1.1a组第1,2,3题。

2.多举出一些日常生活中的“大于的角和负角”的例子,熟练掌握他们的表示,

进一步理解具有相同终边的角的特点。

板书。

高一数学必修教案篇五

掌握三角函数模型应用基本步骤:

(1)根据图象建立解析式;

(2)根据解析式作出图象;

(3)将实际问题抽象为与三角函数有关的简单函数模型·。

·利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型·。

一、练习讲解:《习案》作业十三的第3、4题。

(精确到0·001)·。

米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?

本题的解答中,给出货船的`进、出港时间,一方面要注意利用周期性以及问题的条件,另一方面还要注意考虑实际意义。关于课本第64页的“思考”问题,实际上,在货船的安全水深正好与港口水深相等时停止卸货将船驶向较深的水域是不行的,因为这样不能保证船有足够的时间发动螺旋桨。

练习:教材p65面3题。

三、小结:1、三角函数模型应用基本步骤:

(1)根据图象建立解析式;

(2)根据解析式作出图象;

(3)将实际问题抽象为与三角函数有关的简单函数模型·。

2、利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型·。

四、作业《习案》作业十四及十五。

高一数学必修教案篇六

细胞膜、细胞壁、细胞核、细胞质均不是细胞器。

一、细胞器之间分工。

1.线粒体:细胞进行有氧呼吸的主要场所。双层膜(内膜向内折叠形成脊),分布在动植物细胞体内。

2.叶绿体:进行光合作用,“能量转换站”,双层膜,分布在植物的叶肉细胞。

3.内质网:蛋白质合成和加工,以及脂质合成的“车间”,单层膜,动植物都有。分为光面内质网和粗面内质网(上有核糖体附着)。

4.高尔基体:对来自内质网的蛋白质进行加工、分类和包装,单层膜,动植物都有,植物细胞中参与了细胞壁的形成。

5.核糖体:无膜,合成蛋白质的主要场所。生产蛋白质的机器。

包括游离的核糖体(合成胞内蛋白)和附着在内质网上的核糖体(合成分泌蛋白)。

6.溶酶体:内含有多种水解酶,能分解衰老、损伤的细胞器,吞噬并杀死侵入细胞的病毒或病菌,单层膜。

溶酶体吞噬过程体现生物膜的流动性。溶酶体起源于高尔基体。

7.液泡:主要存在与植物细胞中,内有细胞液,含糖类、无机盐、色素和蛋白质等物质,可以调节植物细胞内的环境,充盈的液泡还可以使植物细胞保持坚挺。与植物细胞的渗透吸水有关。

8.中心体:动物和某些低等植物的细胞,由两个相互垂直排列的中心粒及周围物质组成,与细胞的有丝分裂有关,无膜。一个中心体有两个中心粒组成。

二、分类比较:

1.双层膜:叶绿体、线粒体(细胞核膜)。

单层膜:内质网、高尔基体、液泡、溶酶体(细胞膜、类囊体薄膜)。

无膜:中心体、核糖体。

2.植物特有:叶绿体、液泡动物特有(低等植物):中心体。

3.含核酸的细胞器:线粒体、叶绿体(dna)线粒体、叶绿体、核糖体(rna)。

4.增大膜面积的细胞器:线粒体、内质网、叶绿体。

5.含色素:叶绿体、液泡。

6.能产生atp的:线粒体、叶绿体(细胞质基质)。

7.能自主复制的细胞器:线粒体、叶绿体、中心体。

8.与有丝分裂有关的细胞器:核糖体、线粒体、高尔基体(形成细胞壁)、中心体。

9.发生碱基互补配对:线粒体、叶绿体、核糖体。

10.与主动运输有关:核糖体、线粒体。

高一数学必修教案篇七

(1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系。

(2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像。

二、重点难点分析。

(1)本节教学的重点是函数的单调性,奇偶性概念的形成与熟悉。教学的难点是领悟函数单调性,奇偶性的本质,把握单调性的证实。

(2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它。这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫。单调性的证实是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证实,也没有意识到它的重要性,所以单调性的证实自然就是教学中的难点。

三、教法建议。

(1)函数单调性概念引入时,可以先从学生熟悉的一次函数,,二次函数。反比例函数图象出发,回忆图象的增减性,从这点感性熟悉出发,通过问题逐步向抽象的定义靠拢。如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来。在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的熟悉就可以融入其中,将概念的形成与熟悉结合起来。

(2)函数单调性证实的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,非凡是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律。

函数的奇偶性概念引入时,可设计一个课件,以的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值开始,逐渐让在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来。经历了这样的过程,再得到等式时,就比较轻易体会它代表的是无数多个等式,是个恒等式。关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象(如)说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件。

高一数学必修教案篇八

忙碌的日子总是过得很快,转眼间期中考试的时间又到了,我们高一数学必修四的教学也进入了最后的复习冲刺阶段。回顾半学期以来,我对前面的教学感受颇深。

必修四由三角函数、平面向量、和三角恒等变换三章构成,三角函数与三角恒等变换是高中数学课程的传统内容,平面向量基本上也是,因此,本模块的内容属于“传统内容”。与以往的教科书相比较,本书在内容、要求以及章节安排、处理方法上都有新的变化。

在内容安排上,第一章三角函数的学习为第二章平面向量作了必要的准备,同时应用第二章平面向量的知识推导两角差的余弦公式,使第三章三角恒等变换可以独立成章。学习完后,心中有几点体会如下:

高一数学必修教案篇九

1、使学生理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。

(1)理解数列是按一定顺序排成的一列数,其每一项是由其项数确定的。

(2)了解数列的各种表示方法,理解通项公式是数列第项与项数的关系式,能根据通项公式写出数列的前几项,并能根据给出的一个数列的前几项写出该数列的一个通项公式。

(3)已知一个数列的递推公式及前若干项,便确定了数列,能用代入法写出数列的`前几项。

2、通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力。

3、通过由求的过程,培养学生严谨的科学态度及良好的思维习惯。

(1)为激发学生学习数列的兴趣,体会数列知识在实际生活中的作用,可由实际问题引入,从中抽象出数列要研究的问题,使学生对所要研究的内容心中有数,如书中所给的例子,还有物品堆放个数的计算等。

(2)数列中蕴含的函数思想是研究数列的指导思想,应及早引导学生发现数列与函数的关系。在教学中强调数列的项是按一定顺序排列的,“次序”便是函数的自变量,相同的数组成的数列,次序不同则就是不同的数列。函数表示法有列表法、图象法、解析式法,类似地,数列就有列举法、图示法、通项公式法。由于数列的自变量为正整数,于是就有可能相邻的两项(或几项)有关系,从而数列就有其特殊的表示法——递推公式法。

(3)由数列的通项公式写出数列的前几项是简单的代入法,教师应精心设计例题,使这一例题为写通项公式作一些准备,尤其是对程度差的学生,应多举几个例子,让学生观察归纳通项公式与各项的结构关系,尽量为写通项公式提供帮助。

(4)由数列的前几项写出数列的一个通项公式使学生学习中的一个难点,要帮助学生分析各项中的结构特征(整式,分式,递增,递减,摆动等),由学生归纳一些规律性的结论,如正负相间用来调整等。如果学生一时不能写出通项公式,可让学生依据前几项的规律,猜想该数列的下一项或下几项的值,以便寻求项与项数的关系。

(5)对每个数列都有求和问题,所以在本节课应补充数列前项和的概念,用表示的问题是重点问题,可先提出一个具体问题让学生分析与的关系,再由特殊到一般,研究其一般规律,并给出严格的推理证明(强调的表达式是分段的);之后再到特殊问题的解决,举例时要兼顾结果可合并及不可合并的情况。

(6)给出一些简单数列的通项公式,可以求其项或最小项,又是函数思想与方法的体现,对程度好的学生应提出这一问题,学生运用函数知识是可以解决的。

高一数学必修教案篇十

教学目标。

3.让学生深刻理解向量在处理平面几何问题中的优越性.

教学重难点。

教学重点:用向量方法解决实际问题的基本方法:向量法解决几何问题的“三步曲”.

教学难点:如何将几何等实际问题化归为向量问题.

教学过程。

由于向量的线性运算和数量积运算具有鲜明的几何背景,平面几何图形的许多性质,如平移、全等、相似、长度、夹角等都可以由向量的线性运算及数量积表示出来,因此,可用向量方法解决平面几何中的一些问题,下面我们通过几个具体实例,说明向量方法在平面几何中的运用。

思考:

运用向量方法解决平面几何问题可以分哪几个步骤?

运用向量方法解决平面几何问题可以分哪几个步骤?

“三步曲”:

(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;。

(3)把运算结果“翻译”成几何关系.

高一数学必修教案篇十一

教学目标。

掌握三角函数模型应用基本步骤:

(1)根据图象建立解析式;

(2)根据解析式作出图象;

(3)将实际问题抽象为与三角函数有关的简单函数模型。

教学重难点。

利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型。

教学过程。

一、练习讲解:《习案》作业十三的第3、4题。

(精确到0.001).

米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域。

本题的解答中,给出货船的进、出港时间,一方面要注意利用周期性以及问题的条件,另一方面还要注意考虑实际意义。关于课本第64页的“思考”问题,实际上,在货船的安全水深正好与港口水深相等时停止卸货将船驶向较深的水域是不行的,因为这样不能保证船有足够的时间发动螺旋桨。

练习:教材p65面3题。

三、小结:1、三角函数模型应用基本步骤:

(1)根据图象建立解析式;

(2)根据解析式作出图象;

(3)将实际问题抽象为与三角函数有关的简单函数模型。

2、利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型。

四、作业《习案》作业十四及十五。

高一数学必修教案篇十二

教学目标。

1、理解平面向量的坐标的概念;。

2、掌握平面向量的坐标运算;。

3、会根据向量的坐标,判断向量是否共线.

教学重难点。

教学重点:平面向量的坐标运算。

教学难点:向量的坐标表示的理解及运算的准确性.

教学过程。

平面向量基本定理:。

什么叫平面的一组基底?

平面的基底有多少组?

引入:。

1.平面内建立了直角坐标系,点a可以用什么来。

表示?

2.平面向量是否也有类似的表示呢?

高一数学必修教案篇十三

了解数列的概念和几种简单的表示方法(列表、图象、通项公式).

了解数列是自变量为正整数的一类函数。

(2)等差数列、等比数列。

理解等差数列、等比数列的概念。

掌握等差数列、等比数列的通项公式与前项和公式。

能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题。

了解等差数列与一次函数、等比数列与指数函数的关系。

高一数学必修教案篇十四

教学目标。

掌握三角函数模型应用基本步骤:。

(1)根据图象建立解析式;

(2)根据解析式作出图象;

(3)将实际问题抽象为与三角函数有关的简单函数模型。

教学重难点。

利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型。

教学过程。

一、练习讲解:《习案》作业十三的第3、4题。

(精确到0.001)。

米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?

本题的解答中,给出货船的进、出港时间,一方面要注意利用周期性以及问题的条件,另一方面还要注意考虑实际意义。关于课本第64页的“思考”问题,实际上,在货船的安全水深正好与港口水深相等时停止卸货将船驶向较深的水域是不行的,因为这样不能保证船有足够的时间发动螺旋桨。

练习:教材p65面3题。

三、小结:1、三角函数模型应用基本步骤:。

(1)根据图象建立解析式;

(2)根据解析式作出图象;

(3)将实际问题抽象为与三角函数有关的简单函数模型。

2、利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型。

四、作业《习案》作业十四及十五。

高一数学必修教案篇十五

一、创设情景,激趣导入。

学生活动:学生猜测各种可能性,你一言我一语地发表自己的高见。师:大家的猜测都有自己的道理,但答案到底是什么呢?暂时老师还不想告诉你们,我想通过下面的活动,大家一定能自己找到答案的。

二、探究体验,经历过程。

1、教学例1.

方法一:

师:学校准备从每个班中选几名热爱运动的学生参加体育训练,为下学期的校运动会做准备。下面是三(1)班参加跳绳、踢毽比赛的学生名单。

学生可能回答;

一共有17人,9+8=17(人)。

可是,参加这两项活动的没有17人呀。

我发现有的人两项活动都参加了。

应该是一共有14人参加了,算式是9+8-3=14(人)。

师:到底怎么回事呢?为什么有人说一共是14人呢?为什么要减去3呢?

生:因为有3个人重复了。

生:因为这3个人既参加了跳绳,又参加了踢毽。

生:因为跳绳的9人里面有这3个人,踢毽的8人里面也有这3个人,所以计算的时候就不能是9+8=17(人),还应该减去3人,所以是9+8-3=14(人)。

生:因为9+8就把这3个人重复算了,也就是多算了一遍,所以要减掉3人。

师:同学们的发言真是精彩,报名参加校体育训练的一共有多少名同。

学呢?

生:14人。

方法二:

师:为了能使同学们更方便的看清楚,我们把一项活动演示一遍,请班里的`14名同学分别对应的替代其中一人,自己选一个替代的对象吧。

班内的14名学生分别选定自己要替代的人。

生:不知道站哪边。

师:哦?为什么?怎么会出现这样的情况呢?

生:站中间。

三位同学都站到了讲台的中间。

师:那左边、右边、中间分别表示什么?

生:左边表示参加跳绳的同学,右边表示参加踢毽的同学,中间就是两种训练都参加的同学。

方法三:

师:谁能用画图的方法来表示一下刚才看到的情形?

学生组内讨论,画出自己设计的图来,教师巡视观察了解情况并及时指导创作。

分组展示自己设计的图画,并介绍自己的创意或想法。

学生可能会说:

生1:我觉得左边的同学是代表参加跳绳的,应该圈在一起;右边的同学代表参加踢毽的,他们也应该圈在一起;中间的同学再画一个圈。师:这样的话,能不能让大家一看就知道中间的是既参加了跳绳的,又参加了踢毽的呢?再想想,看还有没有更好的画法。

生2:中间的同学也应该和左边的圈在一起,因为他们也参加了跳绳的呀。

生3:那我还说中间的还可以圈到右边呢,他们还参加了踢毽呢。师:那就按你们说的试试吧。

学生动手试着画图,并向全班展示。

方法四:

师:看图,说说每一部分分别表示什么?生:左边,表示只参加跳绳的;右边,表示只参加踢毽的;中间既参加跳绳又参加踢毽的。

师:你能列式计算这两个小组的人数吗?

生:9+8-3=14(人)。

生:(8-3)+3+(9-3)=14(人)。

高一数学必修教案篇十六

教学目标。

熟悉两角和与差的正、余公式的推导过程,提高逻辑推理能力。

掌握两角和与差的正、余弦公式,能用公式解决相关问题。

教学重难点。

熟练两角和与差的正、余弦公式的正用、逆用和变用技巧。

教学过程。

复习。

两角差的余弦公式。

用-b代替b看看有什么结果?

【本文地址:http://www.xuefen.com.cn/zuowen/14643017.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档