练习做一些语文类的题目,可以提高解题和思考能力。写总结时,我们应该充分发挥自己的思维和创造力,展示独特的观点和见解。鉴于总结对于个人成长和发展的重要性,以下是一些优秀的总结范文,供大家参考。
人教版可能性教学设计篇一
一、填空题。
1、任意从装有10枚白子和12枚黑子里摸出1枚子,那么摸到()的可能性大,摸到()的可能性小。
2、在下面的括号里填“一定”、“可能”、或“不可能”。
明天()会下雨。太阳()从东边落下。哈尔滨的冬天()会下雪。这次测验我()会得100分。
3、
1、从一副除去大、小王的扑克牌中任意抽取一张是5的概率为。
2、小华统计了全班同学的鞋号,并将数据记录在下表中。
人教版可能性教学设计篇二
一、设计思想。
可能性是统计与概率中的一部分,本节课主要教学事件发生的不确定性和可能性,教材从儿童游戏击鼓传花的情境入手,引出事件的可能性,让学生能对一些事件发生的可能性作出描述,并能和同伴交换想法。
通过猜想--验证--判断的学习活动,使学生初步体验现实世界中存在着的不确定现象,知道事件发生的可能性是有大小的。
二、教材分析。
1、“课程标准”对这部分的要求:
让学生生活事例丰富学生对确定和不确定事件的认识,知道事件发生的可能性的大小,培养学生对数学的兴趣。引导学生独立思考,合作交流,体验探究的乐趣,注重对事件可能性的理解。
2、可能性这节课有两部分内容:
3、可能性是数学课程的四个学习领域之一“统计与概率”中的一部分,作为概率论的初步。
三、学情分析。
“数学教学是数学活动的教学”,学生在经过很久的数学计算等一系列数学学习后,开展这一系列的游戏和活动,与现实生活再次联系起来,如:击鼓传花、摸球等等,使学生感受到数学的有趣,学生易学,乐学。
三年级的学生已经有较好的数学语言表达,数学分析能力,而且还有一定的科技知识基础,在整节课堂中,学生可以猜一猜,摸一摸,议一议,说一说,等探究活动,让学生了解到操作、比较、猜想、实验、验证对事物的认识、分析起重要的作用。教师也可以有意识的引导学生正确学习、观察、思考、分析、推理和正确使用数学语言,促进学生数学思维的发展,培养学生灵活运用所学知识,解决实际问题的能力,有效的提高数学素养。
四、教学目标:
使学生初步本验有些事情的发生是确定的,有些则是不确定的,初步能用“一定”可能”“不可能”等词语描述生活中一些事情发生的可能性。
能够列出简单实验中所有可能发生的结果。知道事件发生的可能性是有大小的。
通过实际操作活动,培养学生的动手实践能力。
通过学生的猜一猜、摸一摸、转一转、说一说等活动,增强学生间的交流,培养学习兴趣。形成良好的合作学习的态度。
五、教学重、难点:
1、知道事件发生的可能性是有大小的。
2、体验事件发生的确定性和不确定性。
能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。
六、教学策略与手段。
利用教材所提供的教学资源,学生根据内容提出自己的看法,让学生自己参与,自主探索,一合作的方法得到事物发生的可能性以及事物发生的可能性的大小。
七、课前准备。
硬币、鼓、花、球、盒子。
八、教学过程:
一、活动引入新课。
同学们,上课前老师先让你们猜猜我的哪只手中有硬币?
(引出用可能、不可能等词来表达,揭示课题:可能性)。
二、自主探索,获取知识。
(一)教学例题1。
请同学们看前面,这里有个盒:1号盒、2号盒。(实物:例题上的装有不同颜色小球的盒)咱们来看看里面都有些什么颜色的球。
展示两盒中球的颜色、数量。
1、从1号盒里面任意摸出一个球,一定是红球吗?为什么?
学生分组讨论,教师巡视指导。
各小组都已讨论好了,谁想代表小组发言?(依次指名学生说)。
(依次板书:一定可能不可能)。
师:小朋友讨论得都非常好。下面,我们实际来摸一摸,验证一下。1号盒,谁来?(学生摸出3个后提问,如继续摸下去,结果怎么样?)。
(红球)。
为什么一定是红球呢?学生自己小结。
2、从2号盒里任意摸一个呢?请小组讨论。
(红球?绿球?黄球?蓝球?)。
请学生摸一摸(摸出3个后提问,如继续措下去,能摸到红球吗?那可能摸出什么球?为什么?)(老师可根据盒里剩下的球随机提问,如:接下去可能摸出什么颜色的球?接下去一定能摸到什么球?……)。
3、活动小结。
(从1号盒里面任意摸出一个球,都是红球,因为里面都是红球,从2号盒里任意摸一球,可能为?因为里面有三种球,有可能是红球,有可能是绿球,有可能是黄球。)。
(二)教学例题2。
1、把今天所学的知识和我们的生活联系起来,想一想生活中哪些事是一定会发生的,哪些事是不可能发生的,而哪些事是可能发生,也可能不发生的呢?你能举出一些例子,用“一定”“可能”、“不可能”说一说吗?请同学们先下位和你的好朋友说一说。(学生说)。
例如:
我数学考试能考100分;
天上会出现彩虹;
公鸡会下蛋;
天上会掉钱;
……(请学生举例几个)。
谁理解题目意思了,给大家解释一下。
地球每天都在转动(一定,地球在自转)。
我从出生到现在没有吃过一点儿东西(不可能,因为人不吃食物是不可能活的)。
三天后下雨(可能,因为天气在变化)。
太阳从西边升起(不可能,因为太阳是从东边升起来的)。
吃饭时,人用左手拿筷子(可能,世界上的人有的是习惯用左手拿东西的)。
世界上每天都有人出生(可能,世界上人本来就很多,地球又很大)。
(学生可以发表自己不同的见解,进行讨论,教师应当积极鼓励学生进行大胆的质疑,让学生对问题进行判断和推理,最后教师可以适当进行总结)。
用自己的话说一说什么是“可能性”举例子说明。
3、练习。
108页练习二十四第一题。
(三)、教学例3(比较两种结果的可能性大小)。
(1)观察、猜测。
出示小盒子,展出其中的小球色彩、数量,(四红一蓝)。
如果请一位同学上来摸一个球,你们猜猜他会摸到什么颜色的球?
和同桌说一说,你为什么这样猜?
(2)实践验证。
学生小组操作、汇报实践结果。
汇总各小组的实验结果:几组摸到红,几组摸到了蓝色。
从小组汇报中你发现了什么?为什么会有这样的情况?
小结:摸到红色多,摸到蓝色的少,因为盒中球红多蓝少。
(3)活动体验可能性的大小。
小组成员轮流摸出一个球,记录它的颜色,再放回去,重复20次。
活动汇报、小结。
实验过程中,要让学生体会到两点:一、每次摸出的结果是红色还是蓝色,这是随机的,不以人的主观意愿而变化。二、但摸的次数多了以后,在统计上就呈现某种共同的规律性,就是摸出蓝的次数比红少。
(4)小组实验结果比较。
比较后,你发现了什么规律?
出示多组的实验结果,虽然数据不一致,但呈现的规律是相同的。
汇报、讲评。
三、全课总结,课外延伸。
人教版可能性教学设计篇三
教学内容:义务教育课程标准实验教科书三年级上册106页例3及“做一做”,练习二十的第4、6、10题。
教学目标:
1、知识目标:经历可能性的试验过程,知道事件发生的可能性是有大小的。
2、能力目标:培养学生通过实验获取数据、利用数据进行猜测与推理的能力;并能列出简单试验所有可能发生的结果。
3、情感目标:在活动交流中培养合作学习的意识和能力。
教学重点:学生通过试验、收集和分析试验数据知道事件发生的可能性是有大小的。
教学难点:利用可能性的知识解决实际问题。
教具准备:两个转盘、盒子、红球24个、蓝球6个、漂亮的卡通人物、硬币、多媒体课件。
学具准备:颜色笔。
教学过程:
一、创设情境,激趣猜测。
1、听故事,激发学习兴趣。
(1)老师知道同学们最喜欢听故事,特意准备了一个《小猴子下山》的故事,想听吗?
(动画播放)。
2、猜测:请同学们想一想,小猴去追小兔,结果会是怎样呢?
学生猜测:它有可能追到小兔,也有可能追不到小兔。
师:那追到的可能性会……很小。
3、有些同学认为小猴不可能捉到小兔,有些同学认为小猴还有可能捉到小兔,只是可能性很小,看来,事情的发生不仅有可能性,而且发生的可能性还有大、有小。今天这节课我们就继续来学习有关可能性的问题。
(板书课题:可能性的大小)。
实践是最好的老师,下面我们就通过摸球试验来研究,好吗?
二、探究、验证。
1、试验准备。
(1)介绍试验材料。
师:每个小组准备了一个盒子,盒子里都装有红球和蓝球。
(2)说明试验要求。
(多媒体出示小组合作要求。)。
师:请同学们根据屏幕上的要求进行摸球试验,摸球20次,根据摸球的情况完成好摸球情况统计表和统计图,然后观察统计图思考以下两个问题。
(3)提出注意事项。
师:最后还请同学们特别注意:摸球时不能用眼晴看,摸球试验结束后不要打开盒子,能做到吗?下面请小组长拿出记录表和统计图,就可以开始试验了。
2、合作试验、初步推测。
(1)各小组试验,教师巡视。
(2)观察、汇报。
师:谁把你们组的试验结果给大家汇报一下?
学生汇报。
3、推测、验证、归纳。
(1)观察。
(集中展示各小组的摸球情况统计图。)。
师:这是我们6个小组的摸球情况统计图,请同学们仔细观察,你发现什么呢?(学生汇报)。
(2)思考。
师:这都是你们的推测,到底对不对呢?有什么方法可以知道?
(打开盒子看看。)。
师:好!莫老师数三声,我们就一起把盒子打开吧!
师:也就说,在摸球试验中,可能性的大小和什么有关系呢?
(与球的数量有关。)。
师:如果让你在自己小组的盒子里再摸一次,你觉得摸到什么颜色的球可能性大?为什么?好,请6个小组长一起来摸摸看。
(3)归纳。
三、应用、拓展。
1、转转盘。(课本106页的“做一做”。)。
(生可能会选黄色)你为什么会选黄色格呢?
转转试试看?
不行,每次都是你们赢,我得换个转盘,这次如果你还是转到黄色格的话,我就送你一张更漂亮的图案,谁来转?(指名3名学生上台转)。
师:为什么只有()个同学拿到图案?
真聪明!那就把这张图案送给你吧?
3、拓展。
师:老师这里还有一个有趣的转盘(出示幸运转盘)。
师:你们能用学到的数学知识解释生活中的问题,真是棒极了!
2、设计转盘。(练习二十第4题。)。
师:看了这个转盘,你们想不想也来设计这样有趣的转盘?
(1)课件出示设计要求。
转盘由蓝色和红色两种颜色组成。
要求一:指针指在红色的可能性大;
要求二:指针指在蓝色的可能性大。
请同学们在书本109页上涂一涂。
(2)谁想上来展示一下自己的作品?(用实物投影仪投影学生作品)。
问:在设计转盘时你是怎样想的呢?你们也是这样想的吗?
(3)小结。
4、解决问题。
师:今天还有一位我们非常熟悉的朋友来到了我们的课堂,看谁来了?(课件出示小猫扑蝴蝶)。
师:小精灵明明带着他的魔棒来了,还有谁来了?(小猫)。
师:那我们就来看看小猫是不是扑到黄色蝴蝶的可能性大。(课件演示小猫扑到了一只黄色的蝴蝶。)。
师:我们一起来看一看。(课件演示小猫扑到了一只红蝴蝶。)。
师:(疑惑地)咦!不是说小猫扑到黄蝴蝶的可能性大吗?怎么会扑到一只红蝴蝶呀?
师:扑到红蝴蝶的可能性小并不是说不可能扑到红蝴蝶。
听!小猫又有问题想问了:你能想办法让我扑到红蝴蝶的可能性大吗?(增加红蝴蝶的只数,让它的只数比黄蝴蝶多。)。
(师用课件演示:小精灵用它的魔棒增加了7只红蝴蝶。)。
5、猜一猜。(练习二十第10题。)。
师:下面我们来做个游戏怎么样?这里有四个盒子,其中只有一个盒子里面放着一个硬币,你来猜一猜,可能会在哪个盒子里?下面我们来统计一下,注意:每个同学只能选择一次;认为在一号盒子里的举手,认为在二号盒子的,三号盒子,四号盒子。
汇报:因为硬币只能在四个盒子中的一个,有三个盒子中没有,所以猜错的人数多,猜错的可能性就大。
师补充:虽然猜对的可能性小,但我们也是有可能猜对的。
四、总结、延伸。
1、延伸。
2、小结。
(3)师:刚才《小猴子下山》的故事还没讲完,想听完吗?
出示录音:小兔子看到小猴追上来,马上窜进草丛里不见了,这时太阳快下山了,小猴只好空着手回家去了。
师:看了这个故事结果后,你们有话要跟小猴子说吗?
小朋友们,我们可不要像小猴那样喜新厌旧哦!
五、板书设计。
可能性大小。
数量多可能性大。
数量少可能性小。
人教版可能性教学设计篇四
1、知道有些事情的发生是确定的,有些则是不确定的,并能用“一定”、“可能”、“不可能”等词语来描述。
2、知道事情发生的可能性是有大有小的,可能性的大小与物体数量有关。
3、培养学生的表达能力和逻辑推理能力。
二、教学重难点。
教学重点:体验事件发生的可能性。
教学难点:会用“一定”、“可能”、“不可能”正确地描述事件发生的可能性。
三、教具学具准备:
多媒体、纸盒子、白色和黄色的小球。
四、教学过程。
1.创设情境,引入课堂。
师:同学们,你们喜欢听故事吗?今天老师就给大家带来一个有趣的故事。希望同学们配合老师把故事讲完整。
相传古代有个王国,国王非常阴险而多疑,一位正直的大臣得罪了国王,被叛死刑,这个国家世代沿袭着一条奇特的法规:凡是死囚,在临刑前都要抽一次“生死签”(写着“生”和“死”的两张纸条),犯人当众抽签,若抽到“死”签,则立即处死,若抽到“生”签,则当场赦免。
你们认为这个大臣摸纸条时会出现什么结果?
预设生:奴隶可能摸到生,也可能摸到死。
师:对,大家用了一个词“可能”。就是两种结果都有可能。
预设生:一定死,不可能生。
预设生:一定生。
师:剩下的当然写着“死”字,不知真相的人们以为他吞下的是生,国王“机关算尽”,想让大臣死,反而搬起石头砸自己脚,让机智的大臣死里逃生。
(引入课题)师:生活中的事情就像故事中的一样,有些我们不能肯定他的结果,有些则可以肯定它的结果,类似的例子还有好多。这就是今天我们要一起研究的内容,事情发生的可能性。(板书:可能性)。
2.动手操作,探究新知。
师:和老师一起玩一个摸球游戏。游戏规则:老师和男生代表以及女生代表进行摸球游戏,如果摸出黄球,则该组加1分,否则不得分。每摸出一次后放回进行下一次,累计摸球5次,得分高的队伍获胜。
注意事项:每摸一次,老师在黑板上用“正字法”纪录一次,纪录完毕后放回去进行下一次,在下一次摸之前为了公平起见先摇一摇。
(预设结果:男生摸不到黄球,老师每次都摸到黄球,女生可能黄球。)。
师:游戏结束了,老师宣布老师获得了游戏的胜利,同意么,有什么质疑?
预设生:我们根本不知道盒子里装的什么颜色的球?
师:那我们一起验证一下,通过验证,我们发现3号盒子里面的球都是白色,1号盒子中的球都是白色,所以我们能确定摸出球的颜色,这时候我们可以用一定或者不可能来描述它的结果。(板书:一定不可能)。2号盒子中既有黄球,又有白球,所以我们不能确定摸出球的结果,这时候我们就应该用可能出现什么情况来判断它。(板书:可能)。
师小结:因此事物发生的可能性我们可以用一定,不可能以及可能三种情况来判断它。
3.走出游戏,走进生活。
师:除了游戏中,我们的.生活以及大自然中也蕴含着许多与可能性相关的问题,大家跟老师一起看一看。(出示图片)。
师:大家知道太阳从天空中的哪边升起时来是确定的么?
预设生:太阳一定从东边升起来,不可能从其他地方升起来。
师:一年有几个季节?一年有几个月?一个星期有几天?
预设生:一年一定有4个季节,一年一定有12个月,一个星期一定有7天。
师:今天下雨么?那三天后会不会下雨这个事情能确定么?
预设生:今天不下雨,三天后可能会下雨。
师总结:因此对于确定的事情我们就用一定或者不可能来描述,但是对于天气我们谁都不能很准确的说三天后会下雨还是下雪,亦或者是晴天,因此对于不确定的事情我们就用可能来描述。
4.巩固练习,深化提高。
师:通过前面的学习,同学们已经能很准确的判断游戏以及生活中发生的可能性,并且知道不确定事件发生的可能性有大有小,下面你们能通过本节课学习的知识根据老师的想法和要求自己设计一个转盘游戏么,互相交流讨论,合作完成。
(老师选取几个有特点的作品和同学互相交流讨论)。
5.课堂小结。
这节课你学到了什么新的知识?有什么收获和疑问呢?
师总结:生活中处处有数学,希望大家将学到的数学知识应用到生活实际中去,使我们的数学学习变得更加有意义。
6.作业布置。
将本文的word文档下载到电脑,方便收藏和打印。
人教版可能性教学设计篇五
教学目标:
1、初步感受事件发生的可能性是有大小的,了解影响可能性大小的因素,会比较事件发生的可能性大小。
2、学会记录事件发生的结果;形成动手操作能力,以及归纳、判断能力。
3、经历观察、猜想、实验和分析实验结果的过程,体验事件发生的可能性大小。
4、进一步感受数学与实际生活的紧密联系,体会数学在现实生活中的应用。
教学重难点:
重难点:理解事件发生的可能性是有大小的并会根据影响因素判断可能性大小。
教法与学法:
教法:引导演示法。
学法:合作交流,实验验证法。
教学准备:课件、扑克牌等。
教学过程:
一、复习铺垫,迁移导入。
课件出示图片:
生:从a盒摸。
师:为什么不建议我从b盒或者c盒摸呢?
生:b盒与c盒可能摸出白球,但都不一定一次就能摸出白球。
(生独立思考,小组交流)(生可能回答b盒白球更多一些)。
师:真的如此吗?可能性真的有大小吗?可能性大小又与什么有关呢?今天我们就来研究这个问题。
二、探索新知。
1、体验可能性是有大小的。
(1)课件出示教材第45页情境图。
师:今天老师带来了一个盒子,盒子里有四个红棋子和一个黑棋子。
问:从中摸出一个棋子,可能是什么颜色?
生:可能是红色,也可能是蓝色。
师:摸出一个棋子,那摸出哪种颜色的可能性大呢?
学生思考,猜测。
师:刚刚只是同学们的猜测,而猜测并不能作为依据,我们需要通过实验来证明。我们来试一试吧!
(2)安排实验过程。
请一名学生摸棋子,底下的同学们将棋子的颜色大声说出来,一名学生记录。所有学生边观察边思考。
要求:摸出一个棋子,记录它的颜色,然后放回去摇匀再摸,重复20次。
讲解记录方法:制作像这样的一个表格(出示表格),在记录这一竖列用“正”字笔画去记次数,在次数一列用数字写出记录的总结果。
(3)交流记录结果。
师:通过实验结果,你们现在有什么想法?
学生交流、讨论。
(4)小结:取出红棋子的次数要多些,也就是取出红棋子的可能性要大一些。
(5)讨论:再取一次取出哪种颜色的可能性最大?
2、进一步证实、总结规律。
(1)提出猜想。
在每一小组,老师都放了十张扑克牌,其中八张黑的,两张红的,从中摸出一张,摸出的是红色可能性大还是黑色可能性大?为什么?(学生猜想)。
(2)实验证明。
这仅仅只是同学们的猜想,还需要大家用实验来证明它。
实验要求:组内同学做好分工,其中一个人负责洗牌,一人负责记录,一个人负责汇报,其他组员轮流抽牌,共抽20次。
(3)汇报实验结果。
(4)引导小结:从这些实验结果中,你发现了什么规律?
(学生独立思考,小组交流)。
教师小结:因为黑桃在总数中占得多一些,所以取出黑桃的可能性要大些。
3、知识总结师设疑:可能性大小与什么因素有关?
(生思考回答)。
师总结:以摸棋子为例,可能性的大小与在总数中所占数量的多少有关,在总数中占得数量越多摸到的可能性也就越大;占得数量越少,摸到的可能性越小。
三、巩固练习(课件出示)。
四、课堂小结学完这节课后,你们能否准确判断可能性的大小?
人教版可能性教学设计篇六
教学目标:
2、通过丰富的游戏活动和对生活中几种常见游戏(或现象)剖析与解释,使学生初步体会数学与生活的紧密联系。
教学重点:体验事件发生的等可能性以及游戏规则的公平性,会用分数表示事件发生的可能性。
教学难点:能按要求设计公平的游戏方案。
教、学具准备:cai课件;硬币;实验记录表;骰子;六个面上分别写上数字1-6的长方体等。
教学过程:
一、情境导入。
师:同学们,你们看过足球比赛吗?还记得足球比赛开始前用什么方法决定哪个队先开球吗?请同学们看屏幕。
课件演示:如下图情境(教科书第99页的情境图)。
师:请观察图片,你们能不能说一说他们是用什么方法决定哪个队先开球的?
二、探究新知。
1、动手实验,获取数据。
师:在开始实验之前,同学们要弄清楚实验要求哦,请看屏幕。
课件出示实验要求:1、抛硬币40次,抛硬币时用力均匀,高度适中;2、以小组为单位分别统计相关数据,填入实验报告单(如下表);3、小组成员分工协作,看哪个小组合作最好,完成得最快!
出现的情况正面朝上反面朝上总次数。
出现次数。
师:很好,我们要得到正面朝上的次数和反面朝上的次数,老师建议你们最好用画“正”字的方法来统计,那就动手开始实验吧!
师:大家做完实验了吗?请各个小组汇报实验结果。
课件出示统计表(如下表),根据学生的汇报教师填入数据。
小组正面朝上反面朝上总次数。
1
2
3
4
5
…
合计。
2、分析数据,初步体验。
师:请你们认真观察实验数据,发现正面朝上的次数和反面朝上的次数相等吗?
师:对,既有相等的也有不相等的,但正面朝上的次数和反面朝上的次数接近吗?
教师把所有小组的正面朝上次数、反面朝上的次数、总次数分别求和。
师:通过分析,我们发现正面朝上的次数和反面朝上的次数仍然是非常接近的。
3、阅读材料,加深体会。
师:如果我们继续抛下去,会是怎样的结果呢?历史上有很多数学家就做过抛硬币的实验。请看屏幕。
课件出示几位数学家的实验结果(如下表)。
数学家总次数正面朝上反面朝上。
德摩根409220482044。
蒲丰404020481992。
费勒1000049795021。
皮尔逊24000111988。
罗曼列夫斯基806403969940941。
让学生观察数据,发现正面朝上次数和反面朝上次数很接近。
4、分数表示,科学验证。
师:对,它们的可能性相同的,你们能用一个分数表示它们相同吗?
师:通过做实验,你们认为抛硬币决定谁先开球公平吗?为什么?
三、应用拓展。
师:好,请看第一题,正方体的各面分别写着1、2、3、4、5、6.掷出每个数的可能性都是……?(出示教科书练习二十第1题)。
课件出示方案一(如下图):转盘上红色占一半,蓝色、黄色各占。
人教版可能性教学设计篇七
1、通过具体的操作活动,直观感受到有些事件的发生是确定的,有些事件的发生时不确定的。
2、结合具体情境或生活中的某些现象,能够列出简单试验所有可能发生的结果。
3、通过实验操作、分析推理知道事件发生的可能性有大有小。
4、对一些简单事件的可能性进行描述,并和同伴交换想法。
5、结合具体情境,能对某些事件进行推理,知道其结果。
6、获得一些初步的数学实践活动经验,并在和同伴的合作与交流的过程中获得良好的情感体验。
1、重点:
(1)会借助操作活动,说出某一事件的发生是确定的还是不确定的。
(2)能够将某一简单试验所有可能发生的结果一一列举出来。
(3)能用“可能”“一定”“很少”“不可能”“偶尔”“经常”等词描述事件可能性的大小。
(4)结合具体情境,对某个问题进行推理。
2、难点:将简单试验中所有可能发生的结果一一列举出来。
2课时。
摸球游戏。
教学目标::1、通过“猜想——实践——验证”,经历事件发生的可能性大小的探索过程,初步感受某些事件发生的可能性是不确定的,事件发生的可能性是有大有小的。
2、在活动交流中培养合作学习的意识和能力。
教学重点:通过“猜想——实践——验证”,经历事件发生的可能性大小的探索过程。
教学难点:初步感受某些事件发生的可能性是不确定的,事件发生的可能性是有大有小的。
教具准备:小黑板、布袋、一定数量的白球、黄球。
一、创设情境,提出问题:
1、建立学习小组,每个小组一个布袋、9个白球、1个黄球(白球、黄球的大小和轻重一样)。
二、探索研究,得出结论:
1、学生对老师提出的问题进行猜测,并把自己的想法告诉给组内的同学。
2、实践探索。
(1)以小组为单位开展摸球游戏,把每次摸得的结果记录再下表中,然后把球放回去再摸。
第几次12345678910。
颜色。
第几次11121314151617181920。
颜色。
(2)统计摸球的结果,看一看;摸到什么球的次数多?摸到什么球的次数少?
(3)各小组将摸球的结果进行交流,看一看是不是得到同样的结果。实际摸到的结果与原来的猜测是否吻合。初步感受到再日常生活中有些事件发生的可能性是不确定的,事件发生的可能性是有大有小的。
三、解释和应用:
1、下面三个地方的冬天下雪吗?请用“一定”“很少”“不可能”说一说。
海南。
哈尔滨。
武汉。
2、从下面的五个箱子里,分别摸出一个球,结果是哪个?连一连。
8白2红可能是白球。
一定是白球10红。
5白5红一定不是白球。
很可能是白球。
8白2红白球的可能性很小10白。
生活中的推理。
1、经历对生活中某些现象进行推理、判断的过程。
2、能对生活中的某些现象按一定的方法进行逻辑推理,判断其结果。
3、把自己推理的过程和结果与同伴进行交流。
人教版可能性教学设计篇八
本单元主要是教学事件的不确定性和可能性,使学生初步体验现实世界中存在着的不确定性现象,并知道事件发生的可能性是大小的。本单元教材在编排上有下面几个特点。
1、选取学生熟悉的生活情境及感兴趣的活动作为教学素材,帮助学生理解数学知识。
2、设计丰富的活动,为学生提供探索与交流的时间和空间。
1、使学生初步体验有些事件的发生是确定的,有些事件是不确定的。
2、使学生能够列出简单试验所有可能发生的结果。
3、使学生知道事件发生的可能性是有大小的,能对一些简单事件发生的可能性作出描述,并和同伴交换想法。
不确定现象是这一部分内容的一个重要研究对象,从不确定现象中去寻找规律,学生较难建立这一观念。
本单元共安排4课时。
教学内容:教材104~105页。
教学目标:
1.使学生初步本验有些事情的发生是确定的,有些则是不确定的,初步能用“一定”可能”“不可能”等词语描述生活中一些事情发生的可能性。
2.能够列出简单实验中所有可能发生的结果。
3.培养学生学习数学的兴趣,形成良好的合作学习的态度。
教学重、难点:
体验事件发生的确定性和不确定性。
教学过程:
一、活动引入新课。
击鼓传花游戏,鼓声停时一位同学上台抽签,签中内容有礼物、唱歌、猜谜。
猜猜他抽中了什么签?
(引出用可能、不可能等词来表达,揭示课题:可能性)。
二、自主探索,获取知识。
(一)教学例题1。
请同学们看前面,这里有个盆:1号盆、2号盆。(实物:例题上的装有不同颜色小球的盆)咱们来看看里面都有些什么颜色的球。
展示两盆中球的颜色、数量。
1、从1号盆里面任意摸出一个球,一定是红球吗?为什么?
学生讨论,教师巡视指导。
各小组都已讨论好了,谁想代表小组发言?(依次指名学生说)。
(依次板书:一定可能不可能)。
师:小朋友讨论得都非常好。下面,我们实际来摸一摸,验证一下。1号盆,谁来?(学生摸出3个后提问,如继续摸下去,结果怎么样?)。
2、从2号盆里任意摸一个呢?请小组讨论。
请学生摸一摸(摸出3个后提问,如继续措下去,能摸到红球吗?那可能摸出什么球?为什么?)(老师可根据盆里剩下的球随机提问,如:接下去可能摸出什么颜色的球?接下去一定能摸到什么球?……)。
3、活动小结。
(二)教学例题2。
`1、生活中有许多的“可能性”
例如:……(请学生举例几个)。
2、自已阅读书本例题2。
谁理解题目意思了,给大家解释一下。
独立完成。
3、汇报、讲评。
4、练习。
108页练习二十四第一题。
三、全课总结,课外延伸。
这节课我们学习了有关可能性的知识,把今天所学的知识和我们的生活联系起来,想一想生活中哪些事是一定会发生的,哪些事是不可能发生的,而哪些事是可能发生,也可能不发生的呢?你能举出一些例子,用“一定”“可能”、“不可能”说一说吗?请同学们先下位和你的好朋友说一说。(学生说)。
学生说完后全班交流。
教学内容:教材p106—107。
教学目的:
1、能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。
2、通过实际操作活动,培养学生的动手实践能力。
3、通过学生的猜一猜、摸一摸、转一转、说一说等活动,增强学生间的交流,培养学习兴趣。
教学重、难点:
能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。
教学过程:
一、引入。
用自己的话说一说什么是“可能性”举例子说明。
今天我们继续学习关于“可能性”的知识。
二、实践探索新知。
1、教学例3(比较两种结果的可能性大小)。
(1)观察、猜测。
出示小盒子,展出其中的小球色彩、数量,(四红一蓝)。
如果请一位同学上来摸一个球,你们猜猜他会摸到什么颜色的球?
和同桌说一说,你为什么这样猜?
(2)实践验证。
学生小组操作、汇报实践结果。
汇总各小组的实验结果:几组摸到红,几组摸到了蓝色。
从小组汇报中你发现了什么?为什么会有这样的情况?
小结:摸到红色多,摸到蓝色的少,因为盒中球红多蓝少。
(3)活动体验可能性的大小。
小组成员轮流摸出一个球,记录它的颜色,再放回去,重复20次。
活动汇报、小结。
实验过程中,要让学生体会到两点:一、每次摸出的结果是红色还是蓝色,这是随机的,不以人的主观意愿而变化。二、但摸的次数多了以后,在统计上就呈现某种共同的规律性,就是摸出蓝的次数比红多。
(4)小组实验结果比较。
比较后,你发现了什么规律?
出示多组的实验结果,虽然数据不一致,但呈现的规律是相同的。
(1)出示盒内球(一绿四蓝七红)。
(2)猜一猜,摸出哪种颜色的球可能性最大,摸出哪种颜色的球的可能性最小?为什么?
3、p106“做一做”
图中每种颜色进行了分割,此时学生可以用数份数的方法来看三种颜色所占的区域大小。
利用前面学过的分数的知识让学生说一说每种颜色占整个圆面的几分之几,为以后学习可能性的精确值做铺垫(因为概率与这些分数相等)。
人教版可能性教学设计篇九
教学内容:
教材p106—107。
教学目的:
1、能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。
2、通过实际操作活动,培养学生的动手实践能力。
3、通过学生的猜一猜、摸一摸、转一转、说一说等活动,增强学生间的交流,培养学习兴趣。
教学重、难点:
能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。
教学过程:
一、引入。
用自己的话说一说什么是“可能性”举例子说明。
今天我们继续学习关于“可能性”的知识。
二、实践探索新知。
1、教学例3(比较两种结果的可能性大小)。
(1)观察、猜测。
出示小盒子,展出其中的小球色彩、数量,(四红一蓝)。
如果请一位同学上来摸一个球,你们猜猜他会摸到什么颜色的球?
和同桌说一说,你为什么这样猜?
(2)实践验证。
学生小组操作、汇报实践结果。
汇总各小组的实验结果:几组摸到红,几组摸到了蓝色。
从小组汇报中你发现了什么?为什么会有这样的情况?
:摸到红色多,摸到蓝色的少,因为盒中球红多蓝少。
(3)活动体验可能性的大小。
小组成员轮流摸出一个球,记录它的颜色,再放回去,重复20次。
活动汇报、
实验过程中,要让学生体会到两点:一、每次摸出的结果是红色还是蓝色,这是随机的,不以人的主观意愿而变化。二、但摸的次数多了以后,在统计上就呈现某种共同的规律性,就是摸出蓝的次数比红多。
(4)小组实验结果比较。
比较后,你发现了什么规律?
出示多组的实验结果,虽然数据不一致,但呈现的规律是相同的。
(1)出示盒内球(一绿四蓝七红)。
(2)猜一猜,摸出哪种颜色的球可能性最大,摸出哪种颜色的球的可能性最小?为什么?
3、p106“做一做”
图中每种颜色进行了分割,此时学生可以用数份数的方法来看三种颜色所占的区域大小。
利用前面学过的分数的知识让学生说一说每种颜色占整个圆面的几分之几,为以后学习可能性的精确值做铺垫(因为概率与这些分数相等)。
三、练习。
p1094。
第4题,是一种逆向思维。并体现开放性,如第1小题,只要红比蓝多,就能满足条件。第2小题,只要蓝比红多,都满足条件。
p1095。
教学反思:
人教版可能性教学设计篇十
背景:课标把“统计与概率”作为四大内容之一,并在第一学段就对可能性作出了明确的要求:
1.初步体验有些事件的发生是确定的,有些则是不确定的。
2.能够列出简单试验所有可能发生的结果。
3.知道事件发生的可能性是有大小的。
4.对一些简单事件发生的可能性作出描述,并和同伴交换想法。
概率发生的基础是随机现象,这就涉及到确定事件(肯定与不可能两种,概率分别是1和0)与不确定事件,在不确定事件中,有很多种可能出现的结果,虽然每种结果都是随机出现的,但出现的次数在统计上存在一定的规律性(这也决定了概率与统计是不可分的,在本册教材中也基本上是以实验数据的统计为基础来探讨可能性的大小),概率就是以此为基础进行数学定义的:某一结果发生的次数占所有可能结果发生的总次数的比。要注意的是,概率是一个人为定义的概念,实验结果只能作为一种辅助的证明手段,严格的概率只能通过公式求得。
在本册,还不是要精确地计算某个结果发生的可能性,只是对可能性的大小有个初步的理解和判断就可以了。
一、教学内容。
1.事件的确定性和不确定性。
2.可能性的大小(两种结果、三种结果)。
二、教学目标。
1.使学生初步体验事件发生的确定性和不确定性。
2.使学生学会列出简单试验所有可能发生的结果。
3.使学生知道事件发生的可能性大小是不同的,能对一些简单事件发生的可能性大小进行比较。
三、编排特点。
1.选取学生熟悉的生活情境帮助学生理解抽象的数学知识。
主题图选取学生熟悉的抓阄表演节目的活动。
例2选取了学生熟知的自然现象来描述事件的确定性与不确定性。
2.设计丰富的游戏活动,使学生通过观察、猜想、实验验证等过程来体会可能性大小。
摸棋子、摸球活动、转盘游戏、涂色活动、掷硬币、猜硬币游戏、抽签游戏。
四、具体编排。
1.主题图。
提供了一个抓阄表演节目的情境,学生都非常熟悉。通过贴近学生生活的游戏活动,学生很容易理解在抓阄过程中,抓到的结果是不定的。如果预先知道哪种节目的纸条多,学生也能初步感知自己表演哪种节目的可能性大。
教师还可以利用买体育彩票、抽奖等现实题材来引入可能性的内容。
2.例1(确定事件与不确定事件)。
(1)通过摸球活动让学生体验肯定、不可能与可能等概念。虽然肯定与不可能都是确定事件,但不要求学生掌握这一点,只要能用上面三个词描述一下就可以了。
(2)教学时,可以让学生先猜测,再用实验验证一下,并用自己的语言叙述一下判断的理由。
(3)提问的方式可以多样。可以像教材上说的“哪个盒子肯定能摸出红棋,不可能摸出绿棋,可能摸出绿棋?”也可以问“第一个盒子肯定能摸出什么颜色的棋子,不可能摸出什么颜色的棋子?第二个盒子不可能摸出什么颜色的棋子,可能摸出什么颜色的棋子?”(最后一问也是为后面列出所有可能结果做准备。)。
3.例2。
借助于生活中的自然现象使学生进一步巩固对确定事件、不确定事件的理解。因为这些都是学生利用常识就能判断的,所以教材上只给出一个答案,让学生判断其他几个事件。
4.例3(比较两种结果的可能性大小)。
(1)两个层次:列出所有的可能结果,比较这些结果出现的可能性大小。
(2)通过先观察、猜测,再用小组实验验证的方式来展开活动。
(3)实验时要注意以下几点:
a.实验所用的东西除了颜色以外,其他特性完全一致,否则不能保证结果的随机性。
b.要有足够多的实验次数,这样才有统计学的意义。
c.每一次实验的状态都一样(摸出的球要放回去)。
(4)实验过程中,要让学生体会到两点:一、每次摸出的结果是红色还是蓝色,这是随机的,不以人的主观意愿而变化。二、但摸的次数多了以后,在统计上就呈现某种共同的规律性,就是摸出蓝棋的次数比红棋多。
(5)出示两组的实验结果,虽然两组的数据不一致,但呈现的规律是相同的,在这儿,其实也是让学生巩固收集数据的过程。
(6)教学时可以问一下学生,为什么都是摸出蓝棋的次数比红棋多,引导学生把摸出某种结果次数的多少和棋子的数量多少联系起来,这就可以了。
(7)最后提问“再摸一次,摸出哪种颜色棋子的可能性大?”实际就是利用前面的统计结果所表现出来的趋势进行判断(在二年级下册的统计部分已经学习了利用统计结果进行预测),虽然摸出蓝球的可能性大,但在实际操作时,由于单次实验的结果是随机的,如果是一个小组摸的话,摸出来的结果仍可能是红球,此时,可以让所有小组同时摸一次,看摸出来的红棋多还是蓝棋多。
5.“做一做”
利用转盘游戏,可以先让学生不转圆盘来判断,通过摸棋子游戏的类推,让学生把指针停留在哪种颜色的可能性大小和不同颜色占整个圆面的区域大小联系起来。如果学生发现不了这一结论,可以让学生通过实验来验证。实验时同样要注意几点:圆盘的重心正好在中心,以使转动后停留在任意位置的机会均等,实验的次数要足够多。
6.例4(三种结果的可能性大小)。
此时,可以不用实验加以验证,直接让学生运用例3的知识加以类推,直接判断。
7.例5(可能性大小的逆向思考)。
通过不同结果出现的次数多少来判断不同颜色棋子数量的多少,主要是让学生作理论的思考。也可以让学生验证一下,如小组内先由两人把不同数量的两种颜色的球(或棋子)放进纸袋或盒子,让另两人摸,根据摸的结果来判断哪种颜色的球多,再来验证一下。
8.“做一做”
左图每种颜色都在一起,右图中每种颜色进行了分割,此时学生可以用数份数的方法来看三种颜色所占的区域大小。教学时教师也可以利用前面学过的分数的知识让学生说一说每种颜色占整个圆面的几分之几,为以后学习可能性的精确值做铺垫(因为概率与这些分数相等)。
8.练习二十四。
第2题,是一种逆向思维。并体现开放性,如第2小题,只要不涂蓝色,就能满足条件。第3小题,只要涂黄色的数量在1个到4个之间,都满足条件。
第3题,让学生利用生活经验说说生活中的确定事件和不确定事件。
第4题,编排意图和第2题相同。
第5题,通过实验来巩固可能性的大小。
第6题,渗透等可能性,在这儿只是让学生初步感受一下,而且两面朝上的学生人数不一定很接近,都没关系。(因为掷硬币这一事件的独立性和随机性,全班每人掷一次和每人掷很多次的效果是一样的。)。
第7题,其实是把可能性和某种颜色的球在所有球所占的比例联系起来(第一个盒中是2/15,第二个盒中是9/15),在这儿,两个盒里的球的总数相等,所以绿球占的比例大小与绿球的数量是一致的。学生只要能用自己的语言大致说出道理来就可以了,不必分析以上原理。
第8题,让学生列出所有可能出现的结果,并初步体会每面朝上的可能性是相等的。
第9题,与主题图相对应,借助于学生熟悉的活动理解可能性的大小,把可能性的大小与每种签的数量对应起来。
第10题,变换形式,让学生巩固可能性的大小,其中隐含了“每个人猜哪个盒里有硬币这一事件是随机的”这一原理。
第11题,可能性大小的逆向思考的练习,又体现开放性,只要红色比蓝色多就可以。
第12题,可能性大小的逆向思考的练习,又体现开放性,只要保证10张卡片中“1”的张数最多,“5”的张数最少即可。
1.引导学生借助观察、猜测、实验等来体验事件的确定性与不确定性,感受可能性的大小。
但也要注意一点,虽然在这儿都是借助于实验来验证,但也要逐渐引导学生从实验结果所呈现的规律性来认识可能性的大小与某一结果次数占总结果次数的比例之间的关系,逐渐过渡到从理论的角度来加以判断。
2.把握好教学要求。
只要学生有初步的体验就可以了,对于确定事件、不确定事件、等可能性以及概率的具体值,还不要求。
人教版可能性教学设计篇十一
创设活动情境,促进新知建构。“用分数表示可能性的大小”是在学生(第一学段)学了“可能”与“一定”,初步体验了事件发生的可能性有大有小(四年级)和初步体验事件发生的等可能性的基础上进行教学的,是实现可能性从定性到定量描述的重要内容。“概率”因其有别于讲究因果关系的逻辑思维和确定性思维,具有独特的思想方法。因此,本课知识的建构和能力的形成不能只凭教师口述,而要通过创设数学活动情境,为学生提供观察、猜测、合作交流的机会,让学生在亲历活动过程中体会如何用数来表示可能性的大小。如课始摸球比赛后提出“如何表示从三个箱子中摸球的结果”,沟通了学生已有知识经验;“还有别的表示可能性大小的方法吗”则引导学生从活动中抽象出“数”,进而用“数”表示可能性大小,促进了知识的迁移;课末“归纳总结用数表示可能性大小的方法”,提升了学生对知识的系统认识,帮助学生建构新知。
加强合作交流,引导自主探索。《数学课程标准(实验稿)》指出:“动手实践、自主探索与合作交流是学生学习数学的重要方式。”教师以“分别用什么数来表示从这三个箱子中摸到白球的可能性大小”和“为什么用1/5来表示从2号箱中摸到白球的可能性”,引导学生自主探究、合作交流,教师适时引导,较好地体现了课程改革理念。
渗透数学思想,发展数学思维。在学生知道用数表示可能性大小的基础上,适时引入用线段上的点表示可能性大小,让学生感悟数形结合的数学思想;在引导的同时,抓住有利时机向学生渗透极限思想,不仅发展了学生的数学思维,还凸现了数学教学的基础性、发展性理念。
1.通过试验操作活动,进一步认识客观事件发生的可能性大小。
2.能用适当的数表示事件发生的可能性大小。
3.在具体情境中体验可能性的大小,加强对数学实践性的理解。
一、导出课题
1.激趣。老师提供三个箱子:1号箱里面放有5个黄球;2号箱里面放有1个白球和4个黄球;3号箱里面放有5个白球。请3个学生进行摸球比赛,摸到白球最多的获胜。摸球前,各自选一个球箱,并且只能在选定的箱中摸球。每次摸出1个球,记录后放回去再摸,每人摸6次。
2.揭题。教师从摸球的结果导出“不可能”、“可能”、“一定能”,进而从“可能”中引出可能性有大有小,同时引导学生质疑:还有别的表示可能性大小的方法吗?(教师板书课题)
[课始从学生熟悉的游戏引入,能激起学生的学习欲望。]
二、自主探究
1.引导学生独立思考,自主探究:可以用些什么数分别表示从这三个箱子中摸到白球的可能性大小。(师生共同完成表格)
2.学生汇报,老师板书学生的表示方法。
三、强化新知
1.讨论:
(1)从2号箱中摸到白球的可能性大小可用哪个数表示?(学生可能会用20%、0.2、1/5表示。)
(2)为什么可能性用1/5表示呢?(引导学生分析分子、分母分别与试验中的什么有关。)
(3)师(拿出2号箱中的1个黄球):摸到黄球的可能性怎样表示?为什么这样表示?
引导小结:从2号箱中摸球,可能摸到黄球,也可能摸到白球。但由于箱中黄球、白球的数量不同,所以摸到黄球和白球的可能性也不同。
2.探究:怎样表示“不可能”和“一定”。
(类似地让学生自行设计从“3号箱”中摸球的方案并解答。)
3.练习:教师往2号箱中依次加入1个黄球、1个白球、又1个白球,让学生分别说出能摸到白球、黄球的可能性大小。
四、总结提升
1.归纳总结用数表示可能性大小的方法。
2.提升认识,发展思维。借助线段图,让学生知道可能性的大小还可以用线段上的点表示。引导学生观察某点从线段的左端移到右端引起可能性大小的变化情况,直观地描述可能性的变化趋势。
人教版可能性教学设计篇十二
1、初步感受事件发生的可能性是有大小的,了解影响可能性大小的因素,会比较事件发生的可能性大小。
2、学会记录事件发生的结果;形成动手操作能力,以及归纳、判断能力。
3、经历观察、猜想、实验和分析实验结果的过程,体验事件发生的。
4、进一步感受数学与实际生活的紧密联系,体会数学在现实生活中。
的应用。
重难点:理解事件发生的可能性是有大小的并会根据影响因素判断可。
能性大小。
教法:引导演示法。
学法:合作交流,实验验证法。
教学准备:课件、扑克牌等。
一、复习铺垫,迁移导入。
课件出示图片:
生:从a盒摸。
师:为什么不建议我从b盒或者c盒摸呢?
生:b盒与c盒可能摸出白球,但都不一定一次就能摸出白球。
(生独立思考,小组交流)(生可能回答b盒白球更多一些)。
师:真的如此吗?可能性真的有大小吗?可能性大小又与什么有关呢?今天我们就来研究这个问题。
二、探索新知。
(1)课件出示教材第45页情境图。
师:今天老师带来了一个盒子,盒子里有四个红棋子和一个黑棋子。
问:从中摸出一个棋子,可能是什么颜色?
生:可能是红色,也可能是蓝色。
师:摸出一个棋子,那摸出哪种颜色的可能性大呢?
学生思考,猜测。
师:刚刚只是同学们的猜测,而猜测并不能作为依据,我们需要通过实验来证明。我们来试一试吧!
(2)安排实验过程。
请一名学生摸棋子,底下的同学们将棋子的颜色大声说出来,一名学生记录。所有学生边观察边思考。
要求:摸出一个棋子,记录它的颜色,然后放回去摇匀再摸,重复20次。
讲解记录方法:制作像这样的一个表格(出示表格),在记录这一竖列用“正”字笔画去记次数,在次数一列用数字写出记录的总结果。
(3)交流记录结果。
师:通过实验结果,你们现在有什么想法?
学生交流、讨论。
(4)小结:取出红棋子的次数要多些,也就是取出红棋子的可能性要大一些。
(5)讨论:再取一次取出哪种颜色的可能性最大?
2、进一步证实、总结规律。
(1)提出猜想。
在每一小组,老师都放了十张扑克牌,其中八张黑的,两张红的,从中摸出一张,摸出的是红色可能性大还是黑色可能性大?为什么?(学生猜想)。
(2)实验证明。
这仅仅只是同学们的猜想,还需要大家用实验来证明它。
实验要求:组内同学做好分工,其中一个人负责洗牌,一人负责记录,一个人负责汇报,其他组员轮流抽牌,共抽20次。
(3)汇报实验结果。
(4)引导小结:从这些实验结果中,你发现了什么规律?
(学生独立思考,小组交流)。
教师小结:因为黑桃在总数中占得多一些,所以取出黑桃的可能性要大些。
3、知识总结师设疑:可能性大小与什么因素有关?
(生思考回答)。
师总结:以摸棋子为例,可能性的大小与在总数中所占数量的多少有关,在总数中占得数量越多摸到的可能性也就越大;占得数量越少,摸到的可能性越小。
三、巩固练习(课件出示)。
四、课堂小结学完这节课后,你们能否准确判断可能性的大小?
可能性的大小与在总数中所占数量有关。
多大。
少小。
人教版可能性教学设计篇十三
1、体验事件发生的等可能性以及游戏规则的公平性,会求简单事件发生的可能性。
2、能按照指定的要求设计简单的游戏方案。
3、理解中位数在统计学上的意义,学会求中位数的方法。
4、根据数据的具体情况,体会“平均数”“中位数”各自的特点。
1、注重学生对等可能性思想的理解,淡化纯概率数值的计算。
2、加强学生对中位数在统计学意义上的理解。
3、本单元内容可用4课时进行教学。
第一课时。
课题:等可能性与公平性。
教学内容:p98.主体图p.99.例1及练习二十第1—3题。
1、通过游戏活动,体验事件发生的等可能性和游戏规律的公平性,会求简单事件发生的可能性。
2、知道判断游戏公平性的方法是看事件发生的可能性是否相等。
3、能从事件发生的可能性出发,根据指定的`要求设计游戏方案。
4、能对简单事件发生的可能性作出预测。
教学重点:感受等可能性事件发生的等可能性,会用分数进行表示。
教学难点:能从事件发生的可能性出发,根据指定的要求设计游戏方案,并能对简单事件发生的可能性作出预测。
教学准备:主体图挂图,硬币,转盘。
一、情境导入。
(出示情境图)下课了,同学们在操场上玩,我们一起去看一看他们都在玩什么游戏呢?
同学们在玩的过程中涉及到许多的数学知识,今天这节课我们一起来研究一下。
二、新课学习。
1、学习例1,感受等可能性事件的等可能性。
师介绍足球比赛前抛硬币开球的规则。
你认为用抛硬币决定谁先开球的方法公平吗?说说你的理由。
今天这节课我们就来学习和公平性相关的知识—可能性。[板书课题]。
2、抛硬币试验。
现在拿出课前准备的硬币,我们来做抛硬币的实验。看看结果是不是真的和我们说的一样。
分组合作抛硬币试验并做好记录(每个小组抛40次)。
抛硬币总次数。
正面朝上次数。
反面朝上次数。
汇报交流,将每一组的数据汇总,并与实验前的猜测进行对比。
为什么有的组记录值比1/2小,有的组记录值却比1/2大?
师:1/2只是理论上的结果,因为随机事件的概念值是建立在大量重复实验的基础上的,所以抛40次硬币时,结果会出现偏差大,这也是政党的。当实验的次数增多时,正面朝上的概率和反面朝上的概率会越来越接近1/2。
出示数学家做的试验结果。
试验者抛硬币总次数正面朝上次数反面朝上次数。
德摩根409220482044。
蒲丰404020481992。
费勒1000049795021。
皮尔逊240001201211988。
罗曼若夫斯基806403969940941。
观察发现,当实验的次数增大时,正面朝上和反面朝上的可能性都越来越逼近。
3、师生小结:
掷硬币时出现的情况有两种可能,出现正面是其中的一种情况,因此出现正面的可能性是。用抛硬币来决定谁先开球是公平的。
三、练习。
1、p99做一做。
指针停在红色、蓝色、黄色区域的可能性分别是多少呢?
既然这个转盘设计得不公平,那你们能不能重新设计一个转盘,使这个游戏规则变公平呢?
2、p100第2题。
出示一个被平均分成4份的s转盘,其中红、黄、蓝、绿各占1份。
问:指针停在这四种颜色的可能性各是多少?
如果转动指针100次,估计大约会有多少次指针是停在红色区域呢?如果出现疑问可进行小组讨论。
一定会是25次吗?
师:这是理论上的结果,因为随机事件的概率值是建立在大量重复试验的基础上的,所以实际转动100次时,有可能会偏离这个结果,这也是正常的。
老师转动此转盘,决定由男或女先开始走棋。
3、练习二十第3题。
为什么不公平?(面积最大的那个面投掷后朝上的可能性最大)。
试验,验证结果。
4、练习二十第1题。
那就正方体骰子来决定每次所走棋的步数公平吗?说说你的想法。
男女生掷骰子走棋。
四、课内小结:通过今天的学习,你有什么收获?
我为这学生准备了大量教具,包括情境图、主题图、做一做及练习2的转盘,长方体及正方体的骰子、同学们也都准备了硬币。由于准备充分,且整节课教学环节以操作、游戏贯穿,所以学生忘我地投入到学习全过程,教学效果相当好。
【本文地址:http://www.xuefen.com.cn/zuowen/14635794.html】