不管做什么事情,都要有始有终,才能取得好的结果。在总结中如何突出重点,让读者一目了然?总结是在一段时间内对学习和工作生活等表现加以总结和概括的一种书面材料,它可以促使我们思考,我想我们需要写一份总结了吧。那么我们该如何写一篇较为完美的总结呢?以下是小编为大家收集的总结范文,仅供参考,大家一起来看看吧。
最大公因数教学设计篇一
1、通过解决实际问题,初步了解两个数的公因数和最大公因数在现实生活中的应用。
2、在探索新知的过程中,培养学好数学的信心以及小组成员之间互相合作的精神。
初步了解两个数的公因数和最大公因数在现实生活中的应用。初步了解两个数的公因数和最大公因数在现实生活中的应用。
自主学习、合作探究。
(约5分钟)。
课件展示教材62页例3,今天我们要给这个房子铺砖大家感兴趣吗?要求要用整数块。
(约5分钟)。
1、几个数()叫做这几个数的公因数,其中最大的一个叫做()。
2.16的因数有(),24的因数有(),16和24的公因数是(),最小公因数是(),最大公因数是()。
3.a=225,b=235,那么a和b的最大公因数是()。
(约13分钟)。
小组合作学习教材第62页例3。
1、学具操作。
用按一定比例缩小的方格纸表示地面,用不同边长的正方形纸表示地砖,我们发现边长是厘米的正方形的纸可以正好铺满,没有剩余,其它的都不行。
2、仔细观察,你们发现能铺满的地砖边长有什么特点?把你的发现在小组里交流。
3、总结。
解决这类问题的关键,是把铺砖问题转化成求公因数的问题来求。
(约8分钟)。
根据自主学习、合作探究的情况明确展示任务,进行展示。教师引导讲解。
1、达标练习。
2、全课总结。
这节课你都学到了什么知识?有什么收获?
3、作业布置。
练习十五5,6题。
板书设计:
铺砖问题:求公因数。
最大公因数教学设计篇二
1、探索找两个数的公因数的方法,会用列举法找出两个数的公因数和最大公因数。
2、经历找两个数的公因数的过程,理解公因数和最大公因数的意义。
3、通过观察、分析、归纳等数学活动,体验数学问题的探索性和挑战性,感受数学思考的条理性。
二、重点难点。
重点:经历找最大公因数的过程,正确找两个数的公因数和最大公因数。
难点:探索并掌握找最大公因数的方法。
三、教学设计。
(一)回顾旧知,导入新课。
1、之前我们学习了找一个数的因数,你们还记得吗?
2、我们来做个游戏,回顾一下。学号是20因数的同学请起立。
3、同学们掌握的真好,这节课我们来学习《找最大公因数》。
(二)自主学习,探索新知。
2、同学们找得真快真好,同学们认真观察它们的全部因数,你有什么发现,小组讨论。
3、师总结:1、2、3、6即是12的因数,又是18的因数,像这样的公共因数我们称之为公因数。
4、那最大的那个因数叫什么?——最大公因数。
(三)巩固新知,继续练习。
1、教科书p45练一练1—2,看哪组做的又快又准。
2、师小结,强调重点。
3、继续练习,练一练3—4。可让学生到黑板做,易错的集体纠正、强调。
4、在练习中,针对错误比较多的,进行集体讲解,少的则个别讲解。
(四)课堂小结。
1、今天我们在复习因数的基础上又认识了公因数和最大公因数。
四、板书设计。
即是12的因数,又是18的因数,像这样的数称为公因数。
五、教学反思。
本节课,我采取小游戏的形式勾起对旧知的回忆,再通过写出12和18的全部因数来引起学生的注意(1,2,3,6),既是12的因数又是18的因数,像这样的因数是12和18的公因数;6是12和18的最大公因数。
通过让学生在玩中学,学生们掌握的很好,在实践中学生们也能很好的应用。
最大公因数教学设计篇三
教材第82、83页练习十五的第2一9题。
1.培养学生独立思考及合作交流的能力,能用不同方法找两个数的最大公因数。
2.培养学生抽象、概括的能力。
投影。
1.完成教材第82页练习十五的第2题。
学生先独立完成,然后集体交流找最大公因数的经验,并将这8组数分为三类。
2.完成教材第82页练习十五的第3一5题。
学生独立填在课本上,集体交流。
3.完成教材第83页练习十五的第6题。
学生独立填写,集体交流,体会两个数的最大公因数是1的几种情况。
4.完成教材第83页练习十五的第7一11题。
学生独立审题,理解题意,然后试着解答,集体交流。
5.指导学生阅读教材第83页的“你知道吗”。
请学生试着举例。提问:互质的两个数必须都是质数吗?你能举出两个合数互质的例子吗?
通过本节课的学习,主要掌握了找两个数的最大公因数的方法。找两个数的最大公因数,可以先分别写出这两个数的因数,再圈出相同的因数,从中找到最大公因数;也可以先找到一个数的因数,再从大到小,看看哪个数是另一个数的因数,从而找到最大公因数。
最大公因数教学设计篇四
这部分内容是在学生掌握了因数、倍数概念的基础上进行教学的,主要是为下续学习约分作准备。教材先创设了一个剪纸的问题情境,从实际生活中抽象出概念。这样处理的好处便于揭示数学与现实世界的联系,有利于学生理解公因数、最大公因数的概念及现实意义,也有利于培养学生的数学抽象能力。但是将解决问题与概念引入结合在一起,教学上自然会有一定的`难度,所以我将主题图的自由探索与尝试选正方形的大小来剪。适当降低了一些难度并提高了教学的效率,最后的效果还是不错的,很容易就引入了公因数和最大公因数的概念。
在现行《课标》中有关求最大公因数的要求是:“能找出两个自然数的公因数和最大公因数”。重在“找”,而现行教材的分子分母都比较小,学生熟练了以后都能准确的进行约分,关键还是在练习的力度上多下功夫。
融入生活实际。我把找公因数的问题融入实际生活情景中,比如:“有两根绳子,一根长12米,另一根长28米,要把它们截成同样长的小段,而且没有剩余,每段最长应是几米?一共截几段?”这时学生理解了求最大公因数的方法和作用,就不难解决这一问题。结合生活实际,使学生真正体会到数学学习的价值,并清楚地知道“为什么学”,真正做到了生活知识数学化。
最大公因数教学设计篇五
教学内容:
教学目标:
1、使学生在具体的操作活动中,认识公因数和最大公因数,会在集合图中分别表示两个数的因数和它们的公因数。
2、使学生学会用列举的方法找到100以内两个数的公因数和最大公因数,并能在解决问题的过程中进行有条理的思考。
3、使学生在自主探索与合作交流的过程中,进一步发展与同伴进行合作交流的意识和能力,获得成功的体验。
教学重点:
将本文的word文档下载到电脑,方便收藏和打印。
最大公因数教学设计篇六
1、使学生通过动手操作理解公因数与最大公因数的概念,并掌握求两个数的最大公因数的方法。
2、培养学生分析、归纳等思维能力。
3、激发学生自主学习、积极探索和合作交流的良好习惯。
理解并掌握求两个数的最大公因数的方法。
课件,长方形纸板,不同边长的正方形纸片(硬卡纸做的)。
一、创设情境,引导动手操作。
1.情境导入。
2.出示问题,明确要求。(理解重点要求,如整分米数,整块)。
3.学生猜测可选用几分米的地砖。
4.介绍教具,明确活动要求。
5.小组活动。
二、自主探索,形成概念。
1.展示学生作品,得出结果。
2.教师将不同铺法展示到课件上。
3.明确王叔叔对地砖的要求必须符合什么条件。(地砖的边长必须既是16的因数又是12的因数。)。
4.引出公因数和最大公因数的概念,揭示课题。
5.巩固练习课本80页做一做。
三、自主探究,掌握方法。
2.出示例2,独立思考,做在练习本上,指名板演,集体订正。
3.归纳方法,找出公因数和最大公因数的之间的关系。(几个数的最大公因数是他们公因数的倍数,他们的公因数是最大公因数的因数。)。
四、巩固练习,总结提升。
1.81页做一做,独立思考,指名回答,集体订正。
2.总结规律。(当两个数是倍数关系时,较小的数就是最大公因数。两个数的公因数只有1时,那他们的最大公因数就是1。)。
五、小结。
谈谈本节课有什么收获。
最大公因数教学设计篇七
《标准》指出“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。”这一理念要求我们教师的角色必须转变。我想教师的作用必须体现在以下几个方面。一是要引导学生思考和寻找眼前的问题与自己已有的知识体验之间的关联;二是要提供把学生置于问题情景之中的机会;三是要营造一个激励探索和理解的气氛,为学生提供有启发性的讨论模式;四是要鼓励学生表达,并且在加深理解的基础上,对不同的答案开展讨论;五是要引导学生分享彼此的思想和结果,并重新审视自己的想法。
一、引导学生思考和寻找眼前的问题与自己已有的知识体验之间的关联。
《公因数与最大公因数》是在《公倍数和最小公倍数》之后学习的一个内容。如果我们对本课内容作一分析的话,会发现这两部分内容无论是在教材的呈现程序还是在思考方法上都有其相似之处。基于这一认识,在课的开始我作了如下的设计:
学生已经学过公倍数与最小公倍数,这两部分内容有其相似之处,课始放手让学生自由猜测,学生通过对已有认知的检索,必定会催生出自己的一些想法,从课的实施情况来看,也取得了令人满意的效果。什么是公因数和最大公因数?如何找公因数与最大公因数?为什么是最大公因数面不是最小公因数?这一些问题在学生的思考与思维的碰撞中得到了较好的生成。无疑这样的设计贴近学生的最近发展区,为课堂的有效性奠定了基础。
二、提供把学生置于问题情景之中的机会,营造一个激励探索和理解的气氛。
三、让学生进行独立思考和自主探索。
通过学生的猜测,我把学生的提出的问题进行了整理:
(3)为什么是最大公因数而不是最小公因数?
(4)这一部分知识到底有什么作用?
我先让学生独立思考?然后组织交流,最后让学生自学课本。
这样的设计对学生来说具有一定的挑战性,在问题解决的过程中充分发挥了学生的主体性。在这一过程中学生形成了自己的理解,在与他人合作与交流中逐渐完善了自己的想法。我想这大概就是《标准》中倡导给学生提供探索与交流的时间和空间的应有之意吧。
最大公因数教学设计篇八
教学内容:
课本p79~81例1、例2。
教学目标:
1.知识与技能:理解公因数、最大公因数的意义,初步掌握求两个数的最大公因数的方法。
2.过程与方法:使学生经历理解公因数、最大公因数的意义,初步掌握求两个数的最大公因数的方法的过程,培养学生观察、比较、分析和概括的能力。
3.情感、态度与价值观:在师生共同探讨的学习过程中,激发学生的学习兴趣,体会数学与生活的联系,渗透事物是普遍联系的和集合的数学思想。
教学重点:
理解公因数、最大公因数的意义,初步掌握求两个数的最大公因数的方法,初步了解算理。
教学难点:
教学用具:
自制课件。
教学过程:
一、复习导入。
[从学生的实际生活引入,可以激发学生的学习兴趣。]。
二、探索新知。
1.出示动画8用正方形摆长方形的动画,请同学们帮帮忙,试着设计一下。
2.探究方法。
同学们先独立思考,再小组交流、讨论。
3.全班交流。
(1)说一说你是怎样安排的?
过渡语:今天我们就重点来研究最大公因数。
6.说一说:最大公因数和公因数有什么关系呢?
7.试一试:你能找到18和24的公因数和最大公因数吗?
4和624和85和76和11。
问:你是怎样答出的?能说一说过程吗?
9.除了找因数,求最大公因数的方法外,还有没有其他求最大公因数的方法呢?
分解质因数法。
10.练习:求24和36的最大公因数(用喜欢的方法求)。
三、巩固练习。
12和18。
99和132。
24和30。
39和65。
最大公因数教学设计篇九
教学内容:
青岛版数学四年级下册第七单元分数加减法信息窗一。
教学目标:
1、在合作探究活动中了解公因数和最大公因数的意义,能用列举法和短除法找出100以内两个数的公因数和最大公因数。
2、会在集合图中表示两个数的因数和它们的公因数,体会数形结合的数学思想。
3、在探索公因数和最大公因数意义的过程中,经历列举、观察、归纳等数学活动,进一步发展初步的推理能力。感受数学思考的条理性,体验学习的乐趣。
教学重点:
理解公因数和最大公因数的意义,掌握求两个数公因数和最大公因数的方法。
教学难点:
评价任务设计:
1、教师对学生能够利用列举法、短除法找公因数和最大公因数学习情况的评价。
2、教师对学生在学习活动中体会数形结合思想的评价。
3、教师对学生参与学习活动的评价,及时评价不同水平的学生参与学习活动的实际表现。
教学过程:
一、复习导入。
师:昨天,老师布置了这样一项课前作业。
师:谁能拿着你的作业到前面来说一说你是怎样分的?(指名答)。
师:这个同学把自己的想法表达的非常清楚,我们再来看看他是怎么分的。(课件演示)。
问:还有不同分法吗?(生答师演示)。
师:其他同学还有不同意见吗?
同位互相看一看各自是怎样分的,交流一下自己的想法!
师:这些小正方形的边长1、2、3、6与长方形的长24和宽18之间有什么关系啊?
生:1、2、3、6是18的因数也是24的因数。
师:我们把18和24的因数都找出来,对比着看一看吧!
师:谁能快速找出18的因数?24的因数又有哪些呢?(指名说)。
师:对比观察18和24的因数,你有什么发现?
生:它们的因数中都有1、2、3、6、
师:看来,这和我们刚才的想法是一样的,1、2、3、6既是18的因数,也是24的因数,我们就把1、2、3、6叫做18和24的公因数。
师:公因数中哪个最大啊?生:6最大。
师:其实在前面的课前作业中,小正方形的边长就是长方形长与宽的公因数。今天这节课,我们就来研究公因数和最大公因数。
2、教学集合圈。
师:为了让大家更直观的看出它们的关系,我们还可以用集合圈的形式表示出来。
24的因数。
18的因数。
【课件出示】。
123612346。
91881224。
师:左边的集合圈表示的是18的因数,右边的集合圈表示的是24的因数、因为它们有公因数1、2、3、6,所以我们就把两个集合圈合在一起。
问1:现在你知道左边这一部分表示的什么吗?(指名答)。
师:下面请同位互相说一说集合圈中每一部分表示什么。
师小结。
师:现在给你一个集合圈你会填了吗?
师:看到这道题你能不能直接填呢?那应该先怎么办?
生:先找到16和28的因数和公因数,再填集合圈。
师:请同学们先在作业纸上列举出16和28的因数,再填集合圈。
(生独立完成,师巡视)。
展示与评价。
师:谁来说一说你是怎么填的?(指名汇报)。
给大家说说你先填的什么?又填的什么?
指名说一说,及时评价。
师:我们再来看看这位同学的作业。
师:同位互相检查一下,不对的改正过来。
三、认识短除法。
1、讲解短除法。
师:请大家先把18和24分解质因数。
师:谁来说说你分解质因数的结果?
师:请同学们仔细观察这两个式子,你有什么发现?
生:我发现它们都有质因数2和3、
师:根据这个发现我们就可以把两个短除式合并在一起,用短除法来求18和24的最大公因数。
师边板书边讲解……。
师:最后把所有的除数连乘起来,就能得到18和24的最大公因数了。
问:现在谁能说说我们是怎样用短除法求18和24的最大公因数呢?(指名学生说一说)。
2、练一练。
师:下面请你用这种方法求下面每组数的最大公因数,快速的完成在你的作业纸上!
师:谁来说说你是怎么做的?(指名学生展示汇报)。
问:你认为他做的怎么样?
四、练习与应用。
1、练一练(苏教版p27t1)。
师:接下来你能用今天所学的知识解决下面这个问题吗?(课件出示)把它完成在你的作业纸上!
展示汇报。
师:我们在找两个数的公因数和最大公因数的时候,除了列举法和短除法以外,我们还可以用这种方法(课件演示、介绍)。
2、扎花束。
师:同学们!春季运动会马上就要到了,学校花束队买来了两种颜色的花准备来扎花束。(课件出示,师读题目要求)。
问:同学们想一想这道题其实在求什么?
师:选择自己喜欢的方法把它完成在练习本上。
问:大家一起告诉我最多能扎多少束?这样每一束花里面有几朵红花?几朵黄花呢?
2、数学知识。
师:同学们!早在很久以前,我国古代的数学家就已经在研究我们今天所学的知识了!
五、课堂总结:通过这节课的学习你有哪些收获?
最大公因数教学设计篇十
教学内容:
教学目标:
1、使学生在具体的操作活动中,认识公因数和最大公因数,会在集合图中分别表示两个数的因数和它们的公因数。
2、使学生学会用列举的方法找到100以内两个数的公因数和最大公因数,并能在解决问题的过程中进行有条理的思考。
3、使学生在自主探索与合作交流的过程中,进一步发展与同伴进行合作交流的意识和能力,获得成功的体验。
教学重点:
最大公因数教学设计篇十一
教学目标:
1、结合具体情境理解公因数和最大公因数的意义,学会求两个数的最大公因数的方法。
2、会用公因数、最大公因数的知识解决简单的实际问题,体验数学与日常生活的联系。
3、通过学生合作探究等活动,培养学生的合作能力和抽象概括能力,以及激发学生对探究数学知识的兴趣。
教学重、难点:
重点:理解公因数和最大公因数意义,会求最大公因数。
难点:理解公因数和最大公因数的意义。
教学准备:
ppt课件,长方形的方格纸,小正方形纸若干。
教学过程:
一、预设情境、提出问题。
二、探究交流,抽象概念。
(1)合作探究。
提供学具,学生操作。
(2)反馈交流。
得到:边长是1分米,2分米,4分米的地砖符合要求。
(3)讨论交流。
还有没有别的铺法?边长是3分米的地砖行吗?为什么?边长是8分米呢?
a、引出猜想:
b、枚举验证。
a、完成做一做。
引导学生概括公因数和最大公因数的概念(教师板书)。
三、尝试练习、探索方法。
四、巩固练习,完善新知。
6和915和204和1216和32。
(完成后,解决成倍数关系的两个数的最大公因数的求法)。
2、选择题。
a.4b.6c.8d.16。
(2)甲数是乙数的倍数,甲、乙两数的最大公因数是_。
a.1b.甲数c.乙d.甲、乙两数的积。
7/98/3618/729/154、*小巧匠。
12cm16cm44cm。
要把它们截成同样长的小棒,不能有剩余,每根小棒最长是多少厘米?
(完成之后,完善公因数的概念。)。
五、课堂小结:通过这节课的学习,你有什么收获?
msn(中国大学网)。
最大公因数教学设计篇十二
理解两个数的公因数和最大公因数的意义。
通过解决实际问题,初步了解两个数的公因数和最大公因数在现实生活中的应用。
理解公因数和最大公因数的意义。
一、预习砺能。
1、提问:什么是因数?怎样找一个数的所有因素?
2、写出16和12的所有因数。
提问:从16和12的所有因素中你发现了什么?
二、导学砺能。
1.出示例1。
(2)、以小组为单位,探究如何拼剪正方形。
(3)、多媒体演示剪小正方形的过程,进一步验证学生动手操作的情况。
(4)、通过交流,得出结论:要使所剪成大小相等的正方形且没有剩余,正方形的边长必须既是30的因数,又是12的因数。
2、教学公因数和最大公因数。老师用多媒体课件演示集合图。
1,2,3,6是12和30公有的因数,叫做它们的公因数。其中,6是最大的'一个公因数,叫做它们的最大公因数。
3、引导学生用短除法找两个数的最大公因数。
三、巩固砺能。
1、达标练习。
完成教材第12页“试一试”。学生完成后归纳出规律。
2、总结评价。
通过本节课的学习,我们主要认识了公因数、最大公因数的意义.公因数和最大公因数在现实生活中有着广泛的应用,我们初步了解了它的应用价值。
最大公因数教学设计篇十三
各位老师:
分析教材。
本课是苏教版教材五年级上册第三单元《公倍数和公因数》中的内容。在四年级(下册)教材里,学生已经建立了倍数和因数的概念,会找10以内自然数的倍数,100以内自然数的因数。本单元继续教学倍数和因数的知识,要理解公倍数、最小公倍数和公因数、最大公因数的意义,学会找两个数的最小公倍数和最大公因数的方法。为以后进行通分、约分和分数四则计算作准备。
《课程标准》要求学生“动手操作、自主探索、合作交流”,结合教材的特点,我力求达到下面的教学目标:
1、经历找两个数的最大公因数的过程,理解公因数和最大公因数的意义。探索找公因数的方法,会正确找出两个数的公因数和最大公因数。
2、结合具体实例,渗透集合思想,培养学生有序思考的能力,让学生养成不重复、不遗漏、不重复的思考习惯。
3、培养学生能用自己的语言表述自己的发现,善于发现规律,利用规律解决问题的能力。
依据《课程标准》的要求和教学目标,我确定本课教学重点是理解公因数和最大公因数的意义,教学难点是会求两个数的公因数和最大公因数。
设计理念。
在教学中我发挥“教师是学习活动的组织者、引导者与合作者”的作用,激发学生兴趣、引导学生自己探索。学生才是学习的主体,让学生在玩中学、学中玩,合作交流中学、学后合作交流并根据学生原有的认识基础和认知规律,并结合“以学生的发展为本“的理念,力求突出以下三点:
1、将教学内容活动化,让学生在做中学。
2、采用小组合作学习,让学生在交往互动中学。
3、充分利用原有的认知经验,在迁移中学。
教学过程。
依据教材特点及小学生认知规律和发展水平,整个教学过程安排了四个环节:
分为五个步骤:
2、想象延伸:接下来让学生思考还有那些边长是整厘米数的正方形也能铺满大长方形。学生思考后,回答边长是1厘米,2厘米,3厘米的正方形也能铺满大长方形。引导学生说出只要边长“既是”18的因数“又是”12的因数,就能铺满大长方形。从而引出公倍数的概念,再强调因为一个数的因数的'个数是有限的,所以两个数的公因数的个数也是有限的(最小是1),让学生在自主参与、发现、归纳的基础上认识并建立公因数的概念的过程。
3、归纳总结:只要正方形的边长既是12的因数又是18的因数,这样的正方形就能铺满大长方形。1、2、3、6既是12的因数又是18的因数,它们就是12和18的公因数。
4、根据学生的总结我及时板书课题,让学生的形象思维转变成抽象思维。
5、反例教学:让学生说明4是12和18的公因数吗?为什么?
学生通过上面的一正一反教学总结出:公因数要同时是两个数的因数。
为了及时巩固,完成练一练:先让学生在图上画一画,找出公因数和最大因数,填写在书上。
(设计目的:通过具体的操作和交流活动,帮助学生理解公因数,使知识不在枯燥无。让学生到感受成功的喜悦。)。
最大公因数教学设计篇十四
教学目标:
1.使学生理解和认识公因数和最大公因数,能用列举的方法求100以内两个数的公因数和最大公因数,能通过直观图理解两个数的因数及公因数之间的关系。
2.使学生借助直观认识公因数,理解公因数的特征;通过列举探索求公因数和最大公因数的方法,体会方法的合理和多样;感受数形结合的思想,能有条理地进行思考,发展分析、推理等能力。
3.使学生主动参加思考和探索活动,感受学习的收获,获得成功的体验,树立学好数学的信心。
教学重点:
教学难点:
教学准备:
小黑板。
教学过程:
一、铺垫准备。
1.直观演示,作好铺垫。
出示边长6厘米和边长5厘米的两个正方形。
提问:观察这两个正方形,哪一个能正好分成边长都是2厘米的小正方形?
2.引入新课。
谈话:根据上面我们看到的,如果一个长度是原来边长的因数,就能正好全部分割成小正方形。现在就利用这样的认识,学习与因数有密切联系的新内容,认识新知识,学会新方法。
二、学习新知。
(1)出示例9,了解题意。
启发:观察正方形纸片的边长和长方形的长、宽,哪种纸片能把长方形正好铺满,哪种不能正好铺满?先在小组讨论,说说你的理由。
交流:哪种纸片能把长方形正好铺满,哪种不能?你是怎样想的?
结合交流进行演示,引导观察用正方形纸片铺的结果,理解边长6是长方形两边12和18的因数,能正好铺满;(板书:126=2186=3)边长4是12的因数,但不是18的因数,就不能正好铺满。(板书:124=3184=4......2)。
(2)启发:想一想,还有哪些边长是整厘米数的正方形,也能把这个长方形正好铺满?为什么?先独立思考,再和同桌说一说,并说说你的理由。
最大公因数教学设计篇十五
反思本课教学,我认为教师做的比较成功的地方有以下几个方面:
一、复习和新知的传授能够联系学生的学习、生活实际。
首先教师让每个学生把自己的学号别在胸前,本节课的教学围绕学号展开,也就是借助学号这个载体,让学生复习质数和合数的概念,同时在教学最大公因数概念的时候,也是借助学号完成的,这样的设计联系了学生实际,借助学生最熟悉的学号这个载体,完成了从旧知到新知的过渡,符合学生的`认知规律,同时也有助于学生对新知的理解。
二、教师注重创设情境、激起学生的认知冲突来揭示新知。在这个环节中,教师让12的所有因数和18的所有因数同时到前面来站好,当学生找不到位置的时候,教师引导全体同学作裁判,这些同学应该站在什么位置?从而来揭示出公因数和最大公因数。这种情境的创设符合学生的认知规律,调整了学习节奏和精神状态,对学生探索、构建新知起着积极的推动作用。同时可以激发矛盾,突出知识的生长点,唤起学生思考和解决问题的激情。在这个前提下“公因数”和“最大因约数”的概念就水到渠成了。
三、课堂教学中体现了精讲多练。
本节课,教师从复习导入到新知结束,只用了不足15分钟。余下的时间学生做练习,学生自主练习的时间比较长。学生在练习的过程中不断探索、不断发现规律。练习的设计主要是体现分层次教学,让学生在分层次的练习活动中探索并掌握求两个数最大公因数的方法,掌握这些规律,有助于学生今后求最大公因数的速度和正确率。练习容量比较大,有助于学生更好的达到本节课的教学目标。
最大公因数教学设计篇十六
一、说教材:
教材的地位及其作用。
学习本课之前,本册教材已经安排了认识因数和找一个数的所有因数,这些内容与本节课紧密相联,是学习本课的铺垫和基础。同时,找最大公因数又是约分的基础,而约分又是分数四则运算的重要基础,因此,理解和掌握最大公因数就显得尤为重要。由此可见,本课在分数运算中起着承前启后、举足轻重的作用。
教材编写者编写本节课时,贯彻数学课程标准(版)的理念,非常注意促使学生经历观察、操作、比较、讨论、归纳等学习活动,在“找最大公因数”的过程中发展抽象概括的能力,培养学生的实践能力和创新意识,帮助学生实现可持续发展发挥。
这里分析本节课在教材中的地位和作用,同时也是我们确定教学目标和教学重点的一项重要依据。
学情分析:
学习本课之前,五年级学生已经认识了倍数和因数,能找出100以内某个自然数的所有因数;积累了一定的观察、操作、归纳等数学活动经验,具备了初步的抽象概括能力。但是,这个年龄阶段的学生处于从具体的形象思维向抽象逻辑思维过渡的阶段,他们的数学学习一个重要特点是:探索发现和抽象概括的过程中需要具体的、形象的数学例证作支撑;同时他们在进行数学概括时往往不够完整,在数学表达上往往不够严谨,这些都需要精心的引导。
以上学情,是我们确定教学目标和教学重点、难点以及确定教法、学法的一项重要依据。
教学目标:
1、在解决问题的过程中理解公因数和最大公因数的意义,探索找公因数的方法,会正确找出两个数的公因数与最大公因数。
2、渗透集合思想,体验解决问题策略的多样性。
3、培养学生分析、归纳等思维能力,激发学生自主学习、积极探索的热情,培养合作交流的良好习惯。
教学重、难点:
教学重点:能理解公因数和最大公因数的意义,探索找公因数的方法。
教学难点:能正确找出两个数的公因数与最大公因数。
教材处理:
教材首先呈现了找公因数的一般方法:先用想乘法算式的方式分别找12和18的因数,再让学生将这些因数填入两个相交的集合圈中,引导学生重点思考的问题是:两个集合相交的部分填哪些因数?在此基础上,引出公因数与最大公因数的概念。教材用集合的方式呈现思路,让学生经历知识的形成过程,引发学生的数学思考。
教材在练一练中,呈现了两组找因数、公因数和最大公因数的练习,一组是8和16,另一组是5和7。第一组是两个数存在倍数关系找最大公因数;第二组是找互质数的最大公因数。我在教学这两种特殊情况时,给出更多的数字,安排了三对数,第一组4和8,16和32,6和24,每对都存在倍数关系,先让学生找一找公因数和最大公因数,然后观察最大公因数,发现每组的最大公因规律。第二组安排了三对数3和7,8和9,15和16,都存在互质的关系,也先让学生找一找公因数和最大公因数,然后观察、发现每组的最大公因数都是1,然后现去想一想,每组数都有些什么特点,从而概括这两种特殊情况组找最大公因数的方法。
二、说方法。
教法、学法选择:
依据《数学课程标准(版)》,数学教学活动要注重把四基目标有机结合,整体实现;要重视学生在学习活动中的主体地位,我对本节课主要选用了探究性学习方式。同样的,依据《数学课程标准(2011版)》,为了使学生主体地位和教师的主导作用达到和谐统一,我还选用了启发式的教学方式。
教学手段:
我使用了现代信息技术,以手段多样化,促进学生的探索研究。主要使用了四种教学手段:
1、学具操作:合理的使用学具能促进学生的亲身经历与体验,帮助学习建立数学建模。
2、白板运用:恰当的演示,给课堂带来清晰的层次感,体现教师的主导作用和引导方式。强大的.电子白板可以更好的辅助教师和学生之间的互动。
4、课堂板书:必要的板书有利于实现学生的思维与教学过程同步,有助于学生更好地把握教学内容的脉络。
三、说过程。
一、复习导入。(复习找因数的方法)。
回忆旧知识,又是为向新知识的延升做好铺垫。
让学生找出12的所有因数。并说说是怎样找的?找因数的时候需要注意些什么?
(白板上出示1、2、3、4、5、6、7、8、9、10、12、15、18、20数字和集合圈1)。
让学生将12的因数拖入集合圈中,回忆找因数的方法。怎么找因数才能又快又有顺序?
用乘法算式,有序、不易遗漏。
二、探究。
再找一找18的所有因数,并出示集合圈2,让学生将18的所有因数拖入集合圈2中。
9、18。
移动集合圈。展示交集动态的过程。
师:左边的集合圈填的是什么?(12的因数)右边的集合圈填的是什么?(18的因数)中间的圈里是?(即是12的因数也是18的因数)。
那我们可以给他取个名字?(公因数)。
我们可以将4放到中间的集合圈中吗?为什么?
根据学生的回答,小结:即是12的因数也是18的因数,我们就称他为12和18的公因数。
巩固练习。
你学会了找两个数的公因数了吗?试一试吧。
找6和9的公因数找30和45的公因数。
如果请你找出12和18的最大公因数,你会觉得是哪一个数字呢?
巩固练习。
我们学会了找最大公因数,那同学们能找出这三组数的最小公因数吗?你有什么发现?
1、4和816和326和24。
2、3和78和915和16。
做完后分小组相互交流,从中你能发现些什么?
每组的两个数有些什么特点,和他们的最大公因数有什么关系?是不是有这些特点的两个数,它们的最大公因数都有这些规律呢?分小组验证。
反馈得出结论:两个数是倍数关系的,较大的数是两个数的最大公因数。
两个数只有公因数1时,他们的最大公因数为1。
三、练习反馈:
四、归纳总结。
1、这节课我们学到了那些知识?
2、我们是运用什么方法获得这些知识的?
(不但让学生谈知识技能方面的收获,还着重让学生谈谈了学习方法、情感态度方面的收获,再一次激起良好的情绪体验。)。
【本文地址:http://www.xuefen.com.cn/zuowen/14632591.html】