作为一个社会个体,我们应该时刻保持对世界的关注,了解时事新闻对我们的生活有何影响。总结应该集中在我们的成长和进步上,不要过于苛求完美。接下来我们一起来阅读一些鲜活的总结案例,体会优秀总结的特点。
小学数学五年级平行四边形的教学设计篇一
练习目的:
1、进一步掌握平行四边形的面积计算方法,并能运用所学知识解决一些实际问题。
2、进一步探索平行四边形的面积与底和高的关系。
3、体验数学和日常生活密切相关。
教具准备:
实物投影仪等。
学具准备:
直尺、方格纸。
练习过程:
一、基本练习。
(1)让学生利用方格纸,画几个平行四边形,然后标出每个平行四边形的底和高。
(2)教师用实物投影展示学生的作品。
(1)说一说平行四边形面积计算方法。
板书:s=ah。
(3)计算下列图形面积。(略)。
二、专项练习。
完成书p24“练一练”。
小学数学五年级平行四边形的教学设计篇二
生:有,平行四边形面积不会求。
师:是呀,平行四边形面积该怎样求呢?学生为了解决问题,产生了探求平行四边形面积计算方法的欲望。
(2)、自主探究。
(每一格表示1平方厘米),你可以借助这些学具进行思考。
学生们认真地思考着,摆弄着长方形与平行四边形的学具,有的在纸上画着。
……之后,学生们争先恐后地要求发表自己的看法。
生1我认为:长方形面积等于长乘以宽,长方形是特殊的平行四边形,所以平行四边形面积应该等于它的两条邻边的乘积。
生2我觉得平行四边形面积应该等于底乘以高,我是这样想的:长方形的长与宽是互相垂直的,平行四边形的底与高也是互相垂直的。
生3。
我也想到了这两种方法,但我通过比较发现第一种方法实际上是用底乘以它的一条邻边,后一种方法是用底乘以高,但我发现这条高一定比它的那条邻边短,所以两种算法的结果一定不相等,我不敢肯定那一种方法是正确的,但我敢肯定至少有一种方法是错误的。
师:同学们,你觉得他这样思考怎么样?
生1我觉得他这样思考是正确的,因为从底以外的一点到这条底所画的线段中以垂直线段最短。
生2我觉得他观察得很仔细,思考非常有序。
生:(思考片刻后)我觉得可以用这两种方法分别去计算一下同一个平行四边形的面积,然后用透明方格片放在平行四边形上摆一摆、数一数,用数方格的方法来求出平行四边形的面积,从而验证那种方法是正确的。
师:用这种方法去验证,行得通吗?请同学们试试看。学生开始测量、计算。然后进行交流。
生1根据第一种方法我算出平行四边形的面积是24平方厘米,根据第二种方法我算出的平行四边形的面积是18平方厘米,然后我用数方格的方法得出平行四边形的面积是18平方厘米,用第二种猜想算出的.结果与数方格数出的结果完全相同,所以我认为平行四边形面积等于底乘以高。
生2你是怎么用数方格的方法数出平行四边形的面积的?
生1我先数整格的,有15平方厘米,几个不满一格的拼起来正好是3平方厘米,所以平行四边行面积是18平方厘米(一边讲一边在视频转视仪上演示)。
生1太麻烦了。
生2有时还行不通。
师;那该怎么办呢?
师:请你大声一点再讲一边好吗?你们觉得他的这种想法可行吗?四人一组试试看。
学生都跃跃欲试,一位同学有了新的发现,同组同学马上进行交流,共同探究,试着操作,争想有新的突破。然后请同学以小组为单位进行汇报交流。
生1我们小组是听了刚才那位同学的发言受到了启发,我们索性沿着高把平行四边形左边割下一个三角形,补到右边就得到一个长方形,面积大小相等。因为我们认为:要转化成长方形,它的四个角必须是直角。
师:很好!把平行四边形转化成大小相等的长方形是个好办法。还有其它的办法吗?
结合学生的操作汇报,电脑演示各种剪拼方法。你们有没有发现有什么规律吗?
生:都是沿着平行四边形的一条高剪开,平移转化为长方形。
师:平行四边形转化为长方形后,它的什么变了?什么没有变?转化后的长方形的长与平行四边形的底有什么关系?宽与高呢?请学生小组观察讨论。
通过操作、观察和讨论,学生很快发现:因为长方形的面积等于长乘以宽,所以平行四边形面积等于底乘以高。
师:这个面积公式能适用于所有平行四边形吗?为什么?
生:能适用于任何平行四边形,因为任何平行四边形都可以转化成长方形。
同学们真不简单,经过努力你们终于发现并验证了平行四边形面积计算公式,老师为你们感到骄傲,师生一齐鼓掌欢庆“伟大的发现”,同学们个个神采飞扬,高兴地笑了。
师:我们在高兴之余,应当感谢几位同学的大胆猜想,我们不仅要感谢后两位同学,同时也要感谢第一位同学,正是由于这些问题的存在,才给了我们这次讨论的机会,才使今天的讨论更富有趣味性和挑战性。
(3)、应用与反思。
联系实际,解决课前提出问题,反思、小结,拓展练习略。
小学数学五年级平行四边形的教学设计篇三
知识目标:通过操作活动,经历推导四边形面积计算公式的过程;能运用公式计算相关图形的面积,并解决一些实际问题。
能力目标:通过实际操作发展学生的观察、操作、推理、交流能力;培养运用转化的方法解决实际问题的能力。
情感目标:培养学生勇于探索、克服困难的精神;感受数学的美。
教学重、难点:
理解平行四边形面积公式的推导过程,掌握平行四边形面积的计算公式。
培养学生运用公式解决实际问题的能力。
(一)创设情境,设疑引入。
谈话:出示两个美丽的花坛(课件呈现)。
提问:请大家观察一下,这两个花坛哪一个大呢。
然后给出长方形的长和宽让学生计算长方形的面积。
提问:那平行四边形的面积你会算吗?从而导入新课。
(二)操作探索,获取新知。
1、数方格感知平行四边形和长方形之间的关系。
(1)数方格,用数方格的方法来求平行四边形和长方形的面积,(电脑出示)。
(2)汇报交流自己的发现。
小结:用数方格的方法不能满足我们的实际需要,如果我们能像长方形那样有一个计算平行四边形面积的公式就容易解决了。
2、应用“转化”思想,引入割补、平移法。
(1)小组合作探究:想办法充分利用手中的学具把平行四边形转化成会学算面积的图形。(这时教师巡视,了解情况)。
(2)精彩展示:要求边讲边操作。
提问:为什么都要转化成长方形?
为什么一定要沿着高剪开呢?
接着电脑演示其它方法,渗透割补、平移法。
3、建立联系,推导公式。
(1)小组合作探索:
a、原来的平行四边形转化成长方形后,什么变了?什么没变?
b、拼成长方形的长与原来平行四边形的底有什么关系?
c、拼成长方形的宽与原来平行四边形的高有什么关系?
d、能否根据长方形的面积公式推导出平行四边形的面积计算公式?(平行四边形的面积=)。
(2)交流平行四边形和长方形之间的联系:平行四边形的面积=长方形的面积;长=底;宽=高;平行四边形的面积(公式)=底×高(板书)。
提问:用字母怎么表示呢?自学课本。
学生回答s=ah(板书)。
提问:s、a、h分别表示什么呢?
提问:要计算平行四边形的面积必须知道什么?(演示不是对应的底和高),这样能求出它的面积吗?那底和高必须是什么样的关系?(对应)。
(三)巩固应用,内化新知。
前面的花坛题:
拓展题:先分别口算出下面图中两个平行四边形的面积,然后看你发现了什么?
(四)课堂总结,深化新知师:同学们,通过今天的学习,你有什么收获呢?
小学数学五年级平行四边形的教学设计篇四
1.掌握平行四边形的面积计算公式,并运用平行四边形的面积计算公式解决实际问题。
2.通过数、剪、拼等动手操作活动,探索平行四边形面积计算公式的推导过程,渗透转化的数学思想,发展学生的空间观念。
3.在解决实际问题的过程中,感受数学与生活的联系,培养学生的数学应用意识。
课前布置预习第87,88页内容,完成预习单(如下图)。
一、创设情境,导入新课。
1.课前交流与小故事。
师:同学们,今天我们班上来了非常多的老师听课,你们的心情怎么样呢?
生紧张,激动……。
师:同学们,你们知道曹冲称象的故事吗?谁来说一说?
生:古时候有一个叫曹冲的人看到一群人围着一头大象,没有办法把它称重。曹冲想了一个办法,先把大象赶到船上,然后做好标记,再把石头装入船上到了刚刚大象称的刻度,那石头的重量就是转化成了大象的重量。
师:说的非常好,讲的非常详细,小小老师。对,曹冲称象其实就是把大象的重量转化成了石头的重量。转化是数学中非常重要的数学思想,转化就是把我们没有学过的转化成学过的,把复杂的转化成简单的,今天我们也来学习关于转化的数学问题。
师:同学们,看老师手上拿着的是什么图形呢?
生:长方形。
生:表面的大小,面积计算公式是长乘宽。
师:对。说的很好,长方形的面积等于长乘宽。那现在老师手上拿着的又是什么图形呢?
生:平行四边形。
师:平行四边形的面积怎么计算呢?今天我们就一起来学习探究平行四边形的面积。(板书:平行四边形的面积)。
小学数学五年级平行四边形的教学设计篇五
教学内容:人教版义务教育课程标准实验教科书《数学》五年级上册第80—81页。
教学目标:
3、在操作、观察、比较中,渗透转化的思想方法。
4、在探究活动中,体验到成功的快乐。
教学重点:推导平行四边形面积公式,并能够运用平行四边形面积公式解决简单的实际问题。
教学准备:课件平行四边形硬纸片剪刀透明方格纸。
教学过程:
一、情境激趣:
66。
生:平行四边形的面积。师:这节课我们就来研究平行四边形的面积。(板书课题)。
二、实验探究:
1、猜想。
那么大家猜一猜平行四边形的面积可能与什么有关?(可能与边有关)只与它边的长度有关?大家看老师手中这个平行四边形,(演示)还可能与什么有关?(高)那么平行四边形的面积究竟与它的底和高有怎样的关系?下面就让我们一起来研究。
2、实验。
1)独立自主探究:
生:我用数格子的方法。
师:数格子时,不足一格的按一格算,把得到的数据填在表格里。
师:还有什么方法?
生:我用剪一剪、拼一拼的方法。
师:用剪拼方法上的同学请读一下操作提示。(一生读)下面你们就用自己喜欢的方法试一试。
2)小组内交流:
师:通过数格子或者剪拼的方法,哪位同学有收获了?把你的想法在小组内交流,小组长组织好。一会要向全班同学汇报你们小组的方法。
3)学生汇报:
第一个小组:(1)数格子(把表格带到前面说)。
(2)剪拼。
师:你们成功的把平行四边形转化成了长方形,这一长方形与原来的平行四边形有什么关系?(生:长方形的长等于平行四边形的底、宽等于平行四边形的高)你们小组转化的清楚,介绍的明白真了不起)。
是这样吗?师课件演示解说强调平移。
(多么巧妙的剪拼,我发现你们的思维很灵活啊。)(我只能说两个字了:“佩服!”)。
师:还有其他的方法吗?其他几个小组同学,通过动手操作你们得到了什么结论。一起说(师板书:平行四边形的面积=底*高)。
四、运用公式解决。
师:现在我们来算一下铺这块平行四边形草坪要用多少钱?
(生口算)。
五、拓展练习。
1、求下列图形的面积是多少?
底15厘米,高11厘米。
(不仅准确计算出了结果,速度还很快,真不错。)。
2、开放题:这是一张全国地图,有一个省的地形很接近平行四边形,山西省。山西南北大约590千米,东西大约310千米,你能估计一下它的土地面积吗?(东西能否再平些)。
(能在实际问题的解决中恰当运用公式,了不起)。
3、学校要建一个面积是12平方米的平行四边形花坛,请你帮学校设计一下,(要求底、高均为整米数)1)可以有几种方案?2)哪种方案更合理?(你们能从不同角度考虑,为学校选择更合理的方案,老师非常感谢大家)。
六、全课小结:
师:这节课,你是怎么学习的?你有哪些收获?
(我是用数方格的方法、我用平移这种方法把平行四边形转化成长方形再与平行四边形进行比较得出平行四边形的面积的师演示)你们很了不起,能想办法把平行四边形转化成我们以前学过的长方形来研究它的面积。我们这节课使用的这种方法,以后在学习其它图形面积时还会用到。今天的家庭作业是以《平行四边形的面积》为题写一篇数学日记,写清平行四边形的面积的推导过程,可以画、也可以剪贴。
课后反思。
课堂教学是一个动态生成的过程。因此,在教学时,我把关注的焦点放在学生身上,关注学生的情感体验,关注学生的自主建构,更关注学生真实的学习过程。从而适时地激发学生的情感,点燃学生的智慧,发挥学生的创造性。主要体现在以下几个方面:
1、适时渗透、领悟思想方法。
数学教学的价值目标取向不仅仅局限于让学生获得基本的数学知识和技能,更重要的是在数学教学活动中,经历问题解决的过程,了解数学学习的价值,增强数学的应用意识,获得数学的基本思想方法。我觉得,这节课学习的转化的数学思想方法将永远铭刻在学生头脑中,将在学生今后的学习中发挥更大的作用。
2、适时引导、主动建构知识。
学生学习数学知识的过程是主动建构的过程。因此,在教学中,我让学生象科学家一样经历大胆猜想、动手验证、得出结论的过程。先让学生根据已有的知识经验进行猜想:平行四边形的面积可能与什么有关?然后,给学生足够的探究时间和空间,“数”、“剪拼”都是学生的智慧,“数的过程”、“剪拼的过程”都是学生的思维过程。最后,让学生同伴互助去探究、去发现、去总结,给每个学生参与数学活动的机会,真正的实现了自主学习。
3、适时点拨、有效进行指导。
探究学习是把学生的“学”作为实施教学的基本点,而教师的“导”是实现学生“学”的根本保证。因此,在教学中我适时地对学生进行点拨、指导,做到“放得开、收得住”。如在自主探究过程中我发现,有的学生把平行四边形剪开后无法拼成长方形。于是,我进行了个别指导。引导学生思考:为什么只有沿高剪开才能拼成长方形?通过指导,使学生明白沿平行四边形的高剪开,是将平行四边形转化成长方形的关键。
课例点评。
这节课教师在教学时以图形内在联系为线索,以转化这条数学思想方法为主线,在操作、观察、比较活动中,通过孕伏、理解、强化的过程,让学生在获得知识的同时,领悟转化的数学思想方法。具体表现在以下几点:
1、在情境中蕴含知识,孕伏思想方法。
这节课情境的创设一方面紧紧地围绕所要探索的数学知识,另一方面又充分体现了知识之间的内在联系。创设了江滨公园铺草坪的情境图,分别呈现了一个长方形和一个平行四边形的草坪,并提供每平方米草坪的价格,引导学生根据信息提出问题。这一情境中既有长方形面积的计算,又有平行四边形面积的计算,把这些知识都融入一个具体的生活情境中,既唤起了学生已有的知识经验,又暗含了平行四边形的面积与长方形的面积有关。
2、在探究中体验知识,理解思想方法。
这节课沿着“提出猜想——思考验证方法——实践验证”这个过程进行。一是独立探究。让每个学生根据自己的体验,用自己的思维方式进行探究,并且提出了活动要求。一方面启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透“转化”的思想方法;另一方面引导学生去探究所研究的图形与转化后的图形各部分之间有什么联系,从而找到平行四边形面积的计算方法。二是合作探究。在学生独立探究的基础上,让学生在小组内进行交流。通过交流,学生知道,任何形状的平行四边形都可以转化成长方形,这样,他们对图形变换的认识不再是个案的体会,而是对图形本质联系的体验。
3、在反思中提炼知识,强化思想方法。
教师在教学中注重引导学生对转化过程进行反思。第一次是在学生汇报交流之后,教师用课件呈现图形转化的过程引导学生进行反思,重点是理解转化的思想方法;第二次是课即将结束时,教师引导学生总结这节课学习内容时再次回放图形转化的过程,重点是强化转化的思想方法。并引导学生:“在今后学习其它平面图形的面积时,还要用到这种方法。”这样为学生以后学习三角形、梯形面积的计算进行了思想方法的延伸。
总之,这节课教学时有两条主线,一条是数学基础知识,另一条是数学思想方法,并且把领悟数学思想方法作为数学教学的要务,把掌握数学思想方法作为学生数学学习的最高境界。
小学数学五年级平行四边形的教学设计篇六
教学内容:
教学目标:
1、使学生通过探索理解和掌握平行四边形的面积公式,会计算平行四边形的面积。
2、通过操作,观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间思维。
3、培养学生学习数学的兴趣及积极参与、团结合作的,渗透品德教育。
教学重点:探究平行四边形的面积计算公式,会计算平行四边形的面积。
教具准备:多媒体课件、剪刀、平行四边形。
教学过程:
一、情景引入,激趣导课。
导入新课,揭示图形板书课题。
二、动手操作,探究新知。
2、归纳意见,提出验证。
学生利用课前准备好的平行四边形,通过剪、画、拼、折等,先自己思考,再和小组同学交流合作,动手操作寻找平行四边形面积的计算方法。
3、学生汇报结果,展示操作过程。
小组的代表来展示各组的操作方法。
4、演示过程,强化结果。
5、填空、归纳公式。
根据刚才的操作过程,完成填空题,并归纳板书公式。
把一个平行四边形转化成长方形,这个长方形的长相当于平行四边形的,长方形的宽相当于平行四边形的(),长方形的面积和平行四边形的面积(),因为长方形的面积=(),所以平行四边形的面积=()。
6、提问质疑。
学生阅读课本81页的内容,质疑。
三、分层练习,内化新知。
1、用公式分别算一算两个停车位的面积。
2、计算相对应的底和高的平行四边形花圃面积。
3、计算平行四边形牌两面涂漆的面积。
4、小小设计师:在小区南面有一块空地,想在空地里设计一个面积为36平方米的草坪,你有几种设计?请你画出图形,并标出有关数据。
四、课堂。
今天我们学习了什么?通过学习,你有那些新的收获呢?
板书设计:
长方形的面积=长×宽。
(转化)。
s=a×h。
小学数学五年级平行四边形的教学设计篇七
一、教学目标:
1、知识目标:经历动手操作、讨论、归纳等探讨平行四边形面积公式,并能用字母表示,会用公式计算平行四边形面积。
2、能力目标:在剪一剪、拼一拼中发展空间观念;在想一想、看一看中初步感知“转化”的数学思想和方法。
3、过程与方法:通过观察、操作、测量、思考、讨论交流、小组合作等数学活动,体会转化等数学方法,发展推理能力。
4、情感态度与价值观:使学生在探索平行四边形面积的计算方法中,获得成功的体验,形成积极的数学学习情感。
二、教学重点、难点及关键点剖析:
1、重点:平行四边形面积公式的推导及应用。
2、难点:理解平行四边形面积计算公式的推导过程。
三、教具、学具准备:
平行四边形纸片、剪刀及电脑课件、
四、教学过程:
一、创设情境,导入新课。
生:算出这两块地的面积,比比就知道了。
师:那长方形的面积怎么算呢?
生:长方形的面积=长×宽。
生摇摇头。
师:那你们想学吗?这节课我们就一起来研究平行四边形的面积。(板书课题)。
齐读学习目标:
2、会运用平行四边形的面积计算公式解决实际问题。
二、自主学习。
在下面的方格纸上数一数,然后填写下表。(一个方格代表1m2,不满一格的都按半格计算。)。
小组讨论:
(1)仔细观察、比较表格中的数据,你发现了。
(2)猜想:平行四边形的面积=_________________________。
三、动手操作,验证猜想。
(1)小组讨论:能不能将平行四边形转化成长方形来计算?该怎样转化?(把平行四边形转化成长方形或正方形,必需沿着平行四边形的高剪)。
(2)以小组为单位进行剪拼。
(3)指学生演示平行四边形转化成长方形的过程,并观看电脑演示过程。
(4)讨论:
a、平行四边形转化成长方形后面积变了吗?为什么?(没有,因为它的大小没变),(物体的表面或封闭图形的大小,叫做它们的面积)。
b、转化成的长方形的长相当于原平行四边形的,转化成的长方形的相当于原平行四边形的()。
(6)交流汇报。
师:如果用字母s表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式可以写成s=a×h,也可以写成s=ah或s=ah(师板书)。
四、当堂检测。
出示例1平行四边形花坛的底是6m,高是4m,它的面积是多少?
学生独立完成,并展示学生作业。
2、计算下面平行四边形面积,列式正确的是:()。
a:8×3b:8×6c:4×6d:4×3。
通过做此题,你想提醒大家注意什么?
3、你能想办法求出下面这个平行四边形的面积吗?
五、拓展提升。
下面图中两个平行四边形的面积相等吗?它们的面积各是多少?
1、4cm。
2、5cm。
通过做此题,你发现了什么?
六、课堂小结。
说说本节课,你收获了什么?
七、板书设计:
略
小学数学五年级平行四边形的教学设计篇八
通过实践――理论――实践来突破掌握平行四边形面积计算的重点。利用知识迁移及剪、移、拼的实际操作来分解教学难点平行四边形面积公式的推导。关键是平行四边形与长方形的等积转化问题的理解,通过“剪、移、拼”找出平行四边形底和高与长方形长和宽的关系,及面积始终不变的特点,归纳出长方形等积转化成平行四边形。
小学数学五年级平行四边形的教学设计篇九
结合本节课所学知识特点和学生的思维特点现拟定如下目标:
1.知识目标:通过长方形面积计算知识迁移,理解平行四边形面积的计算公式,并能正确计算平行四边形面积。
2.能力目标:在比一比、动一动中发展空间观念;在看一看、想一想中初步感知等积转化的思想方法,提高解决问题的能力。
3.过程与方法目标:通过实践――感性认识――理性认识――实践应用的辩证唯物主义思想方法教学,培养互相合作、交流、评价的意识。
4.情感目标:通过活动,激发学习兴趣,培养探索的精神,感受数学与生活的密切联系。
小学数学五年级平行四边形的教学设计篇十
《平行四边形的面积》这一课自己感触颇多,有成功中的喜悦,也有不足中的遗憾,总结本节课的教学,有以下体会。
第一、创设问题情景,引起矛盾冲突,激发了学生的学习兴趣。
第二、重视操作探究,发挥主体作用。
为了引起学生的兴趣,我准备了一个可活动的长方形框架,如果把它拉成一个平行四边形,周长和面积有变化吗?怎样变化?如果任意拉这个平行四边形,你会发现什么?什么情况下它的面积最大?通过这个拓展题目使学生体会平行四边形面积的变化,从而理解的更透彻,运用的更灵活。使学生在练习中思维得到发展,培养学生分析问题和解决问题的能力。
第三、渗透“转化”的思想。
“转化”是数学学习和研究的一种重要思想方法,在本节课的教学中,以学生的探究活动为主要形式,教学过程由浅入深,由易到难,由具体到抽象,由感性认识到理性认识,步步深入,紧扣主题。同时渗透“转化”的思想,让学生掌握学习的方法,学会利用旧知识解决新的问题,形成积极主动的探究氛围。
第四、联系实际设计习题,学习内容始终充满生活气息。
1、应变课堂能力的教学机智不够灵活需要多锻炼。
如新知猜想时耗时过多。
2、学生数学知识的底蕴要加强。
就“平行四边形的面积”的教学而言,平行四边形的面积公式是什么,不是什么?平行四边形的面积为什么是“底×高”,为什么不是“底×邻边”?通过把平行四边形不断“拉扁”,引导学生逐步了解高与面积之间的内在联系,理解高对平行四边形面积的影响,在让学生获取知识的同时,悄然无声地渗透了函数思想。
其实,澄清错误与建立正确认识同样重要。不急于引导学生对正确情况的接受,而更多地让学生自己在尝试解决问题的过程中发现问题,产生矛盾冲突,并引导学生参与对问题和错误的剖析。平行四边形面积为何是“底×高”,为何不是“底乘邻边”?疑问的解答,需要的是观察、比较、分析等充满挑战性的过程,在这样的过程中,学生一步步澄清平行四边形的面积“是什么,不是什么”,明白“这样才是正确的,那样为什么是错误的”,就会获得真正的数学理解,推理能力也能得到发展。“推拉转化后,面积发生变化”的表象得到强化,进一步澄清学生潜意识中“平行四边形的面积=底边×邻边”的错误认识。在不断地对比、交流过程中,错误经验得以纠正,模糊认识得以澄清,数学思维得以发展,创新意识和学习能力得以提升。但是在澄清与对比分析中,时间运用的也较多,对于“精讲多练”的目的没能达到。这种剖析,在日常教学中都是分多个课时进行,完全揉入一节课,甚至微型课,需要我思考如何从别处挪出时间出来,精心雕琢方有进步。
小学数学五年级平行四边形的教学设计篇十一
青岛版实验教材小学数学五年级上册第76页内容。
1、用转化的方法探索并掌握平行四边形的面积计算公式,并能正确计算平行四边形的面积。
2、经历探索平行四边形面积计算方法的过程,培养初步的观察能力、抽象能力,进一步发展空间观念。
3、在运用平行四边形面积计算公式解决现实问题的过程中,感受数学和现实生活的密切联系,培养初步的数学应用意识和解决简单实际问题的能力。
学生:方格图、平行四边形纸片、直尺、剪刀、三角尺。
教师:课件、投影仪。
一、谈话引入,提出问题。
(1:虾池的面积是多少?2:虾池是什么形状的?……)。
师:虾池是什么形状的?(平行四边形)。
师:求虾池的面积就是求什么的面积?(平行四边形)平行四边形的面积怎么计算呢,这节课我们共同来探究。(板书课题:平行四边形的面积)。
二、合作探索,解决问题。
1、猜想。
师:我们学过的长方形、正方形的面积计算都有一个公式,平行四边形的面积计算有没有公式呢?(有,师同时出示课件:虾池的平面示意图)。
师:希不希望通过自己的探究找到这个公式?
师:相信你们一定能行!在探究之前,先请同学们猜想一下:平行四边形的面积计算公式可能是什么?并说说你的理由。
(学生独立思考)。
师:谁来说?
(1、我猜平行四边形的面积计算公式是“底×邻边”。我是根据长方形的面积计算公式猜的。)。
师:谁有不同想法?
(2、我猜平行四边形的面积计算公式是“底×高”。我发现沿着高把平行四边形剪下来,移过去就拼成了长方形,所以我猜平行四边形的面积计算公式是“底×高”。)。
师:现在出现两种猜想,各有各的理由,而真正的计算公式肯定只有1个。我们怎么办?(验证)。
师:对!我们要逐个进行验证,看看正确的公式究竟是什么。
为了方便大家探究,老师为每个小组都准备了同样大小的平行四边形纸片来代替虾池,还有一些学具,或许会对你们的验证有所帮助。在动手验证之前,老师有几点小提示,请看屏幕:(课件出示,指名读)。
1、小组同学先讨论验证的方法,再动手验证。
2、小组成员要团结合作,合理分工。
3、每组推选1名代表进行汇报,其他组员可以补充。
4、使用学具时注意安全,用完后装入信封。
2、验证“底×邻边”
师:先来验证“底×邻边”这个猜想对不对。
比比看,哪个小组合作得好,最先找到答案!小组长拿出第一个信封,开始。
(学生合作,教师巡视)。
3、交流。
师:经过大家的`动手操作,相信都有答案了。哪个小组愿意先来交流?
(我们小组是用数方格的方法来验证的。我们通过数方格的方法数出平行四边形纸片的面积是28平方厘米,而用猜想公式算出的面积是35平方厘米。所以“底×邻边”的猜想是错误的。)。
师:听明白他们小组的做法了吗?(找两人分享)感谢你们的介绍。还有不一样的小组吗?(没有)。
师:我们再一起看看验证的过程:(课件演示)用方格图数出这个平行四边形的面积是28平方厘米。而量一量它的底是7厘米,邻边5厘米,根据“底×邻边”的猜想公式算出面积为35平方厘米。所以通过“数方格”验证,“底×邻边”这个猜想是错误的。虽然这个猜想是错误的,但我们要感谢提出这个猜想的同学,因为你的猜想很有价值,让我们大家对“底×邻边”为什么不对有了更深刻地认识。既然“底×邻边”是错误的,那“底×高”是不是正确呢?现在请收起你的方格图,我们再次小组合作利用第二个信封的帮助再来验证“底×高”这个猜想对不对。一定要交流好验证方法再动手操作,开始。
4、验证“底×高”
(学生活动,教师参与)。
5、交流。
师:相信大家又有了新的发现和收获。哪组先来分享你们的研究成果?
(1、我们小组是这样做的:量一量平行四边形的底是7厘米,高4厘米,乘积是28平方厘米,所以“底×高”的猜想是正确的。
师评价:他们小组的这种方法怎么样?我发现他们小组很会利用资源。刚才知道这个平行四边形面积是28平方厘米,于是他们想到的验证方法就是用底×高,看是不是等于28。有不一样的验证方法吗?注意听,看看他们采用的究竟是什么方法。)。
(2、我们小组是沿着平行四边形的高剪下来,把它拼成长方形,我们发现长方形的长就是平行四边形的底,长方形的宽就是平行四边形的高,所以平行四边形的面积=底×高。可让其利用投影仪向全班展示。)。
师:我们再通过大屏幕一起看(播放课件):把平行四边形沿着高剪开,通过平移拼成长方形,面积有没有变化?也就是长方形的面积和平行四边形的面积相等(板书:长方形的面积、平行四边形的面积),而长方形的长就是原来平行四边形的(底)(板书:长、底),宽就是平行四边形的(高)(板书:宽、高)。根据长方形的面积=长×宽,可以推出平行四边形的面积=底×高(板书)。我有一个疑问:为什么要沿着高剪呢?(这样剪能拼成一个长方形,拼成长方形就能够求出平行四边形的面积。)。
师:奥,我明白了。原来这一剪的作用很大,把我们不会解决的平行四边形的面积这个难题转化成长方形的面积这一简单问题了。
师:是不是沿着平行四边形的任意一条高裁剪都可以?(是的)。
师:我还有第二个问题:平行四边形的面积为什么不是长×宽,而是底×高呢?
(平行四边形没有“长”和“宽”。)。
师:说的真好,我们可不能混淆了。
三.应用公式,巩固训练。
师:我们已经知道平行四边形的面积计算公式了,你能独立解决虾池的面积这个问题吗?写在你的练习本上。(出示虾池平面图课件,指名板演:90×60=5400(平方米)。
师:如果老师再给你提供这样一条信息:每平方米放养虾苗30尾,你能提出什么问题?(这个虾池能放养多少尾虾苗?)。
师:谁来解决这个问题?其余同学写在练习本上。(30×5400=162000(尾))。
(出示课件:四个挑战)。
为什么?(单位:厘米图略)。
2、乘胜追击:计算下面平行四边形的面积。(课本79页第5题)。
4、聪明小屋:下图中正方形的周长是24厘米,平行四边形的面积是多少?
(图略)。
师:真不错,挑战成功。
四.收获平台,课外延伸。
师:不知不觉中就要下课了。想一想,这节课你有哪些收获?
(我学会了“转化”这种方法;我们学到了平行四边形面积的计算方法。)。
师:回忆一下:我们在推导平行四边形的面积公式时是按什么步骤进行的?
(猜想--验证--结论。这是数学上常用的探究方法,相信你们在以后的学习中会经常使用它。这节课,同学们不仅仅学到了知识,而且掌握了一种重要的数学思想方法——转化,把平行四边形的面积转化成长方形的面积这一简单的问题来解决。课后想一想生活中你是否也用过转化法解决问题呢?同学之间互相交流一下。)。
小学数学五年级平行四边形的教学设计篇十二
教学目标:
通过看一看、剪一剪、拼一拼、比一比、算一算,使学生理解并掌握平行四边形的面积公式,并能进行简单的平行四边形的面积计算。
教学过程:
一、看一看:得出平行四边形与长方形的关系。
1、让生看p69,观察方格纸上的长方形和平行四边形,并填写:
每个小方格代表1平方厘米(不满一格的,都按半格计算),数一数,长方形的面积是()平方厘米;平行四边形的面积是()平方厘米。
2、观察并讨论:这个长方形和平行四边形有怎样的关系?
在学生讨论、回答的基础上小结得出:长方形的长和平行四边形的底相等,长方形的高和平行四边形的高相等。
二、剪一剪、拼一拼、比一比、算一算,得出平行四边形的面积公式。
1、出示:平行四边形,请你想想办法,怎样求它的面积。(让生每人先准备两个平行四边形)。
2、让生小组讨论,尝试。
3、检查学生讨论的结果。如果有学生想出,让他到讲台上给其他同学介绍。
(1)沿着平行四边形的一条高,剪下来,移到右边拼拼。
(2)比一比:这两个图形有什么关系?什么变了,什么没变?
这两个图形形状变了,但面积相等。
(3)、请你量一量长方形的长与宽,算出它的面积。
4、总结得出。
长方形的面积=长×宽。
如果用s表示平行四边形的面积,用a和h分别表示平行四边形的底和高,那么,平行四边形的面积计算公式可以写成:
s=ah。
5、例:有一块平行四边形的草地,底是18米,高是10米,这块草地的面积是多少?
(1)让生独立做。
(2)检查:18×10=18(平方米)。
(3)注意:面积单位。
6、看书,质疑。
三、练习。
底(厘米)。
50。
12.5。
100。
9
高(厘米)。
40。
8
36.4。
4
面积(平方厘米)。
12米。
24米40厘米15米。
25米。
50厘米。
3、有一块平行四边形的玻璃,底48厘米,高36厘米,它的面积是多少平方厘米?
4、有一块平行四边形的菜地,底120米,高比底少40米,这块地的面积是多少?
四、总结。
五、课堂作业。
p715。
小学数学五年级平行四边形的教学设计篇十三
一是注重数学思想方法的渗透,让所积累的经验为新知服务,渗透“转化”思想。
在教学设计方面,我先是让学生大胆猜测两个花坛(等底等高的长方形与平行四边形)的面积哪一个大,再让学生通过动手操作、验证平行四边形的面积,其实它们的面积是一样大的。“转化”是数学学习和研究的一种重要思想方法。我在教学本节课时采用了“转化”的思想,现引导学生大胆猜想平行四边形的面积可能与谁有关,该怎样计算,接着引出你能将平行四边形转化成已学的什么图形来推导它的面积。学生很自然的想到把平行四边形转化成长方形,再来探究它们之间的关系。这样启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透“转化”的思想方法,充分发挥学生的想象力,培养了创新意识。
二是注重学生数学思维的发展。
数学教学的核心是促进学生思维的发展。教学中,通过学生学习数学知识,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一起来。在这节课中,我设计了剪一剪、拼一拼等学习活动,逐步引导学生观察思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?充分利用多媒体课件演示,形象、直观,使学生得出结论:因为长方形的面积=长×宽,所以平行四边形的面积=底×高。在此,我特别注意强调底与高应该是相对应的,通过观察、交流、讨论、练习等形式,让学生在理解公式推导的过程中学会解决问题。学生掌握了平行四边形的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。
二、学习还没有真正走向深处。
课前预设学生把平行四边形转化成长方形的方法有三种,第一种是沿着平行四边形的顶点做的高剪开,通过平移,拼出长方形。第二种是沿着平行四边形中间任意一高剪开,第三种是沿平行四边形两端的两个顶点做的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形。这节课学生大部分都拼出第一种,后两种学生没拼出来。这对我提出了极大地挑战,如何在学生学习观察中,发现合适的契机,如何通过追问和引导,让学生走向深入?我的预设和学生真实的学习距离到底有多远?我对儿童的学习到底有没有真正理解?都需要一一追问,也需要一一在行动中研究解决。
小学数学五年级平行四边形的教学设计篇十四
1、在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积。
2、通过操作、观察、比较,让学生经历平行四边形面积公式的推导过程,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。
3、通过数学活动,让学生感受数学学习的乐趣,体会平行四边形面积计算在生活中的作用。
把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推倒出平行四边形面积计算公式。
课件、平行四边形纸片、剪刀、直尺、三角板等。
2块平行四边形彩色纸片、三角板、直尺、剪刀。
师:出示平行四边形,问:这是什么图形?它有什么特征?生指出它的底和高。你能画出它一条底边上的高吗?(在平行四边形图片上画一画,并标出底和高。)。
一、情境创设,揭示课题。
1、创设故事情境。
2、复习旧知,揭示课题。
(1)复习长方形的面积计算方法,口算长方形草地的面积。(板书长方形面积公式:长方形面积=长宽)。
(2)师:你能帮它们求出这块平行四边形草地的面积吗?这节课,我们一起来研究平行四边形面积的计算方法。
二、自主探究,操作交流。
大胆猜想。
将本文的word文档下载到电脑,方便收藏和打印。
小学数学五年级平行四边形的教学设计篇十五
1、利用自己的方法,探索并掌握平行四边形面积的计算公式,会计算平行四边形的面积。
2、重点理解拼成的长方形和原来平行四边形的关系。
一:回顾以前的知识、
师:今天我们学习什么知识?
师:先让我们汇报一下以前学过的相关知识吧?
生:长方形的面积=长乘宽正方形的面积=边长乘边长。
平行四边形对边平行且相等平行四边形有无数高(出示课件)。
师:小结从平行四边形的任何一边的一点,向对边都可以做一条高。
二:我有成果展示。
1师:通过预习,你有什么成果要向大家展示的?
生:汇报。
3:师出示学习目标。
4:依据学习目标,你有什么疑问要提出吗?
生:汇报。
师:不管有什么疑问,我们通过以下环节,看看是否其他同学能帮助你解决?
三:自主探究。
一:拿出导学案:
师:谁能汇报一下,你完成表格的情况。(教材第80页的表格)。
生:汇报。
师:谁能说一说,平行四边形的面积,你是怎样知道的?
谁能说一说,你是怎样数出来的吗?
师:那长方形的面积呢?
生可数出来,也可以用长乘宽计算。
师:请大家观察表格的数据,你发现了什么?
生:平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽,平行四边形的面积等于长方形的面积。
师:我们如果用数方格的方法来计算平行四边形的面积,你会感觉怎样?
生麻烦。
三合作探究。
师:那我们可以用什么方法研究呢?
师:你是怎样把平行四边形转化成长方形的吗,请拿着你的平行四边形学具边演示边说。
生:过平行四边形一个顶点,沿着平行四边形地边上的高剪开。
师还有其他不同的剪法吗?
生:沿着平行四边形这一条边上的高剪开。
师:同时出示课件。
师:听了同学们的简拼方法,你还有什们疑问吗?
生:老师为什么要沿着高剪开呢?
师:谁能帮助这位同学回答。
生:这样剪可以使两边变成直角,变成我们学过的长方形。
师刚才有的同学说沿高剪成了正方形,者必须满足什么条件呢?
生:平行四边的高等于平行四边形的底,这是特殊情况。
师:小结我们从平行四边形一组对边任意一点作高,通过平移都可拼成长方形或正方形。(课件出示结论)。
师:观察拼成的长方形和原来的平行四边形,你能发现什么?
小组合作交流自己预习的成果。
请生汇报。
生:拼成长方形的面积和平行四边形的面积相等,面积不变。
拼成的长方形的长等于原来平行四边形的底,长方形的宽等于平行四边形的高。
师:既然面积没变,什么变了呢?形状变了。
师:还有什么变了?
生沉默。
师:周长变了吗?
生:变了。
师:变大了还是变小了呢?谁能说说?
生:边指边说长方形的长就是平行四边形的底,长方形的宽比平行四边形高变短了,所以周长变小了。
师:给予积极肯定。
师:既然长方形的面积=长乘宽,那么同学们可以推导出平行四边形的面积吗?
师:用字母怎样表示?
生:s=ab。
师:小结刚才你们用剪拼的方法,将平行四边形转化成长方形,用旧知解决了新问题,非常好!实际这种解决问题的方法是应用了数学转化方法,今后在数学中,我们会经常用到。
师:出示例1:平行四边形的花坛的底是6m,高是4m,它的面积是多少?
生:自己解决。(集体纠正)。
四:达标测评。
一:人人轻松来过关。
1:选择条件计算平行四边形的面积(单位:米)。
二:迈开大步跨过关:
(看大屏幕略)。
三:大胆跳起闯过关:
(1)平行四边形的底越长,它的面积就越大。()。
(3)把一个长方形木框拉成一个平行四边形木框,周长不变,面积也不变。()。
四:一题多解。
【本文地址:http://www.xuefen.com.cn/zuowen/14616194.html】