通过总结,我们可以把握住自己的节奏和方向,更好地规划未来的发展。如何有效应对压力和挫折下面是几篇值得一读的总结范文,希望对大家有所帮助和启发。
最大公因数教学设计篇一
2、初步掌握求最大公因数的一般方法。
3、培养学生思维的有序性和条理性。
4、感受数学价值并体验数学与生活实际的联系,培养学生热爱生活的情感。
多媒体教学课件。
一,师生共研,学习新知:
我们已经会求一个数的因数,那么今天我们来看两个数的因数又该怎样来求呢?
出示课件:
16的因数有:1、2、4、8、16。
12的因数:1、2、3、4、6、12。
那么既是16又是12的因数是:1、2、4。
16和12的公有因数中最大的一个是:4。
出示课件:
16的因数:1、2、4、8、16。
12的因数:1、2、3、4、6、12。
8的因数:1、2、4、8。
师:我们就把1、2、4叫做16、12和8的什么呢?
生:公因数。
师:4就是16、12和8的什么呢?
师:请同学用自己的话说一说公因数是什么意思?
生:几个数公有的因数,就叫公因数。
生:就是几个数都有的因数,就叫公因数。
师:同学谁能说一下什么又是最大公因数呢?
师生共同总结概念:
最大公因数:几个数公因数里最大的一个,叫做这几个数的最大公因数。
二、巩固练习,加深理解:
出示课件:
同学们能不能找出15和18的公因数,再找出它们的最大公因呢?
15的因数18的因数15的因数18的因数。
不清。
15和18的公因数。
三、合作探究,认识互质数。
5的因数:1、5.7的因数:1、7.
2、7和9呢?
7的因数:1,7.9的因数:1,3,9.
指名回答:并让学生说出自己的看法和理由。
师总结:公因数只有1的两个数,叫做互质数。
四、深化练习、掌握方法:
小组讨论方法:小组代表发言汇报讨论结果。
师引导出用分解质因数的方法,
18=2×3×330=2×3×5。
归纳出:18和30的公有的质因数是2和3,
能不能用更简便的方法呢?
把两个短除法合并成一个短除法。
21830→用公有的质因数2除。
3915→用公有的质因数3除。
35→除到两个商是互质数为止。
把所有的除数乘起来,得到18和30的最大公因数是。
2×3=6。
求两个数的最大公因数,一般先用这两个数公有的质因数连续去除,一直除到所得的商是互质数为止,然后把所有的除数连乘起来。
鼓励学生用不同的方法去完成练习。
学生动手练习,师巡视指导,学生上黑板演示过程。
五、小小能手、我来闯关:
第一关:填一填。
1.15的因数有(),20的因数有()它们的公因数有(),最大公因数是()。
第二关:判一判。
1、公因数有1的两个数是互质数()。
2.12的因数只有2、3、4、6、12。()。
3、成为互质数的两个数一定都是质数。()。
第三关:做一做。
六、全课小节、畅谈收获:
学生谈本节课上的收获。师总结本节课主要内容并指出我国古代的《九章算术》已经有求两个数最大公因数的方法了对学生进行德育教育,激发学生的民族自豪感。
七、板书设计:
互质数:公因数只有1的两个数。
把18和30分别分解质因数。
218230。
39315。
35。
18=2×3×3。
30=2×3×5。
18和30的公有质因数是2和3,因此:
合并两个短除法。
21830→用公有的质因数2除。
3915→用公有的质因数3除。
35→除到两个商是互质数为止。
教材对求最大公因数的编排,只是让学生用边长是整分米数的正方形地砖把贮藏室的地面铺满(使用的地砖都是整块),可以选择边长是几分米的地砖?边长最大的是几分米?由此引出最大公因数,教学中根据学生年龄特征,让学生用不同的小正方形摆拼、观察、思考,重视知识形成过程,同时,渗透由特殊到一般的不完全归纳法的数学思想。在摆拼过程中教师和学生一起操作,引发学生强烈的兴奋感和新切感,拉近了师生间的距离,营造了和谐、活跃、向上的学习氛围。
1、借助操作活动,经历概念的形成过程。
本节课以直观的操作活动,让学生经历公因数和最大公因数概念的形成过程。这样安排有两点好处:一是学生通过操作活动,能体会公因数的实际背景,加深对抽象概念的理解;二是有利于改善学习方式,便于学生通过操作和交流经历学习过程。学生通过操作,发现用边长1厘米、2厘米、4厘米的正方形都正好铺满长16厘米,宽12厘米的长方形。在此基础上,引导学生思考1、2、4这些数和16、12有什么关系。这时揭示公因数和最大公因数的概念,突出概念的内涵是“既是……又是……”即“公有”。并在此基础上,借助直观的集合图显示公因数的意义。实实在在让学生经历了概念的形成过程,效果较好。
2、预设探究过程,增强学生主体意识。
为了解决问题,学生充分调动了已有知识经验、方法、技能,找出了各种求“18和27的公因数和最大公因数”的方法。在这个过程中,由学生自己建构了公因数和最大公因数的概念,是真正主动探索知识的建构者,而不是模仿者,充分的发掘了学生的自主意识,也充分体现了教师驾驭教材,调控学生的能力。
3、提倡思考方法的多样化。
最大公因数教学设计篇二
教学内容:。
教学目标:。
1、经历找两个数的公因数的过程,理解公因数和最大公因数的意义。2、探索找两个数的公因数的方法,学会正确找出两个数的公因数和最大的公因数。
3、使学生能探索出解决问题的有效方法。
教学重、难点:
探索找两个数的公因数的方法。
教具准备:
实物投影仪等。
教学过程:
一、填一填。
1、呈现找公因数的一般方法:
(1)让学生分别找出12和18的因数,并交流找因数的方法。
(3)组织学生展开讨论,再引导学生理解“两个数公有的因数是它们的公因数,其中最大的一个是它们的最大公因数”。
(4)小结:找公因数的一般方法是先用想乘法算式的方式分别找出两个数的因数,再找出公有的因数和最大公因数。
2、引导学生讨论其它的方法。
二、练一练。
1、第1、2题,通过这两题的练习,使学生进一步明确找两个数的公因数的一般方法,并对找有特征的数字的最大公因数的特殊方法有所体验。
2、第3题,学生独立完成。
4、让学生用自己的语言来表述自己的发现。
5、第5题,写出下列各分数分子和分母的最大公因数。现自己写一写,然后说一说自己是怎样找公因数的。
三、数学探索。
1、写出1、2、3、4、5、……、20等各数和4的最大公因数。
(1)先让学生填表,找出这些数与4的最大公因数。
(2)再根据表格完成折线统计图。
(3)组织学生观察表格,讨论“你发现了什么规律?”
2、找一找1、2、3、4、5、……、20等各数和10的最大公因数,是否也有规律,与同学说一说你的发现。
四、总结:
谁能说一说找公因数的一般方法是什么?
板书设计:
12=()×()=()×()=()×()。
18=()×()=()×()=()×()。
12的因数:18的因数:
最大公因数教学设计篇三
1、探索找两个数的公因数的方法,会用列举法找出两个数的公因数和最大公因数。
2、经历找两个数的公因数的过程,理解公因数和最大公因数的意义。
3、通过观察、分析、归纳等数学活动,体验数学问题的探索性和挑战性,感受数学思考的条理性。
二、重点难点。
重点:经历找最大公因数的过程,正确找两个数的公因数和最大公因数。
难点:探索并掌握找最大公因数的方法。
三、教学设计。
(一)回顾旧知,导入新课。
1、之前我们学习了找一个数的因数,你们还记得吗?
2、我们来做个游戏,回顾一下。学号是20因数的同学请起立。
3、同学们掌握的真好,这节课我们来学习《找最大公因数》。
(二)自主学习,探索新知。
2、同学们找得真快真好,同学们认真观察它们的全部因数,你有什么发现,小组讨论。
3、师总结:1、2、3、6即是12的因数,又是18的因数,像这样的公共因数我们称之为公因数。
4、那最大的那个因数叫什么?——最大公因数。
(三)巩固新知,继续练习。
1、教科书p45练一练1—2,看哪组做的又快又准。
2、师小结,强调重点。
3、继续练习,练一练3—4。可让学生到黑板做,易错的集体纠正、强调。
4、在练习中,针对错误比较多的,进行集体讲解,少的则个别讲解。
(四)课堂小结。
1、今天我们在复习因数的基础上又认识了公因数和最大公因数。
四、板书设计。
即是12的因数,又是18的因数,像这样的数称为公因数。
五、教学反思。
本节课,我采取小游戏的形式勾起对旧知的回忆,再通过写出12和18的全部因数来引起学生的注意(1,2,3,6),既是12的因数又是18的因数,像这样的因数是12和18的公因数;6是12和18的最大公因数。
通过让学生在玩中学,学生们掌握的很好,在实践中学生们也能很好的应用。
最大公因数教学设计篇四
分析教材。
本课是苏教版教材五年级上册第三单元《公倍数和公因数》中的内容。在四年级(下册)教材里,学生已经建立了倍数和因数的概念,会找10以内自然数的倍数,100以内自然数的因数。本单元继续教学倍数和因数的知识,要理解公倍数、最小公倍数和公因数、最大公因数的意义,学会找两个数的最小公倍数和最大公因数的方法。为以后进行通分、约分和分数四则计算作准备。
《课程标准》要求学生“动手操作、自主探索、合作交流”,结合教材的特点,我力求达到下面的教学目标:
1、经历找两个数的最大公因数的过程,理解公因数和最大公因数的意义。探索找公因数的方法,会正确找出两个数的公因数和最大公因数。
2、结合具体实例,渗透集合思想,培养学生有序思考的能力,让学生养成不重复、不遗漏、不重复的思考习惯。
3、培养学生能用自己的语言表述自己的发现,善于发现规律,利用规律解决问题的能力。
依据《课程标准》的要求和教学目标,我确定本课教学重点是理解公因数和最大公因数的意义,教学难点是会求两个数的公因数和最大公因数。
设计理念。
在教学中我发挥“教师是学习活动的组织者、引导者与合作者”的作用,激发学生兴趣、引导学生自己探索。学生才是学习的主体,让学生在玩中学、学中玩,合作交流中学、学后合作交流并根据学生原有的认识基础和认知规律,并结合“以学生的发展为本“的理念,力求突出以下三点:
1、将教学内容活动化,让学生在做中学。
2、采用小组合作学习,让学生在交往互动中学。
3、充分利用原有的认知经验,在迁移中学。
教学过程。
依据教材特点及小学生认知规律和发展水平,整个教学过程安排了四个环节:
分为五个步骤:
2、想象延伸:接下来让学生思考还有那些边长是整厘米数的正方形也能铺满大长方形。学生思考后,回答边长是1厘米,2厘米,3厘米的正方形也能铺满大长方形。引导学生说出只要边长“既是”18的因数“又是”12的因数,就能铺满大长方形。从而引出公倍数的概念,再强调因为一个数的因数的个数是有限的,所以两个数的公因数的个数也是有限的(最小是1),让学生在自主参与、发现、归纳的基础上认识并建立公因数的概念的过程。
3、归纳总结:只要正方形的边长既是12的因数又是18的因数,这样的正方形就能铺满大长方形。1、2、3、6既是12的因数又是18的因数,它们就是12和18的公因数。
4、根据学生的总结我及时板书课题,让学生的形象思维转变成抽象思维。
5、反例教学:让学生说明4是12和18的公因数吗?为什么?
学生通过上面的一正一反教学总结出:公因数要同时是两个数的因数。
为了及时巩固,完成练一练:先让学生在图上画一画,找出公因数和最大因数,填写在书上。
(设计目的:通过具体的操作和交流活动,帮助学生理解公因数,使知识不在枯燥无。让学生到感受成功的喜悦。)。
学生在已经掌握公因数概念的基础上,让学生学习怎样找两个数的公因数,学以致用。教学例4时,让学生独立思考,自主探索解决问题的方法,然后小组交流。通过具体的运用,巩固公因数的概念。让学生说说怎样找12和18的公因数,学生可能说三种方法,一是先找12的因数,从12的因数中找18的因数;二是先找18的因数,再从中找出12的因数,三是分别找出12和18的因数,再找出相同的因数。通过比较三种方法,让学生感受哪种方法比较简捷。在此基础上,揭示最大公因数的含义,并介绍用集合圈的形式来表示12和18的公因数和最大公因数,明确集合图中省略号的作用。
(设计目的:通过学生自主学习,弄清怎样用集合图来表示两个数的公因数。帮助学生更加直观地理解概念,感受数学方法的严谨性。)。
三、综合实践、学以致用。
为了体现数学来源与生活,用与生活的理念我设计三个层次的练习:
首先设计关于公因数和最大公因数的概念判断题,进一步让学生对公因数和最大公因数的认识。做到知识和技能融为一体。
接着让学生完成练习五第1题。学生独立完成后交流。
然后分别完成2、3题。小组交流。
(练习的设计是从认识到理解,再到拓展应用,逐层加深,培养学生抽象概括能力和合作意识,教学由课内到课外延伸,增加运用实践机会。)。
四、全课小结、过程回顾。
学生回忆整堂课所学知识。学生通过这一环节可以将整个学习过程进行回顾、按一定的线索梳理新知,形成整体印象,便于知识的理解记忆。
最大公因数教学设计篇五
课本p81的学习内容和练习十五的练习。
1、使学生加深对公因数和最大公因数意义的理解,掌握求两个数最大公因数的方法。
2、能在练习的过程中发现求两数最大公因数的两种特殊情况。
3、体现算法的多样化和个性化,培养学生独立思考和合作学习的能力。
掌握找两个数的最大公因数的方法。
掌握两种特殊情况下求两个数最大公因数的方法。
师:同学们还记得什么是公因数,什么是最大公因数吗?请你根据已知的信息,快速找出15和20的公因数与最大公因数。
15的因数:1,3,5,15。
20的因数:1,2,4,5,10,20。
15和20的公因数有(),最大公因数是()。
(指名口答加课件订正)。
师:在接下来要学习的分数计算和一些解决实际问题中,我们经常要用到最大公因数的知识。所以今天我们就一起来学习怎样求最大公因数。
(板书:求最大公因数)。
师:昨天同学们都进行了预习,你们找到求最大公因数的方法了吗?请在小组内交流一下。
师:请一位同学来汇报一下你是怎样求18和27的最大公因数的?
生:可以先分别找出18和27的因数,再找出它们的公因数,其中最大的就是最大公因数。
18的因数:1,2,3,6,9,18。
27的因数:1,3,9,27。
18和27的最大公因数是9。
师:这种方法先写出两个数的因数,再找出它们的公有因数,其中最大的就是最大公因数。所以我们在写出两个数的因数后,应该写上这样一句话:18和27最大公因数是9。
除了这种方法,同学们还会其他方法吗?请同学拿着学案纸上台投影展示汇报。
预设。
(1)课本第二种。
18的因数:1,2,3,6,9,18。
其中1、3、9也是27的因数,所以1、3、9是18和27的公因数,9是它们的最大公因数。
师:这种方法先找出18的因数,再看这些因数中谁是27的因数,那它们就是18和27的公因数,最大的一个自然就是最大公因数。能够先找18的因数,能不能先找27的因数呢?(能)。
师:(指着这种方法)我们只是想找出它们的最大公因数,大家动脑筋思考一下,这种方法还能不能更简化和优化一些?(引导学生发现,写出18或27的因数后,从大到小看谁是另一个数的因数,满足的第一个就是最大公因数)。
(2)其它的方法。
分解质因数法和短除法根据实际情况灵活处理。
1、预习评价,纠错巩固。
师:通过刚才的学习,你掌握了求最公因数的方法了吗?老师在课前收集了几份预习作业,你能发现这些练习的错误或做得不够好的地方吗?(投影展示典型错例。)。
2、阅读课本,提出质疑。
师:现在请同学们再阅读课本和反思刚才的学习过程,还有什么疑问吗?(课前了解学案再做预设)。
3、方法归纳,点拨提升。
其实两个数的公因数和它们的最大公因数之间也存在某种关系,你发现了吗?(多请几个学生来汇报他们的答案,并引导学生观察例2的板书,以及学案上多个例子,发现公因数是最大公因数的因数。)。
师:所有公因数都是最大公因数的因数。我们可以利用这个发现快速地检验自己是否找对了公因数和最大公因数。(让学生用例题和学案上1,2个例子来试试怎样检验)。
师:回顾刚才大家介绍的多种求最大公因数的方法,其中这种做法(指着黑板)直接根据最大公因数的定义来找,属于基本方法,每个同学都应该理解和掌握。在这种方法基础上,同学们可以选择自己喜欢和擅长的方法去求最大公因数。
师:现在老师马上考考大家,你有信心做对吗?
15和1230和45。
师:看来大家掌握得都不错,都能做对。老师要提高难度,不仅要做对,还要找出规律。请完成课本p81做一做,完成后在小组里订正和说一说自己的发现。
4和816和321和78和9。
(1)汇报最大公因数答案。
(2)说一说自己的发现。(多请几个学生说说发现,逐渐归纳成结论)。
师:当两数成倍数关系时,较小的数就是它们的最大公因数。当两数只有公因数1时(也就是大家在预习时在你知道吗里面了解到的互质数),它们的最大公因数也是1。
(3)教师小结。
师:像这样能够直接看出最大公因数的,就不用再从头去找公因数了,也就是不用写出计算过程,直接写出谁和谁的最大公因数是几就可以了。你们掌握了找最大公因数的两种特殊情况了吗?请迅速完成课本82页第3题,直接填写在书上。
(1)9和16的最大公因数是()。
a、1b、3c、4d、9。
(2)16和48的最大公因数是()。
a、4b、6c、8d、16。
(3)甲数是乙数的倍数,甲、乙两数的最大公因数是()。
a、1b、甲数c、乙数d、甲、乙两数的积。
师:看来直接找两个数的最大公因数并不能难倒大家,现在老师看看大家能不能运用知识来解决一些问题。
()()()()。
最大公因数教学设计篇六
第45—46页。
1、经历找两个数的公因数的过程,理解公因数和最大公因数的意义。2、探索找两个数的公因数的方法,学会正确找出两个数的公因数和最大的公因数。
3、使学生能探索出解决问题的有效方法。
探索找两个数的公因数的方法。
实物投影仪等。
一、填一填。
1、呈现找公因数的一般方法:
(1)让学生分别找出12和18的因数,并交流找因数的方法。
(3)组织学生展开讨论,再引导学生理解“两个数公有的因数是它们的公因数,其中最大的一个是它们的最大公因数”。
(4)小结:找公因数的一般方法是先用想乘法算式的方式分别找出两个数的因数,再找出公有的因数和最大公因数。
2、引导学生讨论其它的方法。
二、练一练。
1、第1、2题,通过这两题的练习,使学生进一步明确找两个数的公因数的一般方法,并对找有特征的数字的最大公因数的特殊方法有所体验。
2、第3题,学生独立完成。
4、让学生用自己的语言来表述自己的发现。
5、第5题,写出下列各分数分子和分母的最大公因数。现自己写一写,然后说一说自己是怎样找公因数的。
三、数学探索。
1、写出1、2、3、4、5、……、20等各数和4的最大公因数。
(1)先让学生填表,找出这些数与4的最大公因数。
(2)再根据表格完成折线统计图。
(3)组织学生观察表格,讨论“你发现了什么规律?”
2、找一找1、2、3、4、5、……、20等各数和10的最大公因数,是否也有规律,与同学说一说你的发现。
四、总结:
谁能说一说找公因数的一般方法是什么?
12=()×()=()×()=()×()。
18=()×()=()×()=()×()。
12的因数:18的因数:
最大公因数教学设计篇七
教学片断:
(黑板出示)求下面每组数的最大公约数,如能简便,请用简便方法计算;如不行,就用短除法来求。
生1:我认为第一组14和15可以用简便计算,它们相差1,最大公约数就是1。
生2:我认为你的想法是错误的,14和15互质。所以它们的最大公约数是1。
生3:(支持第一个学生)我举了好几个例。比如7和8相差1,最大公约数就是1。
生4:我认为只要是两个互质数,它们的最大公约数就是1。因此,最大公约数也是1,例如:第一组中的14和15,第二组中的8和15;而其中14和15的最大公约数是1,也正好相差1,这是一个巧合,也是正确的,但它不能代表所有互质数的求法,只能代表相邻的两个数的求法,有因为相邻的两个数一定互质,我们为何不把它归为一类:两个互质数,最大公约数就是1。
同学们听后纷纷投去赞许的目光。
师:同学们,道理只有越辩越明,经过刚才的讨论,我们得出一个结论:(投影出示)如果两个数是互质数,它们的最大公约数就是1。
生5:我们组认为第三组42和18求最大公约数也可以用简便方法,可以用公约数6去除,再看所得的商海有没有其它公约数,结果没有了公有质因数,所以,42和18的最大公约数就是6。
生6:反对!我们用短除法求最大公约数时,只能用质因数去除,怎么能用公约数去除呢?
生2:就是啊,只能用质因数去除,6是一个合数,不能用6去除。(教室里顿时议论纷纷开了……)。
师:既然这个最大公约数既是42的'约数,又是18的约数,因此就可以用42和18的公约数去除,大家之所以习惯用公有的质因数去除,是因为短除法当时从分解质因数演变过来的,但从最大公约数的意义考虑的话,是可以用它们的公约数去除的。
学生听得非常认真,并且表现出恍然大悟的神情。
生2:我发现第四组21和7也能用简便方法,它们的最大公约数是7,7的约数有7,21的约数也有7,所以它们的最大公约数是较小数7。
生4:我对刚才那位同学说的补充一点,因为21是7的倍数,所以,21的约数必定有7,7又是它本身的约数,因此,它们的最大公约数是7。
师:同学们刚才说得非常好,这就是第二个规律:(投影出示)如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。
经过刚才的发言,举手的人少了,可是有一位同学仍然坚持不懈的高举着手,我便请他说说。
生7:除了老师上面的例子,我还有一个发现,就是相邻的两个奇数一定互质,它们的最大公约数也是1,虽然它包含在互质数这一类中,但仍也是特殊的。
他的回答令我和同学们大吃一惊,对于这个说法是否正确呢?我马上与学生们一起进行了验证,结果说法完全正确,顿时,教室里不由自主的响起了热烈的掌声,而且持续了好久。接下来同学们又认真看了课本中的例题,并积极做了相关的练习。
课后反思:
我在教学《约数与倍数》这个内容时,感觉比较头疼,因为这个内容的概念较多,学生难理解,要想学生学好、掌握好这个内容,除了要认真备好课,还要扎扎实实地上好每一课时。在教学中,如果对学生不放心,束缚学生的手脚,阻碍学生思维的发展,就不能培养学生的探究能力与创新精神。在这节课中,我把主动权完全交给了学生,学生自己在进行观察、假设、探究等高层次的思维活动后,得出的结论是我始料未及的。
在教学中,学生一直处在发现问题、解决问题的状态中,用自己的思维方式进行探究,形成了独特的见解,此时的合作便有了基础。当大家的意见一致时,就会充分展示自己的思想与表现欲;当有了不同意见时,才会擦出创新的火花。
从这节课中不难看出,课本已不能当做惟一不可改变的标准。虽然课本在学习时起到了至关重要的作用,但学生们却在此基础上进行了探索与创新。学生们总结出来的规律可能被分别归入书中的几类,但他们所发现的细微的特征是书上没有的。其实,转变学生学习的方式最关键是在于我们老师,一方面要我们老师不断学习,不断更新教学观念,树立先进的教学理念,另一方面也要求我们老师把先进的教学理念转化为教学行为。只有让学生充分从事探究学习活动,发挥他们的自主性、主动性、选择性与创新性,才能使他们真正成为学习的主人!
最大公因数教学设计篇八
1、理解两个数的公因数和最大公因数的意义。
2、通过解决实际问题,初步了解两个数的公因数和最大公因数在现实生活中的应用。
3、培养学生抽象、概括的能力。
多媒体课件,方格纸(每人一张)。
(一)复习导入。
1.复习。
教师出示一组卡片,让学生说一说卡片上各数的倍数有哪些。
教师再出示一组卡片,让学生说一说卡片上各数的因数有哪些。
2.导入。
师:我们学会了求一个数的因数,想不想学习怎样求两个数或三个数公有的因数呢?今天我们就通过游戏来学习公因数和最大公因数。
(二)创设情境,引出问题。
今天我们来玩一个找伙伴的游戏。(课件出示游戏规则:学号是12的因数的同学站到讲台左边,学号是16的因数的同学站到讲台右边)同学们想好了吗?1~16号同学现在开始找伙伴。
学生开始找伙伴,站好后发现问题,有三个同学不知道该站在哪边才好。
师:你们3个为什么没有找到伙伴?
生1:我的学号是1,既是12的因数,又是16的因数,不知道该站在哪边才好。
生2:我的学号是2,既是12的因数,又是16的因数,不知道该站在哪边才好。
生3:我的学号是4,既是12的因数,又是16的因数,不知道该站在哪边才好。
师揭示概念:1,2,4是12和16公有的因数,叫做它们的公因数。其中,4是最大的公因数,叫做它们的最大公因数。
设计意图:游戏环节的设计在教学中能为学生营造一个轻松、愉悦的学习氛围,学生们在这样的氛围中积极地参与数学活动,既体验了成功的快乐,又提高了自己的判断能力。
1.明确方法,提出要求。
课件出示教材60页例2:怎样求18和27的最大公因数?
2.学生试做后,组内交流。
3.讨论:如果只找出一个数的因数,你能找出两个数的最大公因数吗?
(先找较小的数18的因数,再看因数中哪些是27的因数,最后找出最大的一个)。
4.反馈练习。
教师巡视,了解学生的做题情况。学生做完后,指名汇报,集体订正。
师:做完这道题,大家发现了什么?
(学生讨论后汇报)。
(四)课堂小结通过本节课的学习,我们主要认识了公因数、最大公因数的意义。
公因数和最大公因数在现实生活中有着广泛的应用,我们初步了解了它的应用价值。
(五)谈谈这节课你有什么收获?
最大公因数教学设计篇九
教学内容:
教学目标:
1.知识与技能:结合具体的生活情境,使学生进一步理解求一个数内包含几个另一个数的含义,建立“倍”的概念,初步把握“求一个数是另一个数的几倍”的数量关系和解答方法。
2.过程与方法:通过操作、观察、探讨等实践活动,培养学生动手操作能力、观察能力、解析能力、合作的意识和能力。
3.情感态度与价值观:让学生体会数学与日常生活的密切联系,增强应用数学的意识,结合教学情境使学生受到爱国主义的教育。
教学重、难点:
1.重点:理解“一个数是另一个数的几倍”的含义。
2.难点:学会用转化的方法来解决简单的实际问题。
教法与学法。
教法:谈话、指导相结合法。
学法:自主探究法。
教具、学具:
教具:相关教学课件。
学具:小棒(10根或15根)。
教学过程:
一、激趣引入。
(课件播放:神州五号载人飞船发射升空的激动人心的场面。)。
师:同学们,看到这个画面,你的心情怎么样?(高兴、自豪、激动……)让我们记住这一难忘的时刻吧!你们想不想像杨利伟叔叔那样象往遨游太空呢?(想)有志气!现在我们就用小棒摆飞机,代表我们的心愿吧!
二、探究新知。
1.教学例2。
(1)动手操作。
课件出示:老师摆1架飞机用了5根小棒。
师:你们想摆飞机吗?估一估,你手中的小棒能摆几架像老师这样的飞机?
(稍作停顿)自己动手摆摆!
(生动手操作后汇报)。
(2)观察思考。
课件出示:两架飞机。
师:这个同学用几根小棒摆几架飞机?他用摆小棒根数是老师的几倍?
(集体探究“同学们用摆小棒根数是老师用摆小棒根数的2倍。)。
(3)列式计算。
师:要求同学们用摆小棒根数是老师的几倍,就是求10里面有几个5,就是求10是5的2倍。可以用除法计算,我们可以这样列式:10÷5=2。
(重点强调:倍不是单位名称,它表示的是两个数量的一种关系,所以得数后面不要写“倍。)。
(4)小结。
师:今天我们学习解决“求一个数是另一个数的几倍”的实际问题,就是求一个数里面有几个另一个数,可以用除法计算。(板书完整课题)。
(5)练习。
完成54页做一做。
2.教学例3。
(1)课件出示例3主题图。
师:为了欢迎航天英雄杨利伟到学校做报告,这些小朋友正在排练节目呢!瞧,他们多么认真啊!从图上,你发现了哪些数学信息?(唱歌的有35人,跳舞的有7人,欣赏的有5人。)。
师:根据这些信息,你能提出一些数学问题并进行解答吗?
先让学生独立思考,再在小组内互相交流后列式解答。师巡视,重点指导学生写单位名称的情况。
(2)集体交流后,小组代表发言。
三、反馈练习,应用拓展。
1.课件出示“神五”杨利伟相片。
(1)信息站:你会提哪些数学问题?
(课件出示数据一):
神州飞船的高大约是9米教室的高大约室3米。
(课件出示数据二):
飞船舱内面积约是6平方米教室的面积大约是54平方米。
(课件出示数据三):
一件宇航服重约10千克小明的书包约重2千克。
(2)小组交流探讨。
(3)学生汇报。
重点让学生讲出用除法计算的理由。
2.55页做一做。
(1)课件出示“做一做”图片。
(2)学生提出问题并口头列式解答。
四、总结评价。
五、思维拓展。
开放题:第一行画6个三角形,第二行画圆,使他们之间存在倍数关系。
六、课外延伸。
板书设计。
求一个数是另一个数的几倍的实际问题用除法计算。
例2:10÷5=2例3:35÷7=5。
15÷5=3。
最大公因数教学设计篇十
教学内容:
教学目标:
1、使学生在具体的操作活动中,认识公因数和最大公因数,会在集合图中分别表示两个数的因数和它们的公因数。
2、使学生学会用列举的方法找到100以内两个数的公因数和最大公因数,并能在解决问题的过程中进行有条理的思考。
3、使学生在自主探索与合作交流的过程中,进一步发展与同伴进行合作交流的意识和能力,获得成功的体验。
教学重点:
将本文的word文档下载到电脑,方便收藏和打印。
最大公因数教学设计篇十一
教学目标:
1.使学生理解和认识公因数和最大公因数,能用列举的方法求100以内两个数的公因数和最大公因数,能通过直观图理解两个数的因数及公因数之间的关系。
2.使学生借助直观认识公因数,理解公因数的特征;通过列举探索求公因数和最大公因数的方法,体会方法的合理和多样;感受数形结合的思想,能有条理地进行思考,发展分析、推理等能力。
3.使学生主动参加思考和探索活动,感受学习的收获,获得成功的体验,树立学好数学的信心。
教学重点:
教学难点:
教学准备:
小黑板。
教学过程:
一、铺垫准备。
1.直观演示,作好铺垫。
出示边长6厘米和边长5厘米的两个正方形。
提问:观察这两个正方形,哪一个能正好分成边长都是2厘米的小正方形?
2.引入新课。
谈话:根据上面我们看到的,如果一个长度是原来边长的因数,就能正好全部分割成小正方形。现在就利用这样的认识,学习与因数有密切联系的新内容,认识新知识,学会新方法。
二、学习新知。
(1)出示例9,了解题意。
启发:观察正方形纸片的边长和长方形的长、宽,哪种纸片能把长方形正好铺满,哪种不能正好铺满?先在小组讨论,说说你的理由。
交流:哪种纸片能把长方形正好铺满,哪种不能?你是怎样想的?
结合交流进行演示,引导观察用正方形纸片铺的结果,理解边长6是长方形两边12和18的因数,能正好铺满;(板书:126=2186=3)边长4是12的因数,但不是18的因数,就不能正好铺满。(板书:124=3184=4......2)。
(2)启发:想一想,还有哪些边长是整厘米数的正方形,也能把这个长方形正好铺满?为什么?先独立思考,再和同桌说一说,并说说你的理由。
最大公因数教学设计篇十二
1、在合作探究活动中了解公因数和最大公因数的意义,能用列举法和短除法找出100以内两个数的公因数和最大公因数。
2、会在集合图中表示两个数的因数和它们的公因数,体会数形结合的数学思想。
3、在探索公因数和最大公因数意义的过程中,经历列举、观察、归纳等数学活动,进一步发展初步的推理能力。感受数学思考的条理性,体验学习的乐趣。
理解公因数和最大公因数的意义,掌握求两个数公因数和最大公〖〗因数的方法。
理解用短除法求最大公因数的算理。
1、教师对学生能够利用列举法、短除法找公因数和最大公因数学习情况的评价。
2、教师对学生在学习活动中体会数形结合思想的评价。
3、教师对学生参与学习活动的评价,及时评价不同水平的学生参与学习活动的实际表现。
一、复习导入。
师:昨天,老师布置了这样一项课前作业。
师:谁能拿着你的作业到前面来说一说你是怎样分的?(指名答)。
师:这个同学把自己的想法表达的非常清楚,我们再来看看他是怎么分的。(课件演示)。
问:还有不同分法吗?(生答师演示)。
师:其他同学还有不同意见吗?
同位互相看一看各自是怎样分的,交流一下自己的想法!
1、教学公因数和最大公因数的意义,总结列举法。
师:这些小正方形的边长1、2、3、6与长方形的长24和宽18之间有什么关系啊?
生:1、2、3、6是18的因数也是24的因数。
师:我们把18和24的因数都找出来,对比着看一看吧!
师:谁能快速找出18的因数?24的因数又有哪些呢?(指名说)。
师:对比观察18和24的因数,你有什么发现?
生:它们的因数中都有1、2、3、6、
师:看来,这和我们刚才的想法是一样的,1、2、3、6既是18的因数,也是24的因数,我们就把1、2、3、6叫做18和24的公因数。
师:公因数中哪个最大啊?生:6最大。
师:我们就把6叫做18和24的最大公因数。
师:其实在前面的课前作业中,小正方形的边长就是长方形长与宽的公因数。今天这节课,我们就来研究公因数和最大公因数。
师:刚才我们分别列举出了18和24的因数,又找出它们的公因数和最大公因数,这种找公因数和最大公因数的方法叫列举法。
2、教学集合圈。
师:为了让大家更直观的看出它们的关系,我们还可以用集合圈的形式表示出来。
24的因数。
18的因数。
123612346。
91881224。
师:左边的集合圈表示的是18的因数,右边的集合圈表示的是24的因数、因为它们有公因数1、2、3、6,所以我们就把两个集合圈合在一起。
问1:现在你知道左边这一部分表示的什么吗?(指名答)。
师:下面请同位互相说一说集合圈中每一部分表示什么。
师小结。
师:现在给你一个集合圈你会填了吗?
师:看到这道题你能不能直接填呢?那应该先怎么办?
生:先找到16和28的因数和公因数,再填集合圈。
师:请同学们先在作业纸上列举出16和28的因数,再填集合圈。
(生独立完成,师巡视)。
展示与评价。
师:谁来说一说你是怎么填的?(指名汇报)。
给大家说说你先填的什么?又填的什么?
指名说一说,及时评价。
师:我们再来看看这位同学的作业。
师:同位互相检查一下,不对的改正过来。
三、认识短除法。
1、讲解短除法。
师:请大家先把18和24分解质因数。
师:谁来说说你分解质因数的结果?
师:请同学们仔细观察这两个式子,你有什么发现?
生:我发现它们都有质因数2和3、
师:根据这个发现我们就可以把两个短除式合并在一起,用短除法来求18和24的最大公因数。
师边板书边讲解……。
师:最后把所有的除数连乘起来,就能得到18和24的最大公因数了。
问:现在谁能说说我们是怎样用短除法求18和24的最大公因数呢?(指名学生说一说)。
2、练一练。
师:下面请你用这种方法求下面每组数的最大公因数,快速的完成在你的作业纸上!
师:谁来说说你是怎么做的?(指名学生展示汇报)。
问:你认为他做的怎么样?
四、练习与应用。
1、练一练(苏教版p27t1)。
师:接下来你能用今天所学的知识解决下面这个问题吗?(课件出示)把它完成在你的作业纸上!
展示汇报。
师:我们在找两个数的公因数和最大公因数的时候,除了列举法和短除法以外,我们还可以用这种方法(课件演示、介绍)。
2、扎花束。
师:同学们!春季运动会马上就要到了,学校花束队买来了两种颜色的花准备来扎花束。(课件出示,师读题目要求)。
问:同学们想一想这道题其实在求什么?
师:选择自己喜欢的方法把它完成在练习本上。
问:大家一起告诉我最多能扎多少束?这样每一束花里面有几朵红花?几朵黄花呢?
2、数学知识。
师:同学们!早在很久以前,我国古代的数学家就已经在研究我们今天所学的知识了!
五、课堂总结:通过这节课的学习你有哪些收获?
最大公因数教学设计篇十三
各位老师:
分析教材。
本课是苏教版教材五年级上册第三单元《公倍数和公因数》中的内容。在四年级(下册)教材里,学生已经建立了倍数和因数的概念,会找10以内自然数的倍数,100以内自然数的因数。本单元继续教学倍数和因数的知识,要理解公倍数、最小公倍数和公因数、最大公因数的意义,学会找两个数的最小公倍数和最大公因数的方法。为以后进行通分、约分和分数四则计算作准备。
《课程标准》要求学生“动手操作、自主探索、合作交流”,结合教材的特点,我力求达到下面的教学目标:
1、经历找两个数的最大公因数的过程,理解公因数和最大公因数的意义。探索找公因数的方法,会正确找出两个数的公因数和最大公因数。
2、结合具体实例,渗透集合思想,培养学生有序思考的能力,让学生养成不重复、不遗漏、不重复的思考习惯。
3、培养学生能用自己的语言表述自己的发现,善于发现规律,利用规律解决问题的能力。
依据《课程标准》的要求和教学目标,我确定本课教学重点是理解公因数和最大公因数的意义,教学难点是会求两个数的公因数和最大公因数。
设计理念。
在教学中我发挥“教师是学习活动的组织者、引导者与合作者”的作用,激发学生兴趣、引导学生自己探索。学生才是学习的主体,让学生在玩中学、学中玩,合作交流中学、学后合作交流并根据学生原有的认识基础和认知规律,并结合“以学生的发展为本“的理念,力求突出以下三点:
1、将教学内容活动化,让学生在做中学。
2、采用小组合作学习,让学生在交往互动中学。
3、充分利用原有的认知经验,在迁移中学。
教学过程。
依据教材特点及小学生认知规律和发展水平,整个教学过程安排了四个环节:
分为五个步骤:
2、想象延伸:接下来让学生思考还有那些边长是整厘米数的正方形也能铺满大长方形。学生思考后,回答边长是1厘米,2厘米,3厘米的正方形也能铺满大长方形。引导学生说出只要边长“既是”18的因数“又是”12的因数,就能铺满大长方形。从而引出公倍数的概念,再强调因为一个数的因数的'个数是有限的,所以两个数的公因数的个数也是有限的(最小是1),让学生在自主参与、发现、归纳的基础上认识并建立公因数的概念的过程。
3、归纳总结:只要正方形的边长既是12的因数又是18的因数,这样的正方形就能铺满大长方形。1、2、3、6既是12的因数又是18的因数,它们就是12和18的公因数。
4、根据学生的总结我及时板书课题,让学生的形象思维转变成抽象思维。
5、反例教学:让学生说明4是12和18的公因数吗?为什么?
学生通过上面的一正一反教学总结出:公因数要同时是两个数的因数。
为了及时巩固,完成练一练:先让学生在图上画一画,找出公因数和最大因数,填写在书上。
(设计目的:通过具体的操作和交流活动,帮助学生理解公因数,使知识不在枯燥无。让学生到感受成功的喜悦。)。
最大公因数教学设计篇十四
教学内容:
课本p79~81例1、例2。
教学目标:
1.知识与技能:理解公因数、最大公因数的意义,初步掌握求两个数的最大公因数的方法。
2.过程与方法:使学生经历理解公因数、最大公因数的意义,初步掌握求两个数的最大公因数的方法的过程,培养学生观察、比较、分析和概括的能力。
3.情感、态度与价值观:在师生共同探讨的学习过程中,激发学生的学习兴趣,体会数学与生活的联系,渗透事物是普遍联系的和集合的数学思想。
教学重点:
理解公因数、最大公因数的意义,初步掌握求两个数的最大公因数的方法,初步了解算理。
教学难点:
教学用具:
自制课件。
教学过程:
一、复习导入。
[从学生的实际生活引入,可以激发学生的学习兴趣。]。
二、探索新知。
1.出示动画8用正方形摆长方形的动画,请同学们帮帮忙,试着设计一下。
2.探究方法。
同学们先独立思考,再小组交流、讨论。
3.全班交流。
(1)说一说你是怎样安排的?
过渡语:今天我们就重点来研究最大公因数。
6.说一说:最大公因数和公因数有什么关系呢?
7.试一试:你能找到18和24的公因数和最大公因数吗?
4和624和85和76和11。
问:你是怎样答出的?能说一说过程吗?
9.除了找因数,求最大公因数的方法外,还有没有其他求最大公因数的方法呢?
分解质因数法。
10.练习:求24和36的最大公因数(用喜欢的方法求)。
三、巩固练习。
12和18。
99和132。
24和30。
39和65。
最大公因数教学设计篇十五
教学目标:
1、结合具体情境理解公因数和最大公因数的意义,学会求两个数的最大公因数的方法。
2、会用公因数、最大公因数的知识解决简单的实际问题,体验数学与日常生活的联系。
3、通过学生合作探究等活动,培养学生的合作能力和抽象概括能力,以及激发学生对探究数学知识的兴趣。
教学重、难点:
重点:理解公因数和最大公因数意义,会求最大公因数。
难点:理解公因数和最大公因数的意义。
教学准备:
ppt课件,长方形的方格纸,小正方形纸若干。
教学过程:
一、预设情境、提出问题。
二、探究交流,抽象概念。
(1)合作探究。
提供学具,学生操作。
(2)反馈交流。
得到:边长是1分米,2分米,4分米的地砖符合要求。
(3)讨论交流。
还有没有别的铺法?边长是3分米的地砖行吗?为什么?边长是8分米呢?
a、引出猜想:
b、枚举验证。
a、完成做一做。
引导学生概括公因数和最大公因数的概念(教师板书)。
三、尝试练习、探索方法。
四、巩固练习,完善新知。
6和915和204和1216和32。
(完成后,解决成倍数关系的两个数的最大公因数的求法)。
2、选择题。
a.4b.6c.8d.16。
(2)甲数是乙数的倍数,甲、乙两数的最大公因数是_。
a.1b.甲数c.乙d.甲、乙两数的积。
7/98/3618/729/154、*小巧匠。
12cm16cm44cm。
要把它们截成同样长的小棒,不能有剩余,每根小棒最长是多少厘米?
(完成之后,完善公因数的概念。)。
五、课堂小结:通过这节课的学习,你有什么收获?
msn(中国大学网)。
最大公因数教学设计篇十六
教学内容:
教学目标:
1、使学生在具体的操作活动中,认识公因数和最大公因数,会在集合图中分别表示两个数的因数和它们的公因数。
2、使学生学会用列举的方法找到100以内两个数的公因数和最大公因数,并能在解决问题的过程中进行有条理的思考。
3、使学生在自主探索与合作交流的过程中,进一步发展与同伴进行合作交流的意识和能力,获得成功的体验。
教学重点:
【本文地址:http://www.xuefen.com.cn/zuowen/14560561.html】