编写一份好的教案可以帮助教师更好地组织教学活动,提高教学效果。编写教案前,要充分了解学生的基础知识和学习情况。探究式学习教案范文,助你打破传统教学模式。
小学数学五年级教案篇一
1、联系长方体表面积在生活中的运用,培养学生用数学知识解决问题的意识。
2、在摆、算、想象、猜想等学习活动中,培养学生有序思考、合理分类、化繁为简的思维方法,并发展空间观念。
3、会根据实际需要,合理策划选择包装样式,体现解决问题策略的多样化。
4、能用准确的数学语言描述思考过程。
师:生活中,常把几个长方体物体包成一个大长方体。这样就会有各种各样的包装。
学生间相互交流了解的情况。
师:前几天,我曾让大家去了解这方面的情况,谁来说说你带来了什么?
生:火柴盒、香烟盒或药盒等。
师:这节课,我们一起来讨论、研究问题。(揭题)。
2、试一试:要求摆得出,还要说得明白。
交流:有哪几种?为了方便表达,最大面用字母a表示,次大面用字母b表示,最小面用字母c表示。
归纳:三种不同包法:
a面重叠(上下叠);。
b面重叠(前后叠);。
c面重叠(左右叠)。
生:6、7、8、9、10、12种等。
师:那么,究竟有几种呢?想试试吗?(生:想!)。
师:两人一组,边摆边思考,怎样说才能让大家明白你的摆法?
合作学习:
生:包装方式多,记一记,不会重复。
(2)大组交流、汇报。
两人一组汇报,要求一位同学边说边摆,另外一位同学选择相应的直观图贴在黑板上。
学生汇报:总共有9种不同的包法。(见下图)。
师生归纳:按接触面思考:a、b、c各一种;ab、ac、bc各两种。
师:这种方法怎么样?它是按什么思考的?
生:按接触面来思考;这样思考有序,不容易漏掉。
生:按上下、前后、左右的方向拼摆,有3种包法。
师:大家从中受到什么启发?还可以怎样考虑?。
生:哦,我明白了!还可以将两个b面重叠(前后叠)的长方体看作一个大长方体,按上下、前后、左右的方向拼摆,又有3种包法。
生:还可以将两个c面重叠(前后叠)的长方体看作。
生:(抢着说)对,对!它也有3种包法。因此6个长方体共有33=9种不同的包法。
师:这种方法怎么样?
生:这种方式很好,很清楚。
师:先把2个小长方体看作一个大长方体,那么6个小长方体就可以看作3个大长方体。2个小长方体间的位置不同,就得到了3个不同长方体的包装问题。这种将复杂的问题转化为已经解决简单问题,是我们解决问题的基本方法,很重要。
4、师:现在我们来猜猜,哪些样式的表面积较大、较小?说理由,并算算。
师:哪个表面积更小些呢?
生:可以算一算。
师:假设a面面积为6,b面为3,c面为2。
生:62+312+212=72,64+36+212=66,64+312+26=72。这几个表面积都比较小。
教师取一种物品(火柴),先请大家猜可能的包装样式,再说说理由,结合实际谈想法。
学生打开一包火柴观察后说,(见图)这种样式表面积小,也就是材料省。
师:是不是厂商对商品的包装都考虑节省材料呢?
生:不一定。
师:分小组,互相观察带来的其他物品,说说自己的看法。
学生纷纷举例说明:有的考虑经济、实用,有的考虑美观、大方,有的考虑方便不同的需要就有不同的标准。
师:这节课对你有什么启示?
生:生活中有许多事,可以用数学方法来解决;包装这一小问题,学问可不小。
小学数学五年级教案篇二
该内容是在学生已经学习了“约数和倍数的意义”、“质数和合数、分解质因数”、“公约数”等的基础上进行教学的,既是对前面知识的综合运用,同时又是学生学习“通分”所必不可少的知识基础。因而是本单元的教学重点,是本册教材的核心内容。本课的教学,对于学生的后续学习和发展,具有举足轻重的作用。借鉴前面的学习方法学习后面的内容是本课设计中很重要的一个教学特色,这样设计不仅使教学变得轻松,而且能使学生在学习知识的同时掌握一些学习方法,这些学习策略和方法的掌握,对于今后的学习是很有帮助的。
五年级学生的生活经验和知识背景更为丰富,动手欲较强,学生认识数的概念时更愿意自主参与,自己发现。再者,学生个人的解题能力有限,而小组合作则能更好地激发他们的数学思维,通过交流获得数学信息。
(体现多维目标;体现学生思维能力培养)。
1、让学生通过具体的操作和交流活动,认识公倍数和最小公倍数,会用列举法求两个数的最小公倍数。
2、让学生经历探索和发现数学知识的过程,积累数学活动的经验,培养学生自主探索合作交流的能力。
3、渗透集合思想,培养学生的抽象概括能力。
公倍数与最小公倍数的概念建立。
运用“公倍数与最小公倍数”解决生活实际问题。
为了实现教学目标,达到《标准》中的要求,也为了更好的解决教学重、难点,我将本节课设计成寓教于乐的形式,将教学内容融入一环环的学生自主探索发现的过程中,引导学生动手、动脑、动口。
媒体运用。
任务导学。
明确任务。
师:课前我们来做个报数游戏,看谁的反应最快。请两大组的同学参加。
师:请报到3的倍数的同学起立,报到4的倍数的同学起立。你们发现了什么?他们为什么要起立两次?(因为他们报到的号数既是3的倍数又是4的倍数)是吗?咱们一起来验证一下。(师板书:12、24)。
师:像这些数既是3的倍数,又是4的倍数,我们就把这些数叫做3和4的公倍数。(板书:公倍数)今天这节课我们一起来研究公倍数。
一、课堂探究,自主学习。
1、出示例1。
师:同学们,仔细读要求,你们认为解决这个问题要注意什么?
生独立思考,领会题意和要求。
课件出示。
合作。
探究。
2、合作交流,动手操作。
我们每一对同桌都准备了一张方格纸和一些长3厘米、宽2厘米的长方形,下面就用这些长方形来代替瓷砖在方格纸上来摆一摆、画一画或直接算一算。
3、汇报交流。
师板书:2的倍数:2、4、6、8、10、12、14……。
3的倍数:3、6、9、12、15、18……。
2和3的公倍数:6、12、24……。
二、交流展示。
1、明确意义。
(设计意图:这几个问题连环递进,通过第一问使学生理解4只是2的倍数,9只是3的倍数,不论是边长4厘米还是9厘米均不符合题意,从而使学生深刻理解"公"字的含义;通过第二、三问使学生发现能铺成的正方形的边长必须是2和3的公倍数,而只要符合这个条件的正方形是有无数个的,从而渗透了数形结合与极限思想。)。
2、找最小公倍数。
师:是不是只有2和3才有公倍数呢?其你也举个例子里找一找他们的公倍数,有一个要求:看谁能在规定的时间里找到的公倍数最多,用的方法最巧。
汇报交流。
师:请找到最多的同学说一说,你有什么好方法介绍给大家。
3、发现特殊关系的两个数的最小公倍数的特点。
师让学生举例,然后将学生所举的例子分成了3类。启发学生:我是根据什么标准来分的?你所举的例子属于哪一类?咱们再来看一看,他们的最小公倍数有什么特点?(让举例的学生汇报最小公倍数)。
得出规律:两个数是互质关系的,它们的最小公倍数就是他们的乘积;。
两个数是倍数关系的,它们的最小公倍数就是较大的那个数。
如果以后让你找两个数的最小公倍数,你会怎么做?
三、反馈拓展。
1、拓展提升。
13和2()1000和25()。
18和6()8和9()。
1和12()9和15()。
师:为了能同时出发,你认为周老师该选择哪些时间出发?
3、求三个数的公倍数。
四、课堂总结。
这节课我们学习了什么?你有什么收获?
五、评价检测。
练习十七2、3、4题。
小学数学五年级教案篇三
1、能正确估计不规则图形面积的大小。
2、能用数格子的方法,计算不规则图形的面积。
能用数格子的方法,计算不规则图形的面积。
课件。
一、开门见山,揭示课题。
在现实生活中,学生将接触到大量的不规则图形的面积问题,本节课我们就来学习估计、计算不规则图形的面积。
二、探索新知。
本探索活动分为三个部分,前两个部分主要是呈现了小华出生时与2岁时两个不同年龄段脚印面积的大小,第三个部分是让学生运用自己探究出的方法,估计自己的脚印面积。在开展实践活动时,可以按照教材前后呈现的内容,先讨论估计小华两个年龄段脚印面积的大小,然后采用数格子的方法(不满一格的可以按半格来数)来验证前面的估计值。通过两个年龄段脚印大小的估计,要让学生理解成长期中脚印面积的大小与年龄的增长有着密切的关系。
估计自己脚印的面积可以回家完成,然后将所描好的脚印图带到学校进行交流。教学时,教师还可以找一幅公园或某个活动场所的平面图,利用方格纸估算这幅平面图形的面积,再组织同学交流。
如果有些班级的学生能力较强,也可以补充一些没有方格背景的不规则图形面积的估计与计算。学生在估计与计算这些图形的面积时,首先要会把这个图形看作近似的基本图,并围一围,随后用尺量一量基本图的相关条件的尺寸,并计算面积。
板书设计:成长的脚印。
小学数学五年级教案篇四
列方程解应用题复习(行程问题)。
相遇和追及问题的应用题是在学生掌握了一个物体的简单行程问题的基础上,初次接触有关两个物体运行的较复杂的行程问题,其中体现了“运动方向”“出发时间”“运动结果”等新的运动要素,给学生的思维带来了一定的难度。教学时应以一个物体运动的特点和数量关系为基础,让学生认识“相遇及追及”的特征,掌握此类应用题的解答方法,培养学生分析问题和应用所学知识解决实际问题的能力。
1、初步理解两个物体在一定距离中同时从两地相向而行所涉及到的几种常见的数量关系;。
3、逐步掌握画线段图分析题目的方法。
教学重点:寻找未知量和已知量之间的等量关系,从而列出方程,得出应用题的解。
教学难点:认识相遇的过程中理解运用等量关系的解决问题。
教学准备:ppt、练习本。
教学活动教学说明。
一、复习引入。
1、揭题。
2、常见的相遇问题类型(手势演示)。
(1)同时出发,相向而行。
(2)一车先行,另一车再行,相向而行。
(3)同时出发,途中一车暂停,相向而行。
二、基础练习。
(1)画线段图分析题意。
(2)找出等量关系。
(3)列式。
2、两车同时从两地出发相向而行,2小时候相遇,这时甲车比乙车多行99千米,已知甲车的速度是乙车的1、4倍,求甲乙两车各自的速度。
小结:(1)相加=总路程。
(2)相差=路程差。
小结:(3)到中点相等。
4、小巧和小胖同时从学校出发去少年宫,小巧每分钟走80米,小胖每分钟走60米,小巧到达少年宫后立即返回,且在距少年宫400米处与小胖相遇,求相遇的时间。
小结:(4)总路程相等。
三、巩固提升。
8、一辆汽车从甲地出发,行了60千米后,一辆摩托车也从甲地开出,3小时后与汽车同时到达乙地,已知摩托车的速度是汽车的1.5倍,求两车各自的速度。
四、思维训练。
9、甲乙两人相隔若干米,若相向而行,1分钟相遇,若同向而行,甲5分钟能追上乙,乙的速度是60米/分,求甲的速度。
五、总结评价。
路程,速度,时间是行程问题中3个最关键的量,所以在新知学习前先搞清他们之间的关系尤为重要。
“相遇问题”的概念较多,如“同时出发”、“相距”、“相遇”、“相对而行”、“相向而行”等。怎样把这些抽象的概念让学生感性地接触并且深刻地理解呢?我借助肢体语言让学生弄明白这些概念,通过生动有趣肢体动作刺激学生的感官,形成两个物体运动的空间观念,调动学生的积极思维,也帮助学生深刻理解概念。
通过画线段图理解了两车行的路程与总路程的关系,然后放手让学生尝试解答例题,这样激发学生强烈的参与意识,最后通过检验求证学生的做法,使学生从中体验到成功的乐趣。
板书设计:列方程解应用题(行程)。
相遇问题(1)相加=总路程。
(2)相差=路程差。
(3)到中点相等。
(4)总路程相等。
教学反思:
行程问题应用是数学教学中的一个重点,而对于学生来说却是学习的一个难点。在教学中应如何突出重点,特别是突破学生学习的难点,一直以来是我们数学教师不断研究和探讨的问题。本节课学习内容是行程问题复习,包含了相遇问题和追及问题,教学重点是分析问题、解决问题能力的培养,能列方程解决实际问题。通过课前的准备,上课的反思,我对分析问题、解决问题的能力有较深的理解。反思本节课的教学,有很多收获:
1、合理组织安排教材,激发学生主动参与教学。
首先复习“速度×时间=路程”这一行程问题的数量关系,为新知识的学习做必要的准备,然后用动作语言让学生了解相遇问题中经常出现的几个要素,这样学生观察起来直观、易懂,兴趣容易调动起来,并以此激发他们的学习欲望。然后再通过例题让学生读题,说等量关系,画线段图等手段理解相遇问题的解决方法。
追及问题与相遇问题都属于行程问题,追及问题比相遇问题较难理解,避免学生学习枯燥无味,我在引入环节是以学生身边的实例为背景引入的。基础练习1,由学生画图独立完成,达到复习相遇问题的特征及相等关系;练习2的出现是对比追及的特征,引出本节课所复习的第二个内容,相遇和追击形成对比,区别不同。由于例题及变式练习是以递进的方式呈现在学生面前,其内容又处在同一背景下,学生就能更好地理解几个问题间的联系和差异,使学生明白此类应用题的特征,进一步提炼解应用题的一般思路。
2、运用线段图进行教学,培养学生的分析、观察能力。
学生初步的逻辑思维能力的发展,需要有一个长期的培养过程,要有意识地结合教学内容进行。解应用题的关键是审题,理解题意,找到相等关系。为了突破这个难点,我借助学生画线段图,分析线段图中各量间的关系找到题目中隐含的相等关系,从而解决问题。在讲解例1时,安排学生读题画关键词语,动手演示理解题意,教师教给学生画线段图,运用线段图找到相等关系。在变式练习及例2教学中,由学生尝试画线段图寻找相等关系,学生能很快列出方程进行求解。运用线段图分析比较数量关系,能够变抽象为具体,变繁为简,使等量关系更明确,为学生理解题意加起桥梁。这样不仅可以激发学生的学习兴趣,而且便于培养学生分析、解决问题的能力以及良好的数学思维能力,从而收到事半功倍的效果。
3、为学生提供充分的思考、分析的空间。
在本节课的教学中,我始终把分析问题、寻找等量关系作为重点来进行教学,不断地对学生加以引导、启发,努力使学生理解、掌握解题的基本思路和方法。上课的过程中虽然有学生合作学习,动手画图找相等关系,但时间短,没有放手让学生自己去探究、去发现,真正体会线段图的作用。学生认真画图后,我感到纯是模仿较多,不会借助线段图找相等关系。应该好好分析线段图的用途,是解决较复杂问题常见的工具。在以后的教学中,我要注重对学生这方面能力的培养,让学生逐渐掌握分析问题的方法,从而达到解决问题的目的。这使我深刻体会到:课前备课时除了要认真研究教材设计好教学内容外,一定要研究学生,研究教学方法与手段,创设情景让学生主动参与、自主探索,真正促进师生的共同发展。
4、分层递进,满足不同层次需求。
在练习中组织了不同层次,不同形式的练习。运用变式练习进一步帮助学生理解相遇问题的题意,开阔学生的思路,让学生理解题变意不变,方法也不变。拓展题的设计有助于调动学生学习积极性,让学有余力的学生再思考,以体现“下要保底,上不封顶”“因材施教”的教学思想。总之,让学生经过多层次的练习,掌握知识,形成技能。
总之,在列方程解应用题的教学中,我们要借助各种教学手段,通过多种途径帮助学生理清题意,寻找各量的关系。我感到学生的困惑是读不懂题意,找不到各量间的关系,不会列方程。通过反思,我再讲应用题时,不要快,题目不要贪多,要精,有典型性,适时变式练习,抓各量之间的关系,尽量列出不同方程求解,达到训练学生思维的目的。分析问题、解决问题的能力要时刻伴随我们平时的教学中,教师要有针对性的思维训练,进一步提高学生的各种能力。
【导语】的会员“lvcpjzw107”为你整理了“”范文,希望对你的学习、工作有参考借鉴作用。1教学内容:观察物体教学目标:1......
小学数学五年级教案篇五
2、掌握除数是小数除法的计算法则,并能运用法则进行正确的计算。
3、培养学生的概括能力。
把除数转化成整数后,利用除数是整数的除法来计算。
小数点的移动。
小黑板、卡片、幻灯。
口算:(卡片)。
8.1÷34.84÷40.56÷43÷5。
1÷80.75÷150.25÷50.045÷1。
小学数学五年级教案篇六
1、使学生理解长方体和正方体体积公式的推导,能运用公式进行计算。
2、培养学生空间和空间想象能力。
长、正方体体积公式的推导。
运用公式计算。
1立方厘米学具。
一、复习。
1、什么叫物体的体积?
2、常用的体积单位有哪些?
3、什么是l立方厘米、l立方分米、l立方米?
二、导入新课。
1、导入。
我们知道了每个物体都有一定的体积,我们也知道可以利用数体积单位的方法计算物体的体积。
要知道老师手中的这个长方体和正方体的体积?你有什么办法?(用将它切成1立方厘米(1立方分米)的小正方体后数一数的方法。)。
说明:用拼或切的方法看它有多少个体积单位。但是在实际生活中,有许多物体是切不开或不能切的,如:冰箱、电视机等,怎样计算它的体积呢?他们的体积会和什么有关系呢?这节课我们就来研究长方体和正方体的体积。(板书课题)。
2、新课。
(2)板书学生的:(设想举例)。
体积每排个数排数排数层数。
441l。
8421。
24432。
(3)观察:每排个数、排数、层数与体积有什么关系?
板书:体积=每排个数×排数×排数×层数。
每排个数、排数、层数相当于长方体的什么?
因为每一个小正方体的棱长是l厘米,所以,每排摆几个小正方体,长正好是几厘米;摆几排,宽正好是几厘米;摆几层,高也正好是几厘米。
(4)如何计算长方体的体积?
板书:长方体体积=长×宽×高。
字母公式:v=abh。
小学数学五年级教案篇七
本单元是在学生认识了整体“1”,初步理解了分数的意义,能认、读、写简单的分数,会简单的同分母分数加减法,能初步运用分数表示一些事物以及解决一些简单的实际问题的基础上,进一步认识和理解分数。
2、认识真分数、假分数,理解分数与除法的关系,能正确进行假分数与带分数、整数的互化。
3、探索分数的基本性质,会进行分数的大小比较。
4、能找出10以内两个自然数的公倍数和最小公倍数,能找出两个自然数的公因数和最大公因数,会正确进行约分和通分。
5、体会分数与现实生活的联系,初步了解分数在实际生活中的应用,提高综合运用数学知识和方法解决具体问题的能力,能运用分数知识解决一些简单的实际问题。
6、能积极参与操作活动,主动地观察、操作、分析和推理,体验数学问题的探索性和挑战性。
1、分数与除法的关系、分数的基本性质、公因数与公倍数、约分与通分、比较分数大小等知识;难点:体会在不同整体下,同一分数表示的具体数量不一样的道理及分数的基本性质。关键:联系实际情境、借助直观,弄清分数与除法的关系。
2、学习分数的再认识、分数与除法的关系、真分数与假分数、分数的基本性质、公因数与公倍数、约分与通分、分数的大小比较等知识。
3、学生善于形象思维,不善于抽象思维,对分数有一些现成的经验,对于分数的认识系统的认知。
共22课时
分数的再认识(一)
1.在具体的情境中,进一步认识分数,发展学生数感,体会数学与生活的密切联系。
2.结合具体的情境,进一步体会“整体”与“部分”的关系。
体会一个分数对应的“整体”不同,所表示的具体数量也不同。
课件两盒铅笔
一、谈话引入,教学新课。
现场组织活动:请两位同学到台前,每人分别从一盒铅笔中拿出1/2,结果两位学生的结果不一样多,一位学生拿出的是4枝,另一位学生拿出的是3枝。
师:你准备怎么拿呢?
生1:我准备把全部的铅笔平均分成2份,拿出其中的一份就是1/2。
生2:我准备把全部的铅笔除以2,也就是平均分成2份,其中一份就是1/2。
学生活动,一位学生拿出3枝笔,另一个学生拿出4枝笔。
师:你发现了什么现象,你有什么疑问,或者说你能提出问题吗?
生:他们拿出的枝数不一样多,一个是3枝,一个是4枝,这是为什么呢?
师:他们两人都是拿全部铅笔的1/2,拿出的铅笔枝数却不一样多,这是为什么呢?请想一想,然后小组交流一下。
学生小组交流,再全班反馈。
生:我们认识两盒铅笔的总枝数不一样多。
生:有可能数错了。
师:现在大家的意见都认为是总枝数不一样,也就是整体“1”不一样了吗?
师:告诉大家总枝数是多少,1/2是多少枝。
生1:全部是8枝,1/2是4枝。
生2:全部的铅笔是6枝,1/2是3枝。
师:真的是不一样多,一盒铅笔的1/2表示的都是把一盒铅笔平均分成2份,其中的一份就是1/2。但由于分数所对应的整体不同(也就是总枝数不一样多),所以1/2表示的具体的数量也就不一样。
师:原来分数还有这样一个特点,你对它是不是又有了新的认识?
二、练一练
1.看数学书说一说,小林和小明一样多吗?笑笑和小红一样多吗?说说理由。
2.画一画,说说画法对吗?为什么?还有别的画法吗?
三、巩固练习:
1.独立完成1、2、3,然后选几题说说思考过程。
2.第4题让学生充分说说自己的想法,必要时可以举例说明。第5、6题独立完成,然后选几题说说思考过程。
四、思考题。放学后独立完成,课后讲评。
五、课堂作业
分数的认识
8支铅笔装1盒1/2盒=4支
6支铅笔装1盒1/2盒=3支
本节课注重结合实际展开教学。从这节课中可以看出,学生的生活经验,知识基础已成为教师教学的重要资源。本节课注重动手操作,自主探索,合作交流,让学生经历探究过程。在本课的教学中,注重为学生创设自主探索的空间,学生通过拿水性笔,画一画,分数小游戏,辩一辩等活动,体会到解决问题策略的多样性。
由于分数所对应的整体不同(也就是总枝数不一样多)两人都是拿全部铅笔的1/2,拿出的铅笔枝数不一样多。平时教学中还要多举些例子,可以培养学生对整体“1”的认识,为较难的分数应用题做好铺垫。
小学数学五年级教案篇八
2、能沟通知识之间的相互联系,提高解决问题的能力。
1、第52页第10题
先做第一题:五一班一共有学生40人,其中女生有21人。女生占全班人数的几分之几?
(1)先让学生联系分数的意义口头分析:把全班人数看作单位”1“,平均分成40份,女生人数占了其中的21份,所以女生人数占全班人数的21/40。
(2)再让学生根据分数与除法的关系列出算式,并写出得数。
(3)独立做下面两题
(4)交流
2、做第11题
(1)学生先独立练习
(2)引导比较a三道题目计算方法有什么相同?
b算式中选择的.除数有什么不同?
c从中还能想到些什么?
(3)沟通求一个数是另一个数的几分之几与求一个数是另一个数的几倍的联系。
3、做第12题练习后加强对比
(1)计算方法有什么相同的地方?
(2)算式中选择的被除数为什么不同?除数为什么相同?
(3)商的表示方法有什么不同?
4、做第13题练习后加强对比
要引导学生区别清楚:一:第一个问题是求平均每条童裤用了这块布的几分之几,需要把5米看做单位”1“,并把它平均分成6份,用分数表示其中的一份,得到的分数不注明单位名称。二:第二个问题是求平均每条童裤用布几分之几米,要把5米等分成6份,并用分数表示其中的一份,得到的结果要注明单位名称”米“。
5、思考题
方法一:可以根据每个分数中分子与分母的大小关系来判断。
方法二:通过画图帮助思考
小学数学五年级教案篇九
1、比较系统地理解自然数、整数、分数、小数、百分数的意义。
2、自然数、整数、分数、小数、百分数的联系和区别。
3、对各种数进行分类,体验分类的原则与方法。
4、掌握十进制计数法。
教学重点:在已有知识经验的基础上,加深对各种数的意义的理解。
教学难点:分类,形成系统,理解数与数之间的联系与区别。
教学关键:数的意义的理解。
教学准备:多媒体课件
同学们,在小学阶段,我们认识了很多的数,你能说说我们已经学习了哪几种数吗?(教师板书各种数)
1、用数表示数轴上的各点,唤醒学生对数的认识。
(1)教师先确定“0”的位置,然后由学生分别指出1、2、-1、-2所在的点各用什么数表示。
(2)引导学生发现规律。
从这条线上,你能发现什么规律?
(3)请学生指出、0.3、1、2、2.9所在的点各用什么数表示。
能不能说说为什么这些点要用分数或小数表示?
你还发现了什么?
(4)请学生在上面的这些数中分别找出黑板上板写的各种数。
我们还学过哪些分数?分数的个数是怎样的?分数可以分成哪几类?
我们还学过哪些小数?它们的个数是怎样的?小数可以分成哪几类?
我们还学过哪些自然数?它们的个数是怎样的?
我们还学过哪些正数?它们的个数是怎样的?
我们还学过哪些负数?它们的个数是怎样的?
除了这些数,我们还学习过那些数?(引出百分数)
2、归纳分类
学生汇报。
(1)(2)
在分类的时候,我们要注意什么?
1、整数和分数之间有什么联系和区别?(负整数不在讨论的范围)(举例说明)
联系:(1)它们都有各自的计数单位。
(2)整数可以转化成分母是“1”的分数形式。
区别:(1)分数是把单位“1”平均分成若干份,表示这样的一份或几份的数,分数用来表示不满“1”的数,整数则是表示几个“1”。
(2)它们的计数单位不同。
2、整数和小数之间有什么联系和区别?(举例说明)
联系:进制相同,都采用十进制计数法。(填写数位顺序表)
区别:(1)小数是把单位“1”平均分成10、100、1000......份,表示这样的一份或几份的数,小数用来表示不满“1”的数,整数则是表示几个“1”。
(2)它们的计数单位不同。
3、分数和小数之间有什么联系和区别?(举例说明)
联系:(1)小数是分数的一种特殊的表现形式,都用来表示不满“1”的数量。
(2)分数和小数可以互相转化。
区别:它们的计数单位不同。
4、分数与百分数之间有什么联系和区别?(举例说明)
联系:百分数是一种特殊的分数。
区别:分数可以表示数量,后面可以加单位,分数也可以表示两个数之间的倍数关系,分数还可以表示两个数相除,分数的分母可以是零以外的任何一个整数。百分数则一般只用来表示两个数之间的倍数关系,分母是固定不变的。
1、将下面的数填在适当的()里。
(1)冰城哈尔滨,一月份的平均气温是()摄氏度。
(2)五(4)班喜欢运动的同学占全班同学总数的()。
(3)杨老师的身高()米。
(4)某市今年参加马拉松比赛的人数是()。
2、在括号里填上合适的数。
(1)270.46=2×()+7×()+4×()+6×()
(2)2:()=0.4===()%
(3)一个数由7个组成,这个数是(),它的倒数是()。
(4)把4千克葡萄干平均分成8包,每包是()千克,每包占总数的()。
同学们,这节课我们系统的复习了小学阶段我们所学过的各种数,这些数为我们的学习和生活奠定了基础,你们知道没有数之前人类是怎样来表示数量的多少的吗?如果现在没有了这些数,我们的生活会是怎样的?除了这些数你还知道那些数?数的知识浩瀚无比,你们要努力学习,打好基础,将来有更多的数等待你的发现和创造。
小学数学五年级教案篇十
教材第52页例1和“练一练”,第58页练习八的第1~4题。
1、使学生初步理解单位“1”和分数单位的含义,经历分数意义的概括过程,进一步理解分数的意义,能根据具体情境表示出相应的分数,联系实际情境解释或说明分数的具体意义;认识分数单位,能说明分数的组成。
2、使学生经历有具体到抽象的认识、理解分数意义的过程,感受分数的来源与形成,体会数的发展,培养观察、比较、分析、综合与抽象、概括的能力,感受分数与生活的联系,增强数学学习的信心。
认识和理解分数的意义。
认识和理解单位“1”。
探究合作法、讲解分析法、练习法等。
ppt。
在三年级,我们曾经分两次认识分数,今天这节课,我们要在以前学习的基础上,进一步认识分数。
出示例1中的一组图。
请大家根据每幅图的意思,用分数表示每个图中的涂色部分。写出分数后,再想一想:每个分数各表示什么?在小组内交流。
学生汇报所填写的分数,你认为这些图中分别是把什么平均分的?
一个饼可以称为一个物体,一个长方形是一个图形,“1米”是一个计量单位,而左起第四个图形是把6个圆看成一个整体。
左起第四个图形与前三个图形有什么不同?
一个物体,一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。
(1)在这几个图形中,分别把什么看成单位“1”的?
(2)分别把单位“1”平均分成了几份?用分数表示这样的几份?
(3)从这些例子看,怎样的'数叫作分数?
拿12根小棒自已创造一个分数。
说说你是怎么做的?
如果老师要表示6根小棒可以用什么分数表示?
第1题,各图中的涂色部分怎样用分数表示?请大家在书上填空。说说是怎样想的。
每个分数的分数单位是多少?各有几个这样的分数单位?
第2题,观察直线上是把哪个部分看作“1”的?直线上表示是怎样想的?
引导:分数也可以在直线上表示。这里从0起到1是1个单位,同样地从1到2也是1个单位,这1个单位就是把单位1平均分成若干份,就可以用直线上的点表示分数。
让学生在()里填上合适的分数。
交流:你是怎样填的?为什么这样填?
先让学生在每个图里涂色表示三分之二,再说说是怎样涂的、怎样想的。
同样是三分之二,为什么涂色桃子的个数不同?
第2题先读出每个分数,再说说每个分数的分数单位。
第3题让学生填,交流时说说是怎样填的。
第4题在研究分数时,把哪个数量平均分成若干份,这样的数量就是单位“1”
这节课学习了哪些内容?
小学数学五年级教案篇十一
书第54――55页,有趣的测量及试一试第1、2题。
1.知识与技能:结合具体活动情境,经历测量石头的试验过程,探索不规则物体体积的测量方法。
2.过程与方法:在实践与探究过程中,尝试用多种方法解决实际问题。
3.情感、态度与价值观:在观察、操作中,发展学生空间观念。
用多种方法解决实际问题。
探索不规则物体体积的测量方法。
不规则石头、长方体或正方体透明容器、水。
一、导入新课
老师出示准备好的不规则石快。
师:这个石块是什么形状的?(不规则)
什么是石块的体积?
你有什么困难?
二、教学新知
1.测量石块的体积
(1)小组讨论方案
师:我们不能直接用公式计算出石块的体积,可以怎么办呢?你有什么好的方法吗?
(2)小组制定方案
(3)实际测量
方案一:找一个长方体形状的容器,里面放一定的水,量出水面的高度后把石头沉入水中再一次量出水面的高度。这时计算一下水面升高了几厘米,用“底面积×高”计算出升高的体积。也可以分别计算放入石头前的体积与放入石头之后的总体积之差。
师:为什么升高的那部分水的体积就是石块的体积?
方案二:将石头放入盛满水的容器中,并将溢出的水倒入有刻度的量杯中,然后直接读出的水的体积,就是石头的体积。
师:为什么会有水溢出来?
这两种方案实际上都是把不规则的石头的体积转化成了可测量计算的水的体积。让学生说出“石块所占空间的大小就是石块的体积”。
1.实际应用
(1)读题,理解题意。
(2)分析:你是怎么想的?
(3)学生尝试独立解答。
(4)集体反馈,订正。
让学生运用在探索活动中得到测量的方法,即“升高的水的体积等于土豆的体积”,然后用“底面积×高”的方法计算。2×1.5×0.2=0.6(立方分米)
三、课堂小结
学习了这节课,同学们有什么感受和体会?有什么提高?
1.书第55页第2题。
本题引导学生开展测量不规则物体体积的活动。一粒黄豆比较,先测量100粒黄豆的体积,再计算出一粒黄豆的体积。
2.学生再找一些实物,测量出体积。
板书设计:
有趣的测量
方案一:
方案二:
“底面积×高”的方法计算。
2×1.5×0.2=0.6(立方分米)
小学数学五年级教案篇十二
已学的相关内容:分数意义的初步理解;简单分数的大小比较;同分母分数的加减计算。
本单元的主要内容:分数的再认识;真分数和假分数;分数与除法的关系;分数基本性质;公因数、最大公因数;约分;公倍数与最小公倍数;通分、分数大小比较。
1、在具体情境中进一步理解分数,体会分数的相对性。
教材通过创设具体的问题情境,丰富学生对分数的认识,进一步理解分数,体会分数的相对性。分数相对性就是结合具体情境使学生感受分数对应的“整体”不同,它所对应部分的大小或具体数量的多少是不一样的。在教学中,对学生来说,不需要出现“分数相对性”这样的专门术语,只要学生能结合具体情境体会就可以了。为了进一步加深学生对分数的理解,教材安排了“拿铅笔”等多个情境活动,教学时,教师要联系这样的实际情境,引导学生借助直观展开充分的交流。
在进一步认识分数的基础上,教材又安排真分数与假分数的认识,在“分饼”活动中具体体会真分数与假分数的产生过程及其实际含义,真分数与假分数的概念教材都只给出了描述性定义,要让学生自己说说真分数与假分数的特点。对于带分数的概念教材用介绍的方法,与真分数、假分数分开处理,有利于学生理解假分数与带分数的关系,避免造成错觉。
2、在观察比较中发现分数与除法的关系,探索假分数与带分数的互化方法。
除法计算不能整除时,除得的商可以用分数来表示。理解分数与除法的关系,是表示除法结果的需要,也是假分数与带分数互化的基础。教材通过具体情境引出除法算式,并根据分数的意义表示出结果,然后引导学生比较几个算式,探索发现分数与除法的关系。根据分数与除法的关系,让学生用分数表示两数相除的商或把分数表示成两数相除的形式。在此基础上引导学生探索假分数与带分数的互化方法。因为带分数的计算在学生的后继学习和生活实践中应用不是很多,所以学生只要能理解互化的方法并会正确进行互化即可,在速度及熟练程度上不要作过高要求。
3、经历知识的形成过程,探索分数的基本性质。
分数基本性质是约分和通分的基础,而约分、通分又是分数四则计算的重要基础,因此,理解分数基本性质显得尤为重要。而分数与除法的关系以及除法中商不变的规律与这部分知识紧密联系,是学习这部分内容的基础。
探索分数基本性质,关键是让学生在活动中主动地观察和发现,在讨论交流的基础上归纳规律。教材安排了两个学习活动让学生寻找相等的分数,分别是“用分数表示图中的阴影部分”和“在折纸活动中找到与3/4相等的分数”,通过两个活动使学生初步体验分数的大小关系,为观察、发现分数基本性质提供丰富的学习材料。然后,引导学生观察这两组相等的分数,寻找分子、分母的变化规律,并展开充分的交流,在此基础上,归纳分数基本性质。
4、在探索活动中理解公因数与公倍数的含义,掌握约分与通分的方法。
本册教材对公因数、公倍数的知识与约分、通分的知识进行了整合。在分数单元学习约分、通分前,安排学习公因数和公倍数等知识,这样有利于学生感受数学知识之间的联系。同时,根据课程标准要求,本册教材对知识掌握的要求进行了适当的限制,如求最大公因数是两个数限制在100以内、,求最小公倍数是两个数限制在10以内等。为了帮助学生体会“公倍数”的实际意义,教材还安排了“找最小公倍数”等实际情境,引导学生在解决实际问题的过程中,理解和体会“公倍数”的实际意义。在探索和掌握找公因数、找公倍数的方法的基础上,学习约分和通分。
“整体----部分-----整体”观察策略。对观察对象的整体先作初步的了解,发现这一类现象可能存在着某种规律,然后分出个部分,分别作进一步的观察,发现存在于各部分中的基本规律,进而再研究各部分间的联系,发现共同的结构,提出假设。
(1)整体观察。发现这几组分数的分子、分母都起了变化,而分数的大小不变。这里可能存在某中规律。
(2)部分观察。先引导学生对其中一组数==,从左向右观察,并组织学生讨论:一个分数的分子、分母怎样变化,分数的大小不变?为了让学生能正确地运用数学语言表达,可以把这组分数改写成下式让学生练习:
得出:分数的分子、分母都乘以一个相同的数(0除外),分数的大小不变。
接着,引导学生从右向左观察,并练习:
得出:分数的分子、分母都除以一个相同的数(0除外),分数的大小不变。
在让学生观察其他几组分数,能得出同样的规律。
(3)整体观察。引导学生从整体上观察这组例证,概括得出结论后,让学生阅读课本,要求能运用商不变性质说明分数的基本性质,并说明为什么要“零除外”。
【本文地址:http://www.xuefen.com.cn/zuowen/14555954.html】