分数乘法人教版教学设计大全(16篇)

格式:DOC 上传日期:2023-11-24 08:30:22
分数乘法人教版教学设计大全(16篇)
时间:2023-11-24 08:30:22     小编:紫衣梦

总结是我们成长的过程中必不可少的一环,它可以让我们更好地认识自己。写总结时,要注意简明扼要,言之有物,突出重点,尽量避免罗列无关紧要的细节。以上范文只是供参考,你可以根据自己的兴趣和需求选择适合自己的范文。

分数乘法人教版教学设计篇一

教学内容:

苏教版义务教育教科书《数学》六年级上册第29~30页例2、练一练,第32~33页练习五第6~9题。

教学目标:

使学生理解一个数乘分数的意义,知道求一个数的几分之几可以用乘法计算。

通过操作,观察,培养学生的推理能力,发展学生的思维。

教学重点与难点:

一个数的几分之几是多少的实际问题的数量关系和解题方法。

教具:长方形纸、彩笔、水杯。

教学过程:

一、创设情境。

同学们,上节课我们学习了分数乘整数的计算方法,你想不想继续往下学?在学新课之前我们先来复习一下上节课的内容。

复习:计算下面各题,并说出计算方法。

上面各题都是分数乘以整数,说一说分数乘以整数的意义以及计算方法。

二、探究新知。

今天,我们来学习一个数乘以分数的意义和计算方法。

教学例2。

出示例2的图,然后出示条件:

小芳做了10朵绸花,其中是红花,是绿花。

引导学生理解:“其中”是什么意思?

使学生明白是10朵中的,然后出示问题。

红花有多少朵?

引导学生看图理解:求红花有多少朵,就是求10朵的。

让学生应用已有的知识经验解决。

学生可能列式:10÷2=5(朵)。

在此基础上指出:求10朵中的是多少,还可以用乘法计算。

教师说明要求,学生列式解答。

在此基础上教学第(2)题,怎样解决。

(2)绿花有多少朵?

可以先让学生在图中圈一圈,借助圈的过程理解求绿花有多少朵,就是把10朵平均分成5份,求这样的2份是多少,引导学生用以前的方法解决。

10÷5×2=4(朵)。

在此基础上告诉学生:求10朵的是多少也可以用10×来计算。

学生独立计算,订正时指出:

计算10×可以先约分。

2、引导学生进行比较。

通过对上述两个问题的计算,你明白了什么?

小组讨论:10朵的,也就是把10朵花平均分成5份,求这样的2份是多少。计算10×时要先约分,实际上也就是先用10÷5,求出1份是多少,再乘2,求出2份是多少。

引导小结:求一个数的几分之几是多少,可以用乘法计算。

三、练习。

1、做练一练的第1题。

先让学生根据题意涂色,然后列式解答。

2、做练一练的第2题。

通过填空使学生进一步明确:求一个数的几分之几是多少,可以用乘法计算。

3、做练习五第6题。

4、做练习五第8题。

提问:求月季和杜鹃各多少棵时,为什么乘的分数不一样?

5、做练习五第9题。

比较三道算式的计算方法,你有什么体会和大家分享?

四、总结。

本节课学习了那些内容?通过学习你有那些收获?还有那些疑问?

五、作业。

完成练习五第7题。

分数乘法人教版教学设计篇二

五年级孩子乐于探究,课始,从古代著作引入“为什么一尺长的木棍,每天截一半会永远截不完呢?”既激发孩子们的学习兴趣,调动了学生的探究欲望,又潜移默化的渗透了无限的思想。

2、相信学生,让孩子真正成为学习的主人。

前苏联教育家苏霍姆林斯基说:“在人的内心深处,都有一种根深蒂固的需要,就是希望感到自己是一个发现者,研究者,探索者,而在儿童的精神世界中,这种需要特别强烈。”听了这一课,让我更深刻的理解了这句话。课上教师充分尊重孩子们说的权利和做的权利,开展了折一折,涂一涂,说一说,算一算等活动,给孩子们营造了一个宽松愉悦的学习氛围,教师大部分时间是以参与探索者的身份出现,与孩子们一起研究,师生之间体现了平等、和谐的伙伴关系。

3、数形结合,巧妙突破难点。

理解分数乘分数的意义,是帮助孩子们理解分数乘分数的计算原理,掌握计算方法的基础,也是学生理解的困难之处,如何有效的引导呢?教学中,教师安排了两次折一折,涂一涂的活动,化抽象为具体,充分利用图形语言的直观性这个特点,引导孩子们探索、理解分数乘分数的意义:即一个分数的几分之几是多少。注重将操作过程、图形语言和抽象的算式相结合,鼓励学生通过折纸活动把四分之三乘四分之一用图形表示出来,为孩子们发现和归纳出分数乘分数的计算方法铺好了道路。有了图形的帮助,孩子们就有了思考的拐杖,对分数乘分数的计算就不再是机械的操练和模仿了。

4、让孩子们在操作中学数学。

皮亚杰曾经指出:传统教学的缺点,就在于往往是用口头讲解,而不是从实际操作开始数学教学。可以说,加强动手操作是现代的数学教学与传统的数学教学的重要区别之一。只有让每个孩子都参与到操作活动中来,才能让孩子们了解知识的发生过程。教学中,教师给每个孩子都提供了动手的机会,留足了操作的时间,在折纸过程中,学生们不但体会到分数乘分数的意义,更感受到计算分数乘分数时为什么是“分子乘分子,分母乘分母”的道理。这个过程对学生来说是很重要的,这个符号语言和图形语言相联系的过程,不仅解释了符号语言的意义,也直观形象的展示了分数乘分数的计算方法。

分数乘法人教版教学设计篇三

班级姓名小组小组评价。

学习目标:

1、结合具体情境理解分数乘整数的意义,掌握分数乘整数的计算方法,能运用计算方法正确进行计算。

2、通过独立思考、小组合作、展示质疑,培养观察推理的能力。

3、激情投入,阳光战示,全力以赴,挑战自我。

重点;分数乘整数的简便算法。

难点:分数乘整数的算理。

使用说明与学法指导:

先由学生自学课本,经历自主探索总结的过程,并独立完成自主学习部分,通过独立思考及小组合作,能够结合具体情境理解分数乘整数的意义,掌握分数乘整数的计算方法,能运用计算方法正确进行计算。并独立完成导学案,然后学习小组讨论交流,让同学们进行展示,小组间互相点评,补充之后由老师进行点拨,最后巩固知识。

一、自主学习:

1、自学课本p8---p9页。

2、想一想,填一填。

1)、5+5+5+5=()×()表示()个()相加。

2)、1.2+1.2+1.2+1.2+1.2=()×()表示()个()相加。

3)、++=()×()表示()个()相加。

4)、×4改写成加法算式是()。

3、看图填空。

1)、

()+()+()=()。

()×()=()。

2)、

()+()+()+()=()。

()×()=()。

二、合作探究:新课标第一网。

小结:分数乘整数的意义:

例2、×5。

小结:分数乘整数的计算方法:

例3、6×=。

思考:你有什么技巧?

小结:分数乘整数的简便算法:

三、学以致用:

1、填空。

1)、分数乘整数,用分数的()和整数相乘的积作(),()不变。

2)、分数乘整数的意义与()意义相同,都是求的简便计算。

3)、×4表示()或表示()。

4)、4个的和是多少?用乘法计算可列式为()。

2、计算。

×4=3×=×8=。

3、列式计算。

1)、6个相加的和是多少?2)、的5倍是多少?

4、解决问题。

1)、一辆汽车每分钟行千米,这辆汽车每小时行驶多少千米?

2)、李师傅加工一个零件小时,加工24个零件需多少个小时?

5、附加题。

1)、计算。

×2=。

2)、把下面的加法算式改写成乘法算式。

分数乘法人教版教学设计篇四

教学目标:使学生学会分析分数乘法应用题的数量关系,会应用一个数乘分数的意义解答两步计算的分数乘法应用题;培养学生解决问题的能力,提高学生的分析能力;进一步提高学生思考问题的逻辑性。

教学重,难点:掌握分数连乘的计算方法,突出一次计算,会解答分数连乘计算的实际问题。

教学过程:

(一)、导入。

1、说出下面各题算式所表示的意义,再口算各题。

1/2×2=2/5×3=2/3×1/2=3/4×5=。

2、说出下面各题中的两个量,应该把谁看着单位“1”。然后再给每题补充一个已知条件和一个问题,使它成为一道一步计算的分式乘法应用题。

母牛的头数是公牛的1/3,公牛头数的2/3和母牛相等。

母牛的头数相当于公牛头数的3/4,公牛的头数相当于母牛头数的1/2。

小组完成,集体订正。

(二)、教学实施。

1.板书:公牛有30头,母牛的头数相当于公牛的1/3,小牛的头数相当于木牛的2/5,小牛有多少头?(认真读题,弄清题意)。

2.指导学生画线段图:怎样用线段图表示已知条件和问题?要求小牛的头数,就要知道哪个量?(母牛的量)母牛的头数又和哪个数量有关?(公牛的头数)先画一条线段,表示哪个数量?(公牛的头数)崽化一条线段,表示哪个数量?(母牛的头数)画多长?根据什么?表示小牛的头数的线段应该怎样画?板书:

公牛:|||||||||||。

30头。

母牛:||。

小牛:

3.分析数量关系:

4.列式解答:根据以上分析,这道题应该怎样解答?怎样列综合算式解答?板书:

30×1/3×2/5=。

根据综合算式让学生说说每一步分别求的是什么,每一步分别是把哪个数量看着单位“1”。同时强调:分数连乘不必像整数,小数连乘那样,逐次计算,可以一次计算,遇到整数和分数相乘,要用整数与分数的分母约分,不能约分的直接与分数的分之相乘。

(三)巩固练习。

完成第18页第4、5、9、10题,学生要说明每一步所表示的意义,每一步是把哪个数量看着单位“1”。

(四)课堂小结:解答两步计算的分数乘法应用题与解答一步计算的分数乘法应用题的相同点都是求一个数的几分之几是多少的应用题,不同点是分数连乘应用题要连续求一个数的几分之几是多少。解题关键是要找准每一步的单位“1”。

教学反思:

第三课时求比一个数少几分之几的数是多少的实际问题。

教学目标:使学生认识“求比一个数少几分之几的数是多少”的应用题的结构特征,学会利用线段图来分析数量关系,掌握解答这类应用题的思路和方法,并能正确列式计算;培养学生分析问题及综合运用所学知识的能力。

教学重、难点:了解“求比一个数少几分之几的数是多少”的应用题的结构特征;正确分析数量关系,比较熟练的画出线段图。

教学过程:(一)导入。

板书:超市运来花生油和豆油共600桶,花生油的桶数占总桶数的2/5。

(二)、教学实施。

1.根据以上两个条件,我们可以提出以下数学问题:

2.能用图表示豆油的部分吗?板书:

“1”

花生油占总桶数的。

||||||。

豆油?桶。

600桶。

3.分析数量关系;看图想想,豆油占总桶数的几分之几?求豆油的桶数就是在求什么?交流讨论得出:豆油的桶数占总桶数的,求豆油的桶数也就是在求600的是多少,用乘法计算。

后者方法很容易理解,主要是从“总桶数-花生油的桶数=豆油的桶数”这个数量关系入手分析,也就是“和-一个量=另一个量”

“1”

原来:||||||||。

85分贝。

降低了。

现在:||||||||。

分贝。

根据线段图想到了什么?

3.分析数量关系:求现在听到的声音是多少分贝该怎样计算?先求什么,再求什么?(先求降低了多少分贝,再求现在听到的声音分贝是多少;还可以先求现在声音的分贝占原来声音分贝的几分之几,再求现在听到的声音是多少分贝。)。

4.列式解答:

=70(分贝)=70(分贝)。

(三)、深化练习。

完成教材20页的“做一做”;完成练习五的第2、4、5、8、10题。

(四)课堂小结。

今天我们学习了“求比一个数少几分之几的数是多少”的应用题,这类题需要两步完成,通过今天的学习我们能够准确地分析并计算出这类题。

课后反思:

将本文的word文档下载到电脑,方便收藏和打印。

分数乘法人教版教学设计篇五

教学目标:

1.让学生经历探索分数乘整数计算方法的过程,并能正确地进行计算。

2.感受分数乘法与分数加法的内在联系,培养学生的迁移类推能力。

3.增强学生运用已有知识经验探索并解决问题的意识,体验探索学习数学的乐趣。

教学重点:掌握分数乘整数的计算方法。

教学难点:能正确熟练地计算分数乘整数。

教学准备:课件。

教学过程:

一、谈话导入。

1.观察情境图,激发学习兴趣。(多媒体出示生日会分蛋糕情境图)。

(表示把一个蛋糕平均分成7份,每人吃其中的2份。)。

2.导入新课。

同学们对分数已经有了一些了解,并且学会了分数的加法和减法运算,这学期我们还要学习分数的乘法和除法运算。今天我们就先来学习分数乘法的相关知识。

(板书课题:分数乘法)。

二、探索新知。

1.投影出示例题1。____个,3人一共吃多少个?

(1)引导学生读题,并说说____表示什么。____表示把一个蛋糕平均分成9份,每人吃其中的2份。

(2)求“3人一共吃多少个?”实际上就是求什么?先让学生思考,再指名回答。(实际上就是求3个是多少。)。

2.学生独立列加法算式解答。____++==(个)。

3.根据乘法的意义将加法算式转换成乘法算式。

(1)提问:这道加法算式有什么特点?(三个加数都相同。)。

(2)追问:求几个相同加数的和还可以用什么方法来计算呢?

(启发学生得出:3个相加,用乘法表示是×3或3×。)。

(1)提问:3个相加的和,也可以列成算式×3,那么×3样计算呢?

(2)学生思考计算方法。

学生思考,教师巡视观察。如果学生有困难,可以进行必要的启发:是个,2个乘3就是6个,所以就是。

(3)组织全班交流,教师结合学生的回报情况进行板书:×3=++====(个)教师强调:在计算过程中,虚线框起来的思考过程可以不写;分数线要用直尺画。

4)学习计算过程中进行约分。

引导学生观察计算过程中的分子和分母,分子用“2×3”得来,说明分子中含有因数3,而分母是“9”,也含有因数3,所以将“3”和“9”进行约分,即:____×3==____(个)。

观察上面的计算过程,你发现了什么?

(预设:能约分的可以先约分,再计算,结果相同。)。

(5)提问:如果把算式“×3”的两个因数交换位置,变成“3×__”

应该怎样计算呢?学生尝试计算后组织交流。

(6)总结分数乘整数的计算方法。

提问:分数与整数相乘,可以怎样计算?

指名回答,多让学生参与交流。

(分数乘整数,用分子乘整数的(分数乘整数,用分子乘整数的积作分子,分母不变。能约分的可以先约分,再计算。)。

5.练一练。

教材第2页“做一做”第1题。学生独立完成,投影交流。

教师强调:分数与整数相乘时,一定是整数与分母约分。

三、反馈完善。

1.教材第2页“做一做”第2题。

这道题是分数与整数相乘的计算,第三小题是整数乘分数,通过这道计算题,巩固分数乘整数的计算方法。教师也可以借此来发现学生在计算过程中存在的问题。

2.教材第6页“练习一”第1题。

这道题是分数乘整数的意义的练习。通过练习进一步感受分数乘整数与分数加法之间的联系,从而体会到分数乘整数的意义和整数乘法的意义相同。

3.教材第6页“练习一”第2题。

这道题是分数乘整数知识在日常生活中的应用,5kg的衣物就需要5个洗衣粉。

四、反思总结通过本课的学习,你有什么收获和体会?还有哪些疑问?

教学目标:

1.通过直观操作,初步掌握分数乘分数的计算方法。

2.经历探索分数乘分数计算方法的过程,体验数学学习,感受成功的喜悦,激发学习数学的兴趣。

教学重点:理解一个数乘分数的意义,掌握分数乘分数的计算方法。

教学难点:理解分数乘分数计算的算理。

教学准备:课件。

教学过程:

一、谈话导入。

2.导入。今天我们继续研究分数乘法的问题。(板书课题)。

二、探索新知。

(一)一个数乘分数的意义。1.投影出示例题2。

(1)问题一:3桶水共多少升?指名列出算式:12×3。提问:你是怎么想的?想:求3个12l,就是求12l的倍是多少。

分数乘法人教版教学设计篇六

第一课时两位数乘两位数(不进位)。

教学内容:教科书第63页例1及做一做,练习十五。

教学目标:让学生经历两位数乘两位数的笔算过程,学会计算两位数乘两位数不进位的乘法。在学习活动中感受数学与生活的密切联系。

重点难点:掌握笔算方法并正确计算;解决乘的顺序和第二部分积的书写位置问题。

教具准备:例2主题图。

教学过程:

一、复习。

1、口算。

52×1043×30=12×40=31×20=17×20=21×30=。

2、笔算并说出计算过程。

41×7=。

二、新课。

1、教学例2。

出示例2的主题图,让学生说一说,这幅图所展示的情境是什么。(小红的妈妈带着小红去书店买书,小红要买一套12本,每本24元的书,她在想一共要付多少钱。)。

老师组织学生进行讨论,然后展示不同的计算过程和结果。

例:24×12=24024×10=24024×2=28240×28=288。

有些学生会想到把12看成10和2的和,先用24×10,再用24×2,然后把两次乘得的结果相加。

有些学生会想到用笔算乘法。先让学生说他是如何写的,老师家以指导。

老师在指导分析过程中把每步板书,强调每步难点。

例1:24×12=288(24×10=24024×2=48240+48=288)。

24。

×12。

4824×2的积。

2424×10的积。

288(个位的0可不写)。

在总结过程中提问:

(1)两位数乘两位数一种是口算方法,一种是笔算方法,你认为哪种方法好?

(2)笔算中乘了几层,为什么?乘得的结果怎么样?(乘了两层,因为第二因数是两位数,2和24乘完后,1和24还要乘,把两层乘得的结果相加。)。

(3)十位上的1和24乘完后“4”为什么和十位对齐?(因为十位上的1和4相乘乘得的结果是4个十,所以要和十位对齐,个位的0可以省略不写。)。

教师总结完后出示课题,说明我们今天主要学习的是笔算两位数乘两位数的乘法,而且是不需要进位的。

2、指导学习完成“做一做”。

(1)让学生先做前4题,板演,并说出计算过程。

(2)后4题学生做完后,集体订正。

三、小结。

同学们,今天学习的是什么内容,应该注意什么?(今天我们学习的是两位数乘两位数不进位笔算乘法,应注意的是用十位上的数去乘时,乘得的末位数要和十位上的数对齐,也就是和个位乘得的积错开一位。)。

第二课时两位数笔算乘法(进位)。

教学内容:教科书第65页例2、做一做,练习十六第1、2题。

教学目标:让学生经历两位数乘两位数的笔算过程,学会计算两位数乘两位数进位的乘法。在学习活动中感受数学与生活的密切联系。

教具准备:多媒体课件(有下围棋的录像或画面);

多个南瓜形算式卡片(每张上一个算式)。

教学过程:

一、提出问题。

呈现下围棋的录像或画面,介绍有关围棋赛的事例(或战绩)。

放大棋盘,让学生观察棋盘结构。使学生了解到:围棋的棋盘面由纵横19道线交叉组成。

接着,把棋子放在纵横线的交叉点上,引出问题:“棋盘上一共有多少个交叉点?”

请学生说一说用什么方法解决这个问题,从而列出算式19×19。

二、探讨计算方法。

1.各组讨论:怎样计算19×19。

请把想出的计算方法写在纸上。

2.组织交流。

各组展示本组的算法。不容易说清楚的,就写在黑板上。

3.师生评议。

(1)请学生说一说,喜欢哪种方法?为什么?

(2)教师对学生发表的意见作以肯定或补充。使学生了解每一种算法的特点和适用范围。例如:估算的方法能很快算出大约有400个交叉点,但它不能满足解决问题的要求。

(3)重点评议笔算。

用检查竖式每一步计算的方式,再现笔算过程。在此基础上,夸赞学生:能用刚学过的两位数乘两位数的知识解决今天的新问题。并且,能正确解决乘的过程中的进位问题。你们真棒!

三、练习。

1.尝试练习。

用竖式计算第65页“做一做”中的4道题。可以让几个组的学生做前2道,另几个组的学生做后2道题。

完成计算后,组织交流。说出笔算的过程,加深学生对笔算过程的了解。

2.完成练习十六第1题。

独立计算,集体订正。根据班上出现错题的情况,和学生一起讨论错误的原因,请学生订正错题。请学生注意:计算时要认真仔细。

3.解决问题。

请学生独立完成练习十六第3、4题。

完成后,请学生向全班说一说,解决问题的过程和结果。

4.游戏。

贴出写有算式的南瓜卡片。用语言描述菜园里收南瓜的情境,请同学们帮助菜农收南瓜。

让学生自由选择卡片,算对的就收获了这个南瓜。

完成后,先检查是不是算对了,再比一比哪组学生收获的南瓜多。奖励优胜组。

四、总结。

1.请学生讨论笔算乘法时要注意什么问题,并交流。

2.教师强调:用竖式计算时,每次乘得的数的末位应该和那一位对齐。还要注意记住进位数,正确处理进位问题。

分数乘法人教版教学设计篇七

教学目标:

1、通过练习巩固稍复杂的分数乘法实际问题的基本方法,明确解题思路。

2、通过变式题、开放题的训练,锻炼学生的思维,提高分析问题的能力。

3、在解决问题中,引导学生认真思考,培养合作精神和克服困难的勇气,激发热爱数学的情感。

教学重点:

一步计算的分数乘法问题和两步计算的分数乘加、乘减问题,用分数表示的数量关系的理解以及解答的方法。

教学难点:

理解分数表示的“分率”和“具体量”的区别。

教学过程:

一、创设情境,切入课题。

朗读诗歌。出示《春》的诗句:

春水春池满,春时春草生。春花绽春蕊,春雨伴春风。春鸟弄春色,春人忙春耕。

例如:“春”的字数占总字数的几分之几?

学生解答后交流解题思路。

小结:通过前面的学习,同学们已经初步掌握了分数解决问题的关键,要找准单位“1”,要理解分数的含义;这节课我们重点来进行有关分数解决问题训练。

二、基本练习,掌握方法。

题目要求:根据下列关键句,你都能想到什么(训练学生从以下四方面说)。

(1)梨子的数量是桔子的五分之二;

五分之二表示()与()的数量关系;

()表示“1”;()表示五分之二;

根据数量关系列示()×()=()。

(2)一袋米,还剩七分之三;(先补充完整“还剩谁的七分之三”)。

(3)火车速度比汽车快三分之一。

(4)实际烧煤比计划节约八分之三。

小结:我们在遇到含有分率的分数问题是要先确定单位“1”和分析数量关系;这是解决此类问题的关键。

三、分类练习。

(一)根据列式补充问题。

根据列式的含义,在每个算式的后面补充合适的问题。

小华看一本168页的故事书,已经看了七分之四,?

(二)补充条件进行题组的对比练习:

选择对应的列示填在括号里,并说出为什么。

某工厂四月份计划用煤135吨,(),实际用煤多少吨?

四、课堂检测:

分数乘法人教版教学设计篇八

班级姓名小组小组评价。

学习目标:

1、掌握分数乘分数的计算方法,并能运用计算方法熟练进行计算。

2、掌握分数乘分数的简便算法,掌握积与因数的关系,能灵活运用两者之间。

的关系进行正确判断。

3、激情投入,阳光战示,全力以赴,挑战自我。

重点:分数乘分数的简便算法。

难点:因数与积的关系。

使用说明与学法指导:

先由学生自学课本,经历自主探索总结的过程,并独立完成自主学习部分,通过独立思考及小组合作,能够结合具体情境理解分数乘分数的简便算法,掌握积与因数的关系,能灵活运用两者之间的关系进行正确判断。并独立完成导学案,然后学习小组讨论交流,让同学们进行展示,小组间互相点评,对于有疑问的题目教师点拨、拓展。

一、自主学习:

1、自学课本p11页。

2、计算:

3、填空:

1)、×6表示();

×表示();

2)、一根绳子长81米,剪去,还剩这根绳的,还剩()米,这里是把()看作单位“1”。

二、合作探究:

思考:你想到了几种计算方法,有什么技巧?

小结:分数乘分数的简便算法:

例2、比较大小。

思考;你发现了什么规律?

小结:当一个因数大于1时,积()另一个因数(0除外);

当一个因数小于1时,积()另一个因数(0除外);

当一个因数等于1时,积()另一个因数;

三、学以致用:

1、直接写出得。

2、

3、我能辩对错。(对的打“”,错的打“”)。

1)、一个数乘真分数,积小于这个数。()。

2)、几个假分数相乘的积大于1,几个真分数相乘的积小于1。()。

3)、x××x()。

4)、分数乘法的意义与整数乘法的意义相同。()。

5)、如果a×=b×,那么a大于b。()。

4、解决问题:

1)、一根电线第一次用去米,第二次用去的是第一次的,第二次用去多少米?

将本文的word文档下载到电脑,方便收藏和打印。

分数乘法人教版教学设计篇九

主备人:

从备人:

整体备课。

一、学情分析:

我们六(五)班有学生48人,男生有19人,女生有29人,自上学年实行小组合作学习以来,每个学生都有了明确的学习目标,在平时学习中主动、努力,每组中的1、2号对3、4号的帮扶起了很大的作用,使这部分学困生在思维方法和技能上有了进一步的提高,在数学情感上,能主动地参与到学习中来。

二、教材分析:

(一)教学内容。

本册内容共有8个单元。一单元分数乘法,二单元分数除法,三单元比,五单元分数四则混合运算,这四个单元所属领域是数与代数。四单元的圆所属领域是空间和图形。六单元的统计,七单元的可能性,八单元的百分数所属领域是统计与概率。美的奥秘,数学与生活,远离肥胖所属领域是综合应用。

(二)教学重难点。

教学重难点有:分数乘除法应用题,按比例分配应用题,如何求圆的周长和面积,化简比和求比值的区别和联系。

三、教学目标:

(一)知识与技能目标。

1.能结合具体情境理解分数乘除的意义,能解决有关分数的实际问题。

2理解比的意义和性质,会解决有关按比例分配的实际问题。

3结合具体情境,理解百分数的意义,能用百分数解决问题。

4掌握圆的周长和面积的计算方法,能够运用圆的周长和面积公式解。

决简单的实际问题。

5认识众数、中位数,会求一组数的众数和中位数,会对一组数据作出合理的分析推理。

6结合具体实例,设计一个符合要求的方案。

(二)数学思考目标。

让学生经历知识的形成过程,感受“转化”和“数形结合”的数学思想方法。

在观察、操作、思考、交流等活动中,

进步发展抽象概括推理的能力。

(三)情感态度目标。

1能积极参加数学学习活动,对数学有好奇心和求知欲,并获取成功的学习体验,增强学习数学的信心。

2体会数学与人类生活的密切联系,感受数学的严谨性和数学结论的。

确定性。

3学会倾听与质疑,养成独立思考的好习惯。

四、教学措施:

1整合学习内容,强化数学知识间的联系及学科间的融合。

2恰当确立每节课的教学内容,树立单元教学思想,在重点例题上下功夫。

3精心设计数学活动,让学生在探索中理解数学知识,掌握数学方法。

4注重数学思想方法的渗透和解决问题策略的方法。

在本册中结合教学内容渗透“极限”和“数形结合”的数学思想。

在教学中学生经历“现实问题--数学问题--联系已有知识经验寻找方法--归纳概括总结公式--运用公式解决现实问题”这一首尾相接的全过程。

5改进评估方法实行小组“捆绑式”评价方法和个人评价方法相结合的方式。评价形式也有生生互评、师生互评等多种形式。

五、课时安排。

一、分数乘法。

二、分数除法。

分数除法的计算方法,

解决已知一个数的几分。

之几是多少,求这个数的实际问题理解分数除法的意义,会计算,会解决实际问题。

三、比。

理解比的意义和性质理解比的意义,会求比值掌握比的基质,会化简比。

四、圆。

圆的周长和面积。

认识圆的特征,会正确计算圆的周长和面积。

五、分数四则混合运算。

分析稍复杂的有关分数分析问题和解决问题的能力。四则混合运算问题的数量关系及理解四则混合运算的顺序。

六、统计。

理解众数、中位数的意义,选择合适的统计量描述数据的特征。会求一组数的中位数、众数,会选择合适的统计量描述数据,分析问题。

七、可能性。

能按要求根据可能性大小设计方案。

能根据可能性大小设计符合要求的方案。

八、百分数。

百分数的意义,解决一个数是另一个百分之几。

的问题能进行百分小的互化,解决实际问题。

总复习。

整理知识点。

养成总结与反思的习惯。

第一单元:小手艺展示――分数乘法。

一、单元教材分析。

本单元是在学生掌握了整数乘法、分数的意义和性质、分数加减法以及约分等知识的基础上进行学习的,是学习分数除法、比、分数四则混合运算及百分数知识的重要基础。因此,教学时要注重从学生已有的认知基础和生活经验出发,引导学生在解决具体问题的情境中,理解一个数和分数相乘的意义,掌握一个数和分数相乘的计算方法,并能解决求一个数的几分之几是多少的实际问题,为后续学习打好基础。

本单元的主要学习内容有:整数和分数相乘;分数和分数相乘;分数连乘;“求一个数的几分之几是多少”的实际问题;倒数的意义和求一个数的倒数。本单元的教学重点和难点是理解一个数和分数相乘的意义和计算方法,教学难点是理解“求一个数的几分之几是多少为什么用乘法计算”。

二、教学目标。

1.在解决具体问题的过程中理解分数乘法的意义;掌握分数乘法的计算方法,能正确、熟练地进行计算;会解决“求一个数的几分之几是多少”的实际问题;理解倒数的意义,掌握求一个数倒数的方法。

2.经历分数乘法计算方法的探索过程,体会数形结合思想在解决数学问题中的应用,培养分析、比较和推理的能力。

3.在解决问题的过程中,感受分数乘法在现实中的应用,并获得成功的学习体验。

三、单元教学重难点及关键。

重点:一个数乘以分数的意义和计算法则。求一个数的几分之几是多少的应用题。

难点:理解分数乘以分数的算理。

关键:找准单位“1”的量。

四、教学设计思路、教学方法和措施。

1.借助直观图示理解一个数和分数相乘的意义和计算方法。

2.在教学中将计算与解决具体问题相结合,通过研究具体问题,帮助学生理解分数乘法意义和计算方法,培养学生解决实际问题的能力。

3.在教学中,充分利用教材中提供的情境,引导学生提出相应的数学问题,让学生在解决具体问题的过程中,通过自主探索与合作交流,逐步理解一个数乘分数的意义。

4.在教学中采取分组讨论,让学生充分自学,探索新知,结合学生预习效果确定教学的重难点。

五、单元教学准备。

教师准备:表示分数的圆形、直尺、彩笔等。

学生准备:表示分数的卡片,直尺等。

六、单元实践活动。

用图形表示一下分数乘以分数的意义。

七、课时划分。

分数乘整数2课时。

分数乘分数2课时。

解决“求一个数的几分之几是多少的应用题”2课时。

分数连乘2课时。

倒数1课时。

我学会了1课时。

考查1课时。

第一课时、飘逸的风筝--分数乘整数。

教学内容:教科书第2~5页例题及自主练习1、2、3题。

教学目标。

1.理解分数乘以整数的意义;掌握计算法则;正确计算分数乘以整数的算式题。

2.经历分数乘整数的计算方法的探索过程。

3.浸透事物是相互联系、相互转化的辩证唯物主义观点。

教学重点。

理解分数乘以整数的意义及计算方法。

教学难点。

分数乘以整数的计算法则的推导。

教学准备。

小黑板等。

预习提纲:

1、读一读:默读教材2--3页。

2.填一填:

6+6+……+6(a个)=()×()。

+++++=()×()==()。

3、想一想:分数乘整数的计算法则是什么:。

4、算一算:

×16是先约分计算简单还是分子先相乘呢?

教学过程:

一、提出问题预习展示。

1、交流预习情况。

2、你还有哪些问题需要解决?

3、创设情境,提出问题。

结合情境图,你能提出什么数学问题?

得出:做这个风筝尾巴,一共需要多少米布条?

解决这个问题可以列怎样的算式?随着学生的回答进行板书。

+++++。

二、研究问题指导点拨。

1、根据问题在小组内交流解决。

2、班内汇报。

3、师生交流。

教师:求6个相加的和还可以用乘法计算,你会列式吗?

学生回答,教师板书:×6或6×。

提问:这个算式中的6是什么数?式中的6是什么数?

教师:由此可以看出,分数乘整数的意义与整数乘法的意义是相同的,都是求几个相同加数的和的简便运算。

4、分数乘整数的计算法则是什么?

a、下面请同学们以小组为单位讨论应该怎么解决。

b、哪个小组愿意展示一下。

现在我们来看分数乘整数怎样计算。我们先来研究×3,×3=怎么算呢?请大家尝试解决。指名板演典型算法:

×6==。

×6=+++++==3(米)。

……。

交流:第二种按照加法计算,不简便,重点体会第二种和加法有着联系:×6=+++++=====3(米)(教师板书),符合加法计算结果,是正确的,也是简便的。同时借助直观图观察验证。

c、谁能试着总结一下分数乘整数的计算方法:分母不变,分子和整数相乘,所得积做分子。能约分的要先约分。

三、类化练习限时作业。

1、练习:先判断可不可以约分?怎样约分?在计算。

总结注意事项:能约分的先约分再乘。

2、限时作业。

a、第3页的1、2题。

b、计算10××9。

四、作业:课本第4页自主练习第3题。

课后反思:

通过观察、操作、比较等多个不同层次的论证,使分数乘分数的计算方法在学生头脑中逐渐明晰。学生通过两个例题的比较自然的归纳出分数乘分数的计算方法。做好图示是教学的关键。

第二课时:分数乘以整数(练习课)。

一、教学内容:教材4--5页,自主练习题。

二、教学目标:

正确掌握分数乘整数的计算方法,能解决一些实际问题。

三、教学过程:

自主练习第1、2题是关于分数乘整数意义的基本练习,让学生根据图示来填写算式的同时进一步理解分数乘整数的意义。

第3题是整数乘分数的基本练习。练习时,可让学生独立完成,再在小组内交流订正。教师注意引导学生仔细检查计算结果是否是最简分数。

第4、5、6题是运用分数和整数相乘的知识解决实际问题的题目。教学时,要让学生自主进行,重点放在探究列式的理由和计算的方法上。

第8题是求正方形周长的题目。练习时,可让学生先回顾一下正方形周长的计算方法,然后列式计算。

第10题是直接写得数的题目。练习时,可让学生先约分,然后进行口算,这样速度比较快一些。需要注意的是,教师在设计这样的题目时,数不宜过大,要求不宜过高。

第11题有两个问题,第一个问题在列出算式后,引导学生利用分数与除法的关系求出每天看这本书的几分之几,注意约成最简分数。第二个问题在第一问题的基础上,算出4天看了几分之几。

第13题是一道综合性比较强的题目。第(1)小题要注意一周按七天计算。第(2)小题是部分占整体的几分之几,要利用分数与除法的关系进行解决。第(3)小题引导学生理解,要求这件作品一共用了多少千克萝卜,就是求50个是多少。

四、作业:自主练习第五页11、12、13题。

五、教学反思。

基本练习是每节练习课最重要的一环,通过不同形式的基本练习,学生可以查漏补缺,解决疑难,使学生不理解的部分得以理解,使基本理解的变为理解清晰。教师应针对学生的实际与教学的重点、难点重组教材,让更多的学生参与到教学过程中,追求实效,精讲多练,激发学生的兴趣,发展学生的思维。综合练习设计力求“趣”、“实”、“活”,有层次、有坡度,逐步深化。既巩固和加深了对知识的理解,学会了运用,同时也发展了学生的思维,把课堂的知识和生活紧密结合,达到了巩固知识、培养技能、激发兴趣、发展思维的目的。

第三课时:一个数乘分数(1)。

教学内容:教材6--7页。

教学目标:

1、理解一个数乘分数的意义,探索分数乘分数的计算方法。

2、培养学生初步分析、推理能力。

3、经历一个数乘分数的意义和计算方法的探索过程,渗透数形结合思想,获得成功的学习体验。

教学重点:理解一个数乘分数的意义。

教学难点:理解一个数乘分数的意义。

教学准备:长条纸、彩笔、尺子。

预习提纲:

1、读一读:读教材6-7页内容。

2、画一画:

×

3、想一想:

分数乘分数的计算方法是:。

4、算一算:

教学过程:

一、提出问题预习展示。

1、通过预习知道了什么?在小组内交流讨论。

2、班内交流预习情况。

3、你还有哪些问题未解决?师提取适当的板书。

4、创设情境,提出问题:

同学们,在生活中,你们一定有自己擅长的小手艺吧?王芳同学呀,就是她所在班里的手工编织能手,她每小时能织围巾1/4米。

板书:每小时1/4米)。

根据这个信息,你能提出什么数学问题?

(估计生会先提如2小时织多少米?3小时织多少米之类问题,师要及时引导:如果织的时间不够一小时呢?生因此有可能提出如1/2小时织多少米?2/3小时织多少米等等,师根据生的提问适当选取,有序板书书问题)。

二、研究问题指导点拨。

1、研究一个数乘整数的意义。

1、咱们先来看第一个问题:2小时可以织多少米?怎样列式?

为什么这么列?

(生可能说:每小时织的乘以几小时就等于一共织的米数,也可能说工作效率乘工作时间等于工作总量,都可以。)。

2、那么你能说说1/4×2这个算式表示什么意思吗?

(抽生回答)。

3、那如果是1/4×5呢?1/4×10呢?

你再举个例子?

4、小结:也就是说,一个数乘整数,我们可以说是----?(求这个数的几倍是多少)。

2、:研究一个数乘分数的意义。

1、咱们再来看第二、三个问题:

2、想一想,该怎样列式??(1/4×1/21/4×2/3)。

3、根据是什么?

4、这两个算式表示什么意思呢?

许多同学感到很困惑,来,咱们先来动手折一折,画一画,每个人手里都有两张长条纸,请你试着用它们先表示出前一个算式的意思,你也可以用画线段图啊等等其他方法来表示。

5、谁来交流一下你的想法?

(如果大部分同学有困难,可以请一个做的比较好的同学到前面交流,给大家一些启发,然后再同桌互相折一折,说一说。)。

(师选择有代表性的折纸方法或线段图画法贴在黑板上)。

7、生动手做并交流。

8、(师也选择有代表性的折纸方法或线段图画法贴在黑板上)。

9、根据刚才的交流,谁来总结一下1/4×1/21/4×2/3分别表示什么意思?

那如果是1/4×2/5呢?

你能再举个例子吗?

10、咱们来总结一下一个数乘分数的意义?

(就是求这个数的几分之几是多少?)。

3、研究一个数乘分数的计算方法。

1、我们明白了这两个算式表示的意思,那你知道它们的得数吗?

2、你是怎么知道的?

能验证你的想法吗?同桌交流一下。

3、你能说说不看图的时候如何计算吗?

4、应用刚才的发现,你能计算一下1/4×8/15,7/9×3/14吗?

(抽生板演,分析两种做法,提醒同学们计算时可以先约分再计算。)。

4、归纳概括建立模型。

a、分数乘分数的意义?

b、分数乘分数的计算法则?

三、类化练习限时作业。

1、图示下列算式的意义:

4/5×1/2=1/3×2/5=。

2、计算:

4/7×5/68/9×3/48/21×7/162/9×3/5。

3、解决问题。

完成第8页4(1)(2)。

四、作业:课本第8页第3题。

五、教学反思。

通过观察、操作、比较等多个不同层次的论证,使分数乘分数的计算方法在学生头脑中逐渐明晰。学生通过两个例题的比较自然的归纳出分数乘分数的计算方法。做好图示是教学的关键。

分数乘法人教版教学设计篇十

(至2011上学期)。

六年级数学学科教师:高春枝。

学习。

内容分数混合运算。

学习。

标1、通过观察、分析、使学生掌握分数四则混合运算的运算顺序,能应用计算法则较熟练地进行计算。

2、通过练习,培养学生的计算能力及初步的逻辑思维能力。

3、通过观察、类推,使学生进一步理解整数四则混合运算的运算定律在分数四则运算中同样适用,并能应用运算定律及有关性质进行简便运算。

4、通过练习,培养学生观察、类推的思维能力和灵活计算的能力。

重难。

点及。

突破。

措施教学重点:确定运算顺序再进行计算。

教学难点:明确混合运算的顺序。

课前。

准备。

导学案设计个性化设计。

案1、复习整数混合运算的运算顺序。

(1)在一个没有小括号的算式里,只有乘除法或加减法,应该从左往右依次计算;如果既有加减法又有乘除法,应该先算乘除法,后算加减法。

(2)在一个有小括号的算式里,应该先算小括号里面的,后算小括号外面的。

(3)在一个既有小括号又有中括号的算式里,应该先算小括号里面的,后算中括号里面的,最后算中括号外面的。

2、说出下面各题的运算顺序。

(1)428+63÷9―17×5。

(2)1.8+1.5÷4―3×0.4。

(3)3.2÷[(1.6+0.7)×2.5]。

(4)[7+(5.78-3.12)]×(41.2―39)。

流1、学习例4。

(1)读题,明确已知条件及问题,在小组内尝试说说自己的解题思路。

(2)根据每个同学的回答,小组合作归纳出两种思路:

a、可以从条件出发思考,根据彩带长8m,每朵花用m彩带,可以先算出一共做了多少朵花。

b、从问题入手想:要求小红还剩几多花,根据题意,应先求小红一共做了几朵花。

(3)独立列出综合算式后,先说说运算顺序,再进行计算。

2、巩固练习:p34“做一做”

(1)独立完成第一题,然后全班校对。引导学生比较计算分数连除或连乘除的两种算法,通过比较,使学生发现统一约分后再计算比分步计算简便。

(2)学生读题理解题意,指名说说解题思路,再让学生独立列式计算。

三、练习。

1、练习九第1、2、3、4题。

展作业:练习九第5--9题。

审核人:

分数乘法人教版教学设计篇十一

2、能解决简单的分数乘整数的实际问题,体会数学与生活的密切联系。

1、分数和分数相乘的意义和计算法则。

2、求一个数的几分之几是多少的应用题。

一、创设情境激趣揭题。

1、出示课本上的对话请境框。

2、整理、归纳问题,并出示完整的题目。

3、顺势导入新课,板书课题:分数乘法(二)。

二、扶放结合探究新知。

1、巡视、指导小组讨论学习。

2、提问:怎样用算是表示6个1/2?

3、6×1/2这个乘法算式的意义是什么?

4、归纳小结分数乘法(二)的算式意义:求一个数的几分之几是多少?

5、6×1/3如何计算呢?

6、总结计算方法。

三、反馈矫正落实双基。

1、出示教材第5题试一试第1、2题。

2、组织学生做第6页练一练1—3题。

四、小结评价布置预习。

引导学生进行课堂小结。

分数乘法人教版教学设计篇十二

1、结合具体情境,进一步探索和理解分数乘整数的意义,并能够熟练准确的计算。

2、能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的`能力。

3、使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。

理解整数乘以分数的意义,并能证确计算。

运用所学的知识解决分数乘法的实际问题。

1、2/3×2表示的意思是()。

2、计算分数乘整数时,用分数的()和整数相乘的积作(),分母()。

3、请学生计算下列分数乘法运算题。

1/8×3。

3/10×4。

7/24×12。

1、教师让学生思考这个题,并对学生进行提问。

3、教师提问学生说一说自己是怎样计算的?

4、学生自己动手填完课本例题上的方格。

5、怎样表示笑笑的苹果数?

6、教师板书(笑笑:6×1/3=2)。

7、总结分数乘法的意义就是求一个数的几分之几是多少。

8怎么计算呢?6×1/2=6×1/2=36×1/3=6×1/3=2教师和学生对比这两个题目的区别和联系。学生初步理解整数乘以分数的计算方法。

1、计算8×3/10。

4×3/10。

24×3/8。

2、做课本5页试一试1题,36的1/4和1/6分别是多少?

注意让学生体验求一个整数的几分之几是多少的数学意义。

3、试一试2,学生说说:“打折”的意思?八折、九折分别表示什么意思?学生计算。

同学们,这一节课你学到了哪些知识?(提问学生回答)。

整数乘以分数的意义:就是求整数的几分之几是多少?

整数乘以分数的计算方法:用整数与分子相乘的积作分子,分母不变。能约分的要先约分。

本节课有以下优点:

1、针对教材提供的情境,引导学生理解整数乘以分数的意义通过课堂活动使学生认识到分数乘法就在我们的生活中,学生对分数乘法的意义有了更深的理解。

2、抓住了图形语言的直观性,借助图形理解整数乘以分数的意义,是自己的小课题研究落到了实处。

分数乘法人教版教学设计篇十三

教学目标:

1.分数乘以整数的意义,掌握计算法则,正确计算分数乘以整数的算式题。

2.渗透事物是相互联系、相互转化的辩证唯物主义观点。教学重点:

教学难点:

分数乘以整数的计算法则的推导。

教具准备:

多媒体课件。

教学过程:

一:复习。

1.口算:

问:怎样计算?(分母不变分子相加)。

2.根据题意列出算式:

(1)5个12是多少?

(2)3个14是多少?

列式:

(1)12+12+12+12或12×5。

(2)14+14+14或14×3。

题中的两个式子哪个简便?(12×5,14×3)。

它们各表示什么意思呢?(5个12是多少?3个14是多少?)能用一句话概括这两个乘法算式的意义吗?(就是求几个相同加数和的简便运算。)。

这是整数乘法的意义,它对于分数乘法适用吗?

二:讲授新课。

1.出示课题明确学习目标。

2.出示自学题纲,让学生自学课本。

(1)分数乘以整数的意义是什么?与整数乘法的意义相同吗?

(2)分数乘以整数的计算方法是怎样的?它是怎样推导出来的?

(3)分数乘以整数的意义。

例1小新和爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共。

吃多少块?

(1)读题,找已知条件和问题。(第人吃块,3人一共吃多少块?)。

(2)分析,问:块是什么意思?(把一块蛋糕平均分成9分,

取其中2份。)。

听回答,老师边重复边电脑演示(三层复式演示)。

把一块蛋糕(出示一个圆)平均分成9份(覆盖平均分的9。

份),取其中2份(覆盖2份是红色的)。平均分成9份取其2份。

师:(结合图)说:“那块”是多大?(边说边演示)。

师:每人吃一块(出示一块),3人一共吃了多少块?(再翻出两个块的投影。)。

问:3个块是多少呢?(边说边翻投影)。

平均分9份,取6份。

(3)根据图意列出算式。

问:这个加法算式有什么特点?(三个加数相同。)。

问:还可以怎么列式?(×3)。

问:为什么?(三个加数相同)。

问:这个算式你们学过吗?它是什么数乘以什么数?(分数乘以整数。)。

×3的意义。(讨论)。

(分数乘以整数的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。×3就是求3个是多少。)。

(1)推导法则。

我们了解了分数乘以整数的意义,你想知道怎样计算吗?

a.导出计算方法。

你会计算吗?看哪些同学不用老师讲解就能依据转化思想把分数乘以整数这个新知识转为已经学过的旧知识来进行计算。(可以互相说互相看。)。

如果学生写出这个步骤时,老师继续追问。

问:这道只是3个可以这样写,如果是100个或更多个,那该怎么办呢?

引导学生讨论得出:

又可以转化成什么式子呢?因为分子2+2+2=2×3,分母9=9,所以,可以转化成。

只是为了说明算理,计算时省略不写。(边说边加上虚线框。

b.归纳法则。

通过以上几个式题的计算,想一想分数乘以整数怎样计算呢?师:比一比,看哪个组的同学总结的语言准确又简练。小组讨论,总结出法则。

分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。(板书)。

c.应用法则计算。

计算(做本上,投影反馈)。

(约分数位对齐)。

讨论,这两种方法哪种简单?为什么?

强调:能约分,要先约分;结果是假分数一定要化成整数或带分数。

(三)巩固练习。

投影出示练习题。

(四)回顾整理:

教师引导学生回顾本届所学的内容。

(五)布置作业。

自主练习的题目。

教学目的:

使学生理解分数乘以整数的`意义,在理解算理的基础上掌握分数乘以整数的计算法则,并能正确运用“先约分再相乘”的方法进行计算。

教学重点:

让学生理解算理,掌握计算法则。

教学过程。

一、复习。

1.5个12是多少?

用加法算:12+12+12+12+12。

用乘法算:12×5。

问:12×5算式的意义是什么?被乘数和乘数各表示什么?

2.计算:

问:这两个算式有什么特点?应该怎样计算?

教师总结:整数乘法的意义,就是求几个相同加数的和的简便运算。被乘数表示相同的加数,乘数表示相同的加数的个数。同分母分数加法计算法则是分子相加作分子,分母不变。通过将算式:改写成乘法算式,引出课题。

二、情境引入新课。

1.教师出示例题图示:

例题:人跑一步的距离相当于代数跳一下的。人跑三步的距离是代数跳一下的几分之几?

(1)首先让学生分析题意,试着描述场景图。

师:我们用线段帮助我们理解:画一条线段,表示袋鼠跳一下的距离。“人跑一步的距离相当于袋鼠跳一下的”,就要把袋鼠跳一下的距离即这一条线段看作单位“1”,把这条线段平均分成11份,其中的2份就表示人跑一步的距离。求“人跑3步的距离相当于袋鼠跳一下的几分之几?”就是求3个是多少?(教师在学生讨论的基础上将线段图逐步表示完整。)。

(3)如何解决这个问题?

学生独立思考,开展讨论与交流。(基础好的学生可以提出加法和乘法两种解决方法)教师引导学生思考与讨论如何计算。因为分数加法的计算学生已经掌握,重点讨论×3如何计算。

引导学生列出乘法算式。得出分数乘整数的计算方法:分母不变,分子与整数相乘的积作分子。

强调:分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数和的简便运算。

(4)让学生自主总结归纳出分数乘整数的计算方法,并用比较简洁的语言表达出来。

2、延伸强化。

教师出示例题2:,让学生先计算,再讨论。

问题:乘得的积是不是最简分数?应该怎么办?你是怎样约分的?有没有不同的方法?

教师总结:通过不同约分方法的比较,我们知道先约分再计算的方法比较简便。

1.读题,说说块是什么意思?

2.根据已有的知识经验,自己列式计算。

三、交流、质疑。

(一)学生汇报,并说一说你是怎样想的?

方法1:++===(块)。

方法2:×3=++====(块)。

(二)比较这两种方法,有什么联系和区别?

联系:两种方法的结果是一样的.。

区别:一种方法是加法,另一种方法是乘法.。

教师板书:++=×3。

(三)为什么可以用乘法计算?

加法表示3个相加,因为加数相同,写成乘法更简便.。

(四)×3表示什么?怎样计算?

表示3个的和是多少?

++====,用分子2乘3的积做分子,分母不变.。

(五)提示:为计算方便,能约分的要先约分,然后再乘.。

四、归纳、概括:

(一)结合=×3=和++=×3=,说一说一个分数乘整数表示什么?

求几个相同加数的和的简便运算.。

用分子和分母相乘的积做分子,分母不变。

五、巩固、发展。

(一)巩固意义。

1.改写算式。

+++=×()。

+++++++=()×()。

2.只列式不计算:3个是多少?5个是多少?

(二)巩固法则。

1.计算(说一说怎样算)。

×4×6×21×4×8。

思考:为什么先约分再相乘比较简便?

2.应用题。

(三)对比练习。

1.一条路,每天修千米,4天修多少千米?

2.一条路,每天修全路的,4天修全路的几分之几?

六、课后作业。

(一)的3倍是多少?的10倍是多少?

(二)一个正方形的边长是米,它的周长是多少米?

(三)一种大豆每千克约含油千克,100千克大豆约含油多少千克?1吨大豆呢?

七、板书设计。

分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.。

例1.小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?

用加法算:xx+xxx(块)。

用乘法算:x×3=++xxx(块)。

答:3人一共吃了块.。

分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算.。

分数乘法人教版教学设计篇十四

教学目的:

1、使学生掌握分数乘以整数的意义、算理和法则。

2、培养学生的知识迁移能力。

教学重点:学生对计算法则的掌握,以及在计算中能约分的要约分。

教学难点:学生对算理掌握。

教学过程:

一、引探准备:

1、4个7连加是多少?怎样计算?

2、还可以怎样计算也得28呢?

3、如何列式?为什么这样列式?

4、学生小结整数乘法的意义。

二、引探过程:

1、今天我们一起研究分数乘法中分数乘以整数这部分知识。

2、出示例1:一个修路队每天修路3/10千米。3天修多少千米?

3、学生读题,分析。

5、学生小结:分数乘法的意义(分×整)是什么?(相同加数和的简便运算)。

6、3/10×3如何计算?(学生讨论)3/10×3=3/10+3/10+3/10=3+3+3/10=3×3/10=9/10(千米)。

7、问:3×3/10是怎么来的?

8、谁能说说分数乘以整数是怎么算的?

9、小结法则:分数乘以整数,用分数的分子和整数相乘的积做分子,分母不变。

10、练习:说出3/17×5和4/15×6的意义并计算。

11、指书比较4/15×6还有更简便的方法吗?

12、小结:分数乘以整数时怎么算简便?

三、引探总结:

3/18×62/5×153/7×6。

四、引探实践:

你认为今天那些知识最让你感兴趣?

将本文的word文档下载到电脑,方便收藏和打印。

分数乘法人教版教学设计篇十五

《分数乘分数》对于学生而言是新的内容,它的计算方法与整数、小数的计算方法有很大区别,记住分数乘法的计算法则并不困难,但让学生理解分数乘法的算理,尤其是分数乘分数的算理,是本节课教学的难点。

《标准》指出,有效的学习活动不能单纯地依赖模仿与记忆。教学中要改变以往以例题、示范、讲解为主的教学方式,改变以记忆法则,机械训练为主的学习方式,引导学生投入到探索与交流的学习活动之中。

学习这节课前,我先让学生自学,让他们试着去解决课本上的几个问题:

课上让学生交流探索的结果。我发现大部分学生能在前一问的基础上可以类推出分数乘分数的方法。

有的学生采用了折纸的方法,一步步的给大家讲解,效果也不错。

学生讲解的头头是道,说实话,这节课给了我很大的震撼,千万不要低估学生的能力,该放手时一定要放手让学生去做,很多时候他们会给你意想不到的惊喜!

整节课的大部分时间都是安排学生的探究、讨论活动,让学生在讨论研究中提出猜想,最后在举例中检验猜想后达成共识,得到分数乘分数的计算法则,理解算理,由于学生的探究花了大量时间,最后只是对法则进行了总结,从时间的分配上来说,后面的巩固练习时间很少,学生对分数乘分数到底掌握到什么情况心中没数。这让我想到,我们在课堂上无论事先设计的多么完善,都要根据学生的实际情况,跟着学生的思路走,而不能死套教案,一定要灵活处理。

遗憾的地方:能讲解的学生毕竟是少数,大部分的孩子是听会的,个别学生对算理仍然不能很好的理解,对后续学习会有一定影响,对这部分学生要多帮助、多鼓励,树立他们的信心!

将本文的word文档下载到电脑,方便收藏和打印。

分数乘法人教版教学设计篇十六

第一课时:小数乘整数(1)。

教学内容:p55页例1及“试一试”、“练一练”;练习十第1—4题。

教学目标:

1、在具体情境中探索并初步掌握小数乘整数的计算方法,会用竖式进行计算。

2、能在探索计算方法的过程中,进一步体会数学知识之间的内在联系,培养初步的抽象、概括以及合情推理能力,感受数学探索活动的乐趣。

教学重点:探究并学会小数乘整数的计算。

教学难点:探究并学会小数乘整数的计算。

教学准备:课件、展台。

教学过程:

一、引入新课。

1、谈话:在炎热的夏天,你喜欢吃西瓜吗?随着农业生产技术的不断进步,现在的人们不仅能在夏天吃到西瓜,在寒冷的冬天也能吃到西瓜。

2、出示例题的场景图,提问:从图中你能知道什么?

3、引导:根据图中的信息,要求“夏天买3千克西瓜要多少元”这个问题,你会列式吗?“0.8×3”是求几个0.8相加的和?这个乘法算式和我们以前学习的乘法算式有什么不同?(有一个因数是小数)板书课题:小数乘整数。

二、探索计算方法。

1、启发:你能用以前学过的知识算出“0.8×3”的得数吗?先想一想,再算一算。学生各自思考、计算,师巡视,了解学生用什么方法。

2、交流:谁先来说说,你是怎样计算的?算出的结果是多少?

学生回答后继续提问:谁用不同的计算方法?

3、指出:“0.8×3”也可以用乘法竖式计算.

讨论:看着竖式,说说用竖式计算“0.8×3”的过程?

比较:0.8是几位小数?2.4呢?

4、提出要求:冬天买3千克西瓜要多少元?先列加法。

竖式计算,再列乘法竖式计算。

5、交流:列出的加法计算式是求几个2.35相加的和?

列出的乘法算式呢?谁来说说用乘法竖式计算的过程?

2.35是几位小数?2.35×3的积是几位小数?

6、猜想:如果用一个三位小数乘3,积会是几位小数?如果用一个四位小数乘3呢?

三、教学“试一试”归纳计算方法。

1、出示4.76×12,2.8×53,103×0.25,。

3、小结:计算小数乘整数时,先按整数乘法计算,再看因数里有几位小数,就从积的右边起数出几位,并点上小数点。

四、指导练习。

1、完成练一练第1题。(集体交流、订正)。

提问:四道题中,有哪些题目的计算结果需要化简的?

2、指导完成练一练第2题。先在书上填一填,指名交流。

3、要求学生在课本上完成练习十第1题。

4、完成练习十第2题(板演,其他学生在作业本上完成)。

5、完成练习十第3题。

6、完成练习十第4题。

学生列式计算后,组织交流。

六、全课小结:你认为计算小数乘整数时要注意什么?

第二课时:小数点向右移动引起小数大小变化的规律。

教学内容:p56—57例2、3及相应的“试一试”“练一练”,练习十第5—8题。

教学目标:

1、使学生理解并掌握由小数点向右移动引起小数大小的变化规律;能应用规律正确口算一个数乘10、100、1000……的积。

2、培养学生初步的观察、比较、归纳、概括的能力。

教学重点:能应用规律正确口算一个数乘10、100、1000……的积。

教学难点:小数点向右移动引起小数大小变化的规律。

教学准备:课件、展台。

教学过程。

一、复习引新。

1、口算。5×1050×105×10050×100。

2、比较每组两个小数的大小。4.53○45.30.7○0.07。

3、导入新课:比较一下,刚才每组的两个小数有什么相同的地方?有什么不同的地方?

为什么每组里的数字相同,数字排列顺序也相同,而组成的数的大小却不同呢?

揭示课题:小数点移动引起小数大小变化的规律。

二、探究新知。

1、教学例2。

(1)出示例2:5.04乘10、100、1000各是多少?

学生用计算器计算。

(2)指名说说计算结果,并板书。

(3)引导观察比较:50.4和50.4比,小数点向什么方向移动了几位?

504和5.04比,小数点向什么方向移动了几位?

(4)验证:以小组为单位,每组任意找一个小数,分别把它乘10、100、100,看看小数点位置的变化情况于我们猜想得是否一样。

【本文地址:http://www.xuefen.com.cn/zuowen/14552353.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档