教案能够帮助教师理清教学思路,明确教学目标。教案的编写需要注重教学资源的合理利用,提高学生的学习成果。不同科目和不同年级的教案会有不同的特点和要求,你可以根据实际需求进行选择。
九年级数学全章教案篇一
cl-(在溶液中)———在被测溶液中加入硝酸银溶液,如果生成不溶于硝酸的白色沉淀,则原被测液中含氯离子。
so42-(在溶液中)———在被测溶液中加入氯化钡(或硝酸钡、或氢氧化钡)溶液,如果生成不溶于硝酸(或盐酸)的白色沉淀,则原被测液中含硫酸根离子。
co32-。
(1)(固体或溶液)———在被测物质中加入稀酸溶液,如果产生能使澄清石灰水变浑浊的气体,则原被测物质中含碳酸根离子。
(2)(在溶液中)———在被测溶液中加入氯化钡或硝酸银溶液,如果产生能溶于硝酸的白色沉淀,且同时生成能使澄清的石灰水变浑浊的气体,则原被测溶液中含碳酸根离子。
注:
1、在鉴别cl-和so42-时,用氯化钡溶液,不要用硝酸银溶液,这是因为硫酸银为微溶性物质,使鉴别现象不明显。
2、在一未知溶液中加入氯化钡溶液,若产生不溶于硝酸的白色沉淀,则原被测液中可能含银离子也可能含硫酸根离子。
酸、碱、盐的特性。
1、浓盐酸———有挥发性、有刺激性气味、在空气中能形成酸雾。
2、浓硝酸———有挥发性、有刺激性气味、在空气中能形成酸雾,有强氧化性。
3、浓硫酸———无挥发性。粘稠的油状液体。有很强的吸水性和脱水性,溶水时能放出大量的热。有强氧化性。
4、氢氧化钙———白色粉末、微溶于水。
5、氢氧化钠———白色固体、易潮解,溶水时放大量热。能与空气中的二氧化碳反应而变质。
6、硫酸铜———白色粉末、溶于水后得蓝色溶液(从该溶液中析出的蓝色晶体为五水合硫酸铜cuso4.5h2o)。
7、碳酸钠———白色粉末,水溶液为碱性溶液(从溶液中析出的白色晶体为碳酸钠晶体na2co3.10h2o)。
8、氨水(nh3.h2o)———属于碱的溶液。
九年级数学全章教案篇二
乒乓球的标准直径为40mm,质检部门从a、b两厂生产的乒乓球中各抽取了10只,对这些乒乓球的直径了进行检测。结果如下(单位:mm):
b厂:39.8,40.2,39.8,40.2,39.9,40.1,39.8,40.2,39.8,40.2.
你认为哪厂生产的乒乓球的直径与标准的误差更小呢?
(1)请你算一算它们的平均数和极差。
(2)是否由此就断定两厂生产的乒乓球直径同样标准?
今天我们一起来探索这个问题。
探索活动。
算一算。
把所有差相加,把所有差取绝对值相加,把这些差的平方相加。
想一想。
你认为哪种方法更能明显反映数据的波动情况?
九年级数学全章教案篇三
2.?难点关键:由实际问题列出的一元二次方程解出根后还要考虑这些根是否确定是实际问题的根.
教学过程。
一、复习引入。
学生活动:请同学独立完成下列问题.
2
问题1.前面有关“执竿进屋”的问题中,我们列得方程x-8x+20=0。
列表:
问题2列表:
3
22。
果抛开实际问题,问题2中还有x=-11的解.
一元二次方程的解也叫做一元二次方程的根.
2
回过头来看:x-8x+20=0有两个根,一个是2,另一个是10,都满足题意;但是,问题2中的x=-11的根不满足题意.因此,由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些根是否确实是实际问题的解.
2
例1.下面哪些数是方程2x+10x+12=0的根?-4,-3,-2,-1,0,1,2,3,4.
分析:要判定一个数是否是方程的根,只要把其代入等式,使等式两边相等即可.
2
解:将上面的这些数代入后,只有-2和-3满足方程的等式,所以x=-2或x=-3是一元二次方程2x+10x+12=0的两根.
2
22。
练习:关于x的一元二次方程(a-1)x+x+a-1=0的一个根为0,则求a的值。
点拨:如果一个数是方程的根,那么把该数代入方程,一定能使左右两边相等,这种解决问题的思维方法经常用到,同学们要深刻理解.
例3.你能用以前所学的知识求出下列方程的根吗?
222。
(1)x-64=0(2)3x-6=0(3)x-3x=0。
三、巩固练习。
教材思考题练习1、2.
四、归纳小结(学生归纳,老师点评)本节课应掌握:
(1)一元二次方程根的概念;。
(2)要会判断一个数是否是一元二次方程的根;。
1.教材复习巩固3、4综合运用5、6、7拓广探索8、9.2.选用课时作业设计.
九年级数学全章教案篇四
知识目标。
1.了解莱蒙托夫、休斯的经历及其创作。
2.领略诗歌深厚的文化底蕴。
能力目标。
1.理解诗中的艺术形象,感受诗人的爱国思乡情怀。
2.品味诗歌语言,展开丰富的联想和想象,体会诗歌的内涵。
3.体会诗歌或平实中见真情,或深邃中显自豪的特点。
德育目标。
培养学生爱国情感和健康高尚的审美情操。
教学重点、教学难点。
1.了解诗歌的深厚文化背景。
2.理解诗中的艺术形象及诗人由此抒发的思想情感。
3.由于民族文化背景不同,准确地把握诗人的意念和情绪并深入诗中的意境。
课时安排2课时。
教学过程。
第1课时。
一、创设情境,导入新课。
1.密哈依尔·莱蒙托夫(1814~1841)十九世纪俄国继普希金之后的伟大诗人。十四岁开始写诗,1837年他为普希金因决斗而死写的《诗人之死》一诗名震文坛。由于反抗专制统治,因此屡遭流放和入狱,最后死于预谋的决斗,年仅二十七岁。
莱蒙托夫在短短十三年的创作生涯里,一共写下了四百多首抒情诗,名篇有《帆》《浮云》《祖国》,长诗二十余部,以《恶魔》《童僧》为代表,还有剧本《假面舞会》和杰出的长篇小说《当代英雄》等。
2.休斯(1902~1967)美国黑人诗人、小说家,美国黑人文艺复兴运动的,被誉为“黑人桂冠诗人”。
二、出示自学指导,学生根据自学指导自学课文。
1.教师范读全诗。
2.利用书上注释读懂诗歌,学生自由诵读。
3.学生诵读全诗。
4.思考、合作探讨。
三、讨论交流,针对重点难点,教师适当讲解。
1.教师范读全诗。学生听读课文录音,揣摩诗歌内在旋律。
教师提示:诗句“我爱祖国,但用的是奇异的爱情”是解读诗意的关键。诗人把对祖国的感情比喻为“爱情”,统摄全诗。
诗人没有用豪言壮语去盛赞祖国的光荣历史、英雄业绩,也没有去歌颂名山大川,无尽宝藏,而是以平实的笔调描写俄罗斯原野的景色和农家生活。平实中见真情,奇异的“爱情”表现在诗人把自己对祖国的爱和对俄罗斯大自然、对普通百姓的爱糅合,化为一体;即对俄罗斯山河景物和淳朴乐观的人民的热爱。
3.学生诵读全诗。多媒体演示俄罗斯风情图片,学生直观感受山川之美。以俄罗斯抒情名曲《卡秋莎》为伴奏音乐,师生有感情诵读全诗。
4.回答思考、合作探讨中的两个问题。
(1)诗人对俄罗斯山河风景和人民生活热烈讴歌。冷漠沉静的草原,随风晃动的森林,奔腾的激流,村间的小路,苍黄的田野,闪光的白桦,苍茫的夜色,颤抖的灯光,远近相映、声色兼备,把俄罗斯山河的雄壮之美和秀丽之美交织在一起,构成一幅绚丽变幻而朦胧流动的画面。打谷场丘堆满丰收的谷物,农家茅舍覆盖着稻草,小窗上的浮雕窗板,更有节日夜晚,农人醉酒笑谈、尽情舞蹈的场面,恰似一幅绝妙的民俗图,洋溢着俄罗斯的生活气息。
(2)诗歌在对原野景色和农家生活的描述中,隐含着诗人对祖国的真挚感情,即“真实地、神圣地、理智地理解对祖国的爱”(比勃罗留波夫语),这种爱是真实的,也是最本色的。
5.学生熟读全诗。
九年级数学全章教案篇五
1、通过复习,加强统计观念的培养。
2、使学生能对数据进行简单分析,根据分析结果作出简单的判断与预测。
3、进一步理解平均数的意义,会求简单数据的平均数。
4、进一步体会小数的含义,掌握小数的读写法,并能进行简单的小数加、减法运算。
九年级数学全章教案篇六
1、理解“配方”是一种常用的数学方法,在用配方法将一元二次方程变形的过程中,让学生进一步体会化归的思想方法。
2、会用配方法解二次项系数为1的一元二次方程。
重点难点。
重点:会用配方法解二次项系数为1的一元二次方程。
难点:用配方法将一元二次方程变形成可用因式分解法或直接开平方法解的方程。
教学过程。
(一)复习引入。
1、a2±2ab+b2=?
2、用两种方法解方程(x+3)2-5=0。
如何解方程x2+6x+4=0呢?
(二)创设情境。
如何解方程x2+6x+4=0呢?
(三)探究新知。
1、利用“复习引入”中的内容引导学生思考,得知:反过来把方程x2+6x+4=0化成(x+3)2-5=0的形式,就可用前面所学的因式分解法或直接开平方法解。
2、怎样把方程x2+6x+4=0化成(x+3)2-5=0的形式呢?让学生完成课本p.10的“做一做”并引导学生归纳:当二次项系数为“1”时,只要在二次项和一次项之后加上一次项系数一半的平方,再减去这个数,使得含未知数的项在一个完全平方式里,这种做法叫作配方。将方程一边化为0,另一边配方后就可以用因式分解法或直接开平方法解了,这样解一元二次方程的方法叫作配方法。
(四)讲解例题。
例1(课本p.11,例5)。
[解](1)x2+2x-3(观察二次项系数是否为“l”)。
=(x+1)2-4。(使含未知数的项在一个完全平方式里)。
用同样的方法讲解(2),让学生熟悉上述过程,进一步明确“配方”的意义。
例2引导学生完成p.11~p.12例6的'填空。
(五)应用新知。
1、课本p.12,练习。
2、学生相互交流解题经验。
(六)课堂小结。
1、怎样将二次项系数为“1”的一元二次方程配方?
2、用配方法解一元二次方程的基本步骤是什么?
(七)思考与拓展。
解方程:(1)x2-6x+10=0;(2)x2+x+=0;(3)x2-x-1=0。
说一说一元二次方程解的情况。
[解](1)将方程的左边配方,得(x-3)2+1=0,移项,得(x-3)2=-1,所以原方程无解。
(2)用配方法可解得x1=x2=-。
(3)用配方法可解得x1=,x2=。
一元二次方程解的情况有三种:无实数解,如方程(1);有两个相等的实数解,如方程(2);有两个不相等的实数解,如方程(3)。
课后作业。
课本习题。
九年级数学全章教案篇七
1.用分式表示生活中的一些量.
2.分式的基本性质及分式的有关运算法则.
3.分式方程的概念及其解法.
4.列分式方程,建立现实情境中的数学模型.
(二)能力训练要求。
1.使学生有目的的梳理知识,形成这一章完整的知识体系.
2.进一步体验“类比”与“转化”在学习分式的基本性质、分式的运算法则及其分式方程解法过程中的重要作用.
3.提高学生的归纳和概括能力,形成反思自己学习过程的意识.
(三)情感与价值观要求。
使学生在总结学习经验和活动经验的过程中,体验因学习方法的大力改进而带来的快乐,成为一个乐于学习的人.
九年级数学全章教案篇八
教师引导提问:同学们,你们入学都要穿上我们学校的校服,你们喜欢我们校服的颜色吗?(指名3~5个学生说一说)。
师:有的同学喜欢这个颜色,有的同学不喜欢,如果我们学校要给一年级的新生订做校服,有下面4种颜色,请你们当参谋,给服装厂建议下该选哪种颜色合适。
(指名学生回答,并说明理由。)。
教师引导:张三喜欢红色,学校就决定将校服做成红色的,怎么样?你有什么意见?
教师小结:你们刚才说的只是根据自己的喜好来决定你想穿的校服的颜色,不能代表学校大多数同学想穿的,那如何知道哪种颜色是大多数同学喜欢的呢?(学生可能回答,调查全校学生喜欢的颜色。)。
教师追问:如果我们现在要马上把信息反馈给服装厂,你觉得调查全校的学生这个方法怎么样?(学生自由发言。)。
教师小结:全校学生那么多,要调查全校的学生,范围太广了,我们可以先在班级里调查,通过班级中的数据作为代表,找出大多数同学喜欢的颜色,也能代表全校大多数学生喜欢的颜色。那这节课就以我们班级为单位,在班级中进行调查统计,看看在这四种颜色中,大多数同学最喜欢哪种颜色。
九年级数学全章教案篇九
1.学生初步理解杠杆平衡的原理,并通过实验探究,培养学生动手操作实践,与人合作协调,及迁移、类推能力和抽象概括能力。
2.经过启发、讨论和独立思考、学生主动参与、积极探究,获得了杠杆平衡的条件,学生认识水平、实践能力和创新意识从中得到了培养。
3.学生在实验、实际操作中体验学习的乐趣,并通过实际应用的练习,将课内外的知识有机结合,培养学生学以致用的应用意识和创新意识。
九年级数学全章教案篇十
解析:对众数的概念理解不清,会误认为这组数据中80出现了三次,所以这组数据的众数是80.根据众数的.意义可知,一组数据中出现次数最多的数据是这组数据的众数.而在数据中70也出现了三次,所以这组数据是众数有两个.
答案:这组数据的众数是70和80.
好题2.某班53名学生右眼视力(裸视)的检查结果如下表所示:
则该班学生右眼视力的中位数是_______.
解析:本题表面上看视力数据已经排序,可以求视力的中位数,有的同学会误认为:因为11个数据按照大小的顺序排列有:0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、1.0、1.2、1.5,则知排在第6个的数是0.6.但注意观察可以发现:题目中的视力数据实际是小组数据,小组的人数才是视力数据的真正个数.因此,不能直接求视力数据的中位数,而应先求出53名学生视力数据的中间数据,即第27名学生的视力就是本班学生右眼视力的中位数.
答案:(53+1)2=27,所以第27名学生的右眼视力为中位数,从表中人数栏数出第27名学生所对应的右眼视力为0.8,即该班学生右眼视力的中位数是0.8.
九年级数学全章教案篇十一
1、尝试实验,获得有关容量守恒的经验。
2、乐意动手动脑探究水的变化,了解它的主要特性。
活动准备。
1、趣味练习:容量比较)。
2、标有刻度的瓶子,水,记录纸,笔。
活动过程。
一、观察提问。
1.出示趣味练习:容量比较。
教师:小朋友看一看这六瓶水是一样多的吗?你是怎么知道的?
小结:现在我们想办法做一下实验,比较一下水的多少吧。
二、实验操作。
1、教师:用什么办法验证呢?怎么操作?
要求:实验用的两瓶水不能混在一起,实验时动作慢一点,避免将水洒出影响实验结果。
2、记录实验结果。
(1)高矮不同的两只瓶子。
方法是通过比较水位的高低,我们可以看出瓶子的水是一样的。
原来瓶子的高矮是不影响水的多少的。
(2)粗细不同的两只瓶子小。
选择两个相同的空瓶,把装在大小不同的瓶内的饮料倒入其中,比较出饮料一样多。
方法,任选一个瓶子,将一瓶饮料倒入,用笔画或粘纸条的方法做标记,
把饮料倒出后再将另一瓶饮料倒入该瓶,看饮料位置与原来留下的标记是否一致,
比较出饮料一样多原来瓶子的粗细是不影响水的多少的。
(3)一只含内容物的的瓶子内容物为石子。
方法是取出瓶中石子,比较水位的高低。
内容物为海绵小结:方法是将海绵中的水挤回瓶中,比较水位的高低。
原来瓶子里面是否有物体是不影响水的多少的。
3、总结:瓶子的高矮、粗细、内含物是不影响水的多少的,这种现象就叫做容量守恒。
三、活动延伸。
想一想,如果把两块一样重的橡皮泥塞进不同形状的瓶子里,橡皮泥会变重吗?
回去试试看吧!
九年级数学全章教案篇十二
1.使学生学会圆环面积的计算方法,以及圆形与矩形混合图形的相关计算方法。
2.学会利用已有的知识,运用数学思想方法,推导出圆环面积计算公式,有关于圆形与正方形应用的解答方法。
3.培养学生观察、分析、推理和概括的能力,发展学生的空间概念。
教学重难点。
1教学重点。
会利用圆和其他已学的相关知识解决实际问题。
2教学难点。
圆与其他图形计算公式的混合使用。
教学工具。
ppt卡片。
教学过程。
1复习巩固上节知识,导入新课。
2新知探究。
2.1圆环面积。
一、问题引入。
同学们知道光盘可以用来做什么吗?谁能来描述一下光盘的外观。
回答(略)。
今天我们就来做一做与光盘相关的数学问题。
二、圆环面积求解。
步骤:
师:求圆环面积需要先求什么?
生:内圆和外圆的面积。
师:同学们可以自己做一做,分组交流一下自己的解法。
师:给出计算过程与结果:
三、知识应用。
做一做第2题:
师:这是一道典型的圆环面积应用题。通过直径得到半径,代入圆环面积公式,很简单。
2.2圆与正方形。
一、问题引入。
师:同学们知道苏州的园林吧。大家有没有观察过园林建筑的窗户?它有很多很漂亮的设计,也有很多很常见的图形,比如五边形、六边形、八边形等等。其中外圆内方或者外方内圆是一种很常见的设计。
师:不仅是在园林中,事实上在中国的建筑和其他的设计中都经常能见到“外圆内方”和“外方内圆”,比如这座沈阳的方圆大厦、商标等等。下面我们来认识一下这种圆形与正方形结合起来构成的图形。
二、知识点。
例3:图中的两个圆半径是1m,你能求出正方形和圆之间部分的面积吗?
步骤:
师:题目中都告诉了我们什么?
师:分别要求的是什么?
生:一个求正方形比圆多的面积,一个求圆比正方形多的面积。
师:应该怎么计算呢?
归纳总结。
如果两个圆的半径都是r,结果又是怎样的呢?
当r=1时,与前面的结果完全一致。
四、知识应用。
70页做一做:
师:同学们用我们刚刚学过的知识来解答一下这道题目吧。
解:铜镜的半径是300px。
5.3随堂练习。
若还有足够时间,课堂练习练习十五第5/6/7题。
(可以邀请同学板书解题过程)。
6小结。
1.今天我们共同研究了什么?
今天我们在已知圆和正方形的面积公式的前提下,探索了圆环和“外圆内方”“外方内圆”图形的面积计算方法。这不是要求同学们记住这些推导出来的公式,而是希望同学们能过明白推导的方法,以后遇到类似的问题可以自己运用学过的知识来解决问题。
2.在日常生活中经常需要去求圆的面积,譬如说:蒙古包做成圆形的是因为可以最大化地利用居住面积,植物根茎的横截面是圆形的,也是因为可以最大化的吸收水分。我们还可以再举出其他的一些例子,如装菜的盘子、车轮为什么要做成圆形的?大家需要多看多想!
7板书。
九年级数学全章教案篇十三
教学要求:
1、在生活中看关于“左右”的真实情境激发学生的学习兴趣。
2、能初步运用“左右”的数学知识解决实际问题。
3、认识“左右”的位置关系,体会其相对性。
教学重点:认识“左右”的位置关系,正确确定“左右”。
教学难点:“左右”的相对性。
教学准备:动物头饰笔橡皮尺子文具盒小刀。
教学过程:
一、通过左手、右手的活动,感知自身的左与右。
师:小朋友们,今天谁有信心上好这节课?请举起你的小手。
1、感知左手和右手。
师:看看你举起的这只手,是你的----右手?
再看看你的另一只手,是你的----左手?
师:大家说说,我们常常用右手(或左手)做哪些事?
(学生自由发言)。
师:左、右手要多锻炼,特别是左手,多锻炼会使我们的小脑袋越变越聪明。
2、体验自身的“左与右”
(学生自由回答)。
3、小游戏听口令做动作(由慢到快)。
伸出你的左手,伸出你的右手。
拍拍你的左肩,拍拍你的右肩。
拍拍你的左腿,拍拍你的右腿。
左手摸左耳,右手摸右耳。
左手抓右耳,右手抓左耳。
4、揭示课题。
师:小朋友们刚才已经熟悉了自己身体的“左”和“右”,其实生活中的“左”和“右”还有许许多多,今天我们就来确定一下“左”和“右”。
(板书课题:左右)。
师:请小朋友们记住,“左”字下边是个“工”字,“右”字下边是个“口”字。
5、做“左右”操。
拍拍我的左肩,拍拍拍;
拍拍我的右肩,拍拍拍;
拉拉我的左耳,拉拉拉;
拉拉我的右耳,拉拉拉;
这是我的左边,嘿嘿嘿;
这是我的右边,嘿嘿嘿;
这是我的左脚,跺跺脚;
这是我的右脚,跺跺脚。
二、玩学具,理解左边和右边。
1、摆一摆。
师:同桌合作,像老师一样的顺序摆放好事先准备好的学习用品。
(按顺序摆好:铅笔橡皮尺子文具盒小刀五样学具)。
师:大家先来确定一下,摆在最左边的是什么?摆在最右边的是什么?
2、数一数。
师:按左右的顺序来数一数。(点着学具来数,数好后请学生回答,从而完成黑板上的填空题)。
从右数橡皮是第个。
从左数橡皮是第个。
师:同样的东西,按不同的方向去数,顺序也不同。
3、说一说。
尺子的左边是什么?右边呢?
(1)启发、引导学生观察图说出左边有什么?右边有什么?
(2)说出尺子的左边或右边各有哪二样学具?
6、想怎么摆就怎么摆,然后同桌互说。
三、体验“相对”,加强理解。
师:老师现在要请两个小朋友上讲台来?(每个小朋友拿一束花排成一队,然后听口令做动作,复习左右,最后让小朋友面对面站着,再来一次,让学生知道“相对”)。
(学生讨论)。
小结:我们面对面地站着,因为方向相对,举的手就会刚好相反。
练习:老师和学生一同举左手体验。
四、解决问题,增强应用意识。
1、说一说:你相邻的同桌都有谁?
问:相邻是什么意思?
面对黑板说说你相邻的同学有谁?
背对黑板说说你相邻的同学有谁?
侧转身再说说你相邻的同学有谁?
师:每转一次前、后、左、右的人都发生了变化,但相邻的同学总是这几个。
2、口述同学们上下楼梯的情景。
问:我们平时都是靠右边上下楼梯的(学生讨论,也可以让学生试着走一走,体会一下)。
小结:方向不同,左右不同,判断时以走路的人为标准。平时我们上下楼梯时要有秩序地走,不会相撞,保证安全。
3、摆一摆。
老师说,学生摆。
把本子放在书的下面。
把尺子放在书的左面。
把铅笔放在书的右面。
五、总结。
我们学习了什么?(左右)对!是表示方向的左和右。在生活中,我们一定要分清左和右,特别是行走时,人注意靠右走。
板书设计:左右。
九年级数学全章教案篇十四
上学期学生已经学习了比较、分类,能正确地进行计数,所以填写统计表时不会感到太困难,其关键在于引导学生学会收集信息,整理数据,根据统计表解决问题。学生在生活中积累了较多的生活经验,能利用统计图表中的数据作出简单的分析,能和同伴交流自己的想法,体会统计的作用。本单元教材选择了与学生生活密切联系的生活场景,激发了学生的学习兴趣。如,学生的校服、讲故事比赛、春游的人数情况统计等,同时渗透一些生活基本常识,使学生明确统计的知识是为生活服务的。教学内容更加注重对统计数据的初步分析。在教学时,教师要注意让学生经历统计活动的全过程,要鼓励学生参与到活动之中,在活动中不断培养动手实践能力和独立思考能力,并加强与同伴的合作与交流。
九年级数学全章教案篇十五
从甲地到乙地有两条公路:一条是全长600km的普通公路,另一条是全长480km的高速公路。某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半。求该客车由高速公路从甲地到乙地所需的时间。
这一问题中有哪些等量关系?
如果设客车由高速公路从甲地到乙地所需的时间为h,那么它由普通公路从甲地到乙地所需的时间为_________h。
根据题意,可得方程______________________。
学生分组探讨、交流,列出方程.
九年级数学全章教案篇十六
各位老师,今天我说课的内容是:22.3实际问题与一元二次方程第二课时,下面,我从教材分析、教学目的分析、教法分析、教材处理、教学流程等方面对本课的设计进行简要说明:
一、教材分析:
1、教材所处的地位:此前学生已经学习了应用一元一次方程与二元一次方程组来解决实际问题。本节仍是进一步讨论如何建立和利用一元二次方程模型来解决实际问题,只是在问题中数量关系的复杂程度上又有了新的发展。
2、教学目标要求:
(2)能根据具体问题的实际意义,检验结果是否合理;。
(4)通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用。
3、教学重点和难点:
重点:列一元二次方程解与面积有关问题的应用题。
难点:发现问题中的等量关系。
二.教法、学法分析:
1、本节课的设计中除了探究3教师参与多一些外,其余时间都坚持以学生为主体,充分发挥学生的主观能动性。教学过程中,教师只注重点、引、激、评,注重学生探究能力的培养。还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想。
2、本节内容学习的关键所在,是如何寻求、抓准问题中的数量关系,从而准确列出方程来解答。因此课堂上从审题,找到等量关系,列方程等一系列活动都由生生交流,兵教兵从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。
三.教学流程分析:
本节课是新授课,根据学生的知识结构,整个课堂教学流程大致可分为:
活动1复习回顾解决课前参与。
活动2封面设计问题的探究。
活动3草坪规划问题的延伸。
活动4课堂回眸。
这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。
活动1复习回顾解决课前参与。
由学生展示课前参与题目,集体订正。目的在于回顾常用几何图形的面积公式,并且引出本节学习内容——面积问题。
活动2封面设计问题的探究。
通过学生自己独立审题,找寻等量关系,教师引导学生对“正中央矩形与封面长宽比例相同”题意的理解,使学生明白中央矩形长宽比为9:7,从而进一步突破难点:上下边衬与左右边衬比也为9:7,为学生设未知数提供帮助。之后由学生分组完成方程的列法,以及取法。讲解中注重简便设法及解法的指导与评价。
活动3草坪规划问题的延伸。
放手给学生处理,以学生合作完成为主。突出利用平移变换为主的解决方式。多由学生分析不同的处理方法。
活动4课堂回眸。
本课小结从内容、应用、数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学知识,用知识是有很大的促进的。方法以学生畅谈收获为主。
作业布置。
共3个题目,前两个为必做题,全员均作;最后一个选作题,可供学有余力学生能力提升用。
九年级数学全章教案篇十七
2、掌握用树状图和列表法计算涉及两步实验的随机事件发生的概率。
3、通过实验提高学生学习数学的兴趣,让学生积极参与数学活动,在活动中发展学生的合作交流意识和能力。
进一步经历用树状图、列表法计算随机事件发生的概率。
正确地利用列表法计算随机事件发生的概率。
生:由几名学生动手摸一摸。
(教师准备一个不透明的小袋子,里面装有3个黑围棋和2个白围棋)。
师:在数学中,我们把事件发生的可能性的大小称为事件发生的概率,如果事件发生的各种可能结果的可能性相同,结果总数为n(事件a发生的可能的结果总数为m),事件a发生的概率为。
如图,三色转盘,每个扇形的`圆心角度数相等,让转盘自由转。
动一次,“指针落在黄色区域”的概率是多少?
师:结合定义作详细分析,为两个例题教学做准备。
(分析:转盘中红、黄、蓝三种颜色所在的扇形面积相同,即指针落在各种颜色区域的可能性相同,所有可能的结果总数为,其中“指针落在黄色区域”的可能结果总数为。若记“指针落在黄色区域”为事件a,则。)。
设计说明:通过练习,让学生及时回味知识的形成过程,使学生在学会数学的过程中会学数学。
例一,有甲、乙两个相同的转盘。让两个转盘分别自由转动一次,当转盘停止转动,求。
(1)转盘转动后所有可能的结果;
(2)两个指针落在区域的颜色能配成紫色(红、蓝两色混合配成)的概率;
(3)两个指针落在区域的颜色能配成绿色(黄、蓝两色混合配成)或紫色的概率;
例题解析:
例1关键是让学生学会分步思考的方法。
教师分析并让学生学会画树状图(教师板演)。
任意抛掷两枚均匀硬币,硬币落地后,
(1)写出抛掷后所有可能的结果(用树状图表示)。
(2)一正一反的概率是多少?(指定一名学生板演)。
例2:一个盒子里装有4个只有颜色不同的球,其中3个红球,1个白球。从盒子里摸出一个球,记下颜色后放回,并搅匀,再摸出一个球。
(1)写出两次摸球的所有可能的结果;
(2)摸出一个红球,一个白球的概率;
(3)摸出2个红球的概率;
师:你能用列表法来解吗?
有没有更简单明了的方法?(学生应。
该有预习,能说出用列表法。)。
任意把骰子连续抛掷两次,
(1)写出抛掷后的所有可能的结果;
(2)朝上一面的点数一次为3,一次为4的概率。
(3)朝上一面的点数相同的概率。
(4)朝上一面的点数都为偶数的概率。
(5)两次朝上一面的点数的和为5的概率。
【本文地址:http://www.xuefen.com.cn/zuowen/14528849.html】