教案是教师将教育教学理论与实际教学相结合的产物,是教师进行教学活动的重要依据和指南。在编写教案时,教师应当注意合理利用课堂时间,避免教学过程冗长或紧张。接下来是一些教师们在教学实践中总结的一些教案经验,希望可以帮到大家。
平行四边形的面积教案篇一
内容分析:
九年义务教育六年制小学数学教材关于几何初步知识的安排特点是:从一年级第一册教材起逐步安排学生能够接受的几何初步知识,其中第六册教材中安排了长方形和正方形的面积计算;第八册教材中安排了平行四边形、三角形和梯形的认识,清楚了其特征及底和高的概念。而本册(第九册)教材中“平行四边形的面积”,是在学生掌握上述内容的基础上安排的。所以若想使学生理解掌握好平行四边形面积公式,必须以长方形的面积与平行四边形的底和高为基础,运用迁移和同化理论,使平行四边形面积的计算公式这一新知识,纳入到原有的认知结构之中。另外平行四边形面积公式这一内容学习得如何,直接与学习三角形和梯形的面积公式有着直接的关系。
教学目标:
1.使学生理解并掌握平行四边形面积计算公式,会运用平行四边形的面积公式求平行四边形的面积。
2.发展学生的空间思维能力。
教学重点:
使学生能够运用平行四边形面积公式正确计算出平行四边形面积。
教学难点:
将本文的word文档下载到电脑,方便收藏和打印。
平行四边形的面积教案篇二
本节课的教学模式大部分是在新授时采用先复习长方形的面积计算公式,接着出示一平行四边形,让学生求其面积,学生很茫然而导致不知其面积,老师就教会学生用数方格的方法让学生数出面积,紧接再比较平行四边形和长方形,它们的什么变了,什么没变,长方形长、宽和平行四边形的底、高有什么关系,既而猜测出平行四边形的面积计算公式,最后进行验证。
结合我班的实际情况,我改变了这种教学模式,先出示一已经画过方格的不规则图形,采用数方格的方法知道其面积,紧接我把这一图形反过来,问:“如果没有这些方格,你有办法知道它的面积吗?略停了一会,其中一生说把凸出的部分剪下来补到凹的地方,这样割补的前后图形的面积没有发生变化,同时也把一个不规则的图形转化成已学的图形,学生顿时恍然大悟,明白了“割补”把问题转化的简单一些,学生在不知不觉中感受了“转化”思想在数学学习中的价值,并且轻松快乐地学着。
第二步:我出示一个长方形框架,告诉长和宽,让学生求面积,学生很快完成,我拉动两角,它变成一个平行四边形,它的面积会发生怎样的变化呢?学生兴致很浓地说出它的变化,为什么会变小呢?平行四边形的面积与什么有关呢?带着这些问题,学习今天的内容。
第三步:学生拿出准备好的平行四边形,让他们测量出需要的数据,求其面积,学生充分调动自己的脑、手、口,参与到探究的过程中。
第四步:想办法验证自己求的面积是否正确?有的学生剪、拼,有的学生看书帮忙,有的小组商议,学习气氛热烈,很快验证完毕,并总结出计算公式。
通过本节课的教学,我认为老师应给学生“做数学”的机会,并提供“做数学”的活动,让学生不仅知其然,而且知其所以然,这样的学习才是有效的,也是学生自己需要的。再一方面,在这种总结公式类型的课,我们不妨多给学生充足的时间和空间,把学生放在主体地位上,多让学生自己去探索、去建构数学模型,这样,学生经历了自我探索,自我发现的过程,学生学习的积极性和主动性也充分发挥出来,同时也树立学习的自信心,学习效率也自然高起来。
读书破万卷下笔如有神,以上就是为大家带来的6篇《《平行四边形的面积》教案》,您可以复制其中的精彩段落、语句,也可以下载doc格式的文档以便编辑使用。
平行四边形的面积教案篇三
教学内容:人教版《义务教育课程标准实验教科书数学》五年级上册第80、81页的内容。
教学目标:
2.通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。
教学重点:掌握平行四边的面积计算公式,并能正确运用。
教学过程:
一、情境激趣。
1.播放运载“嫦娥一号”探月卫星的火箭成功发射的录像。
2.师:为了纪念这个有意义的时刻,我们学校的小朋友们在数学活动上利用一些图形拼出了运载“嫦娥一号”的火箭模型呢!
3.(课件出示拼成的模型)让学生观察火箭模型是由哪些图形拼成的。
4.比较其中的长方形和平行四边形,谁的面积大,谁的面积小,可以用什么方法?(引导学生说出可以用数方格的方法。)。
二、自主探究。
1.数方格比较两个图形面积的大小。
(1)提出要求:每个方格表示1平方厘米,不满一格的都按半格计算。
(2)学生用数方格的方法计算两个图形的面积并填写书上80页表格。
(3)反馈汇报数的结果,得出:用数方格的方法知道了两个图形的面积一样大。
(5)观察表格,你发现了什么?
(6)引导学生交流发现并全班反馈得出:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积相等;平行四边形的面积等于底乘高。
2.操作验证。
(1)提出要求:请小朋友利用三角尺、剪刀,动手剪一剪拼一拼,把平行四边形想办法转变成我们已学过面积计算的图形,完成后和小组的同学互相交流自己的方法。
(2)学生分组操作,教师巡视指导。
(3)学生展示不同的方法把平行四边形变成长方形。
(4)利用课件演示把平行四边形变成长方形过程。
(5)观察并思考以下两个问题:
a.拼成的长方形和原来的平行四边形比较,什么变了?什么没变?
b.拼成的长方形的长与宽分别与原来平行四边形的底和高有什么关系?
(6)交流反馈,引导学生得出:
a.形状变了,面积没变。
b.拼成的长方形,长与原来平行四边形的底相等,宽与原来平行四边形的高相等。
(7)根据长方形的面积公式得出平行四边形面积公式并用字母表示。
(8)活动小结:我们把平行四边形转变成了同它面积相等的长方形,利用长方形面积计算公式得出了平行四边的面积等于底乘高,验证了前面的猜想。
3.教学例1。
(1)(出示例1)平行四边形的花坛的底是6m,高是4m。它的面积是多少?
(2)学生独立完成并反馈答案。
三、看书质疑。
四、课堂总结。
通过这节课的学习,你有哪些收获?(学生自由回答。)。
五、巩固运用。
1.练习十五第1题,让学生独立完成后反馈答案。
4.练习十五第3题。
六、全课小结(略)。
平行四边形的面积教案篇四
本课为人民教育出版社《义务教育数学五年级标准实验教材》第一课第五单元“平行四边形区域”。平行四边形面积的计算是基于学生对矩形和正方形面积计算公式的掌握和灵活运用,以及对平行四边形特点的理解。在教材的编排上,注重让学生体验知识探索的过程,使学生不仅掌握面积计算的方法,而且参与面积计算公式的推导过程。在操作中,他们积累了基本的数学思维方法和基本的活动经验,完成了新知识的建构。本课首先通过具体情况,提出了计算平行四边形面积的问题。这样安排的目的是让学生面对一个新的问题,思考如何解决它,让学生觉得有必要学习新的知识;第二,培养学生独立操作和探索,使学生能够找到问题的解决方案;最后,让学生总结计算平行四边形面积的基本方法。根据学生不同的剪切方法,组织学生讨论这些剪切方法的共同特点,比较矩形与平行四边形的关系,推导出平行四边形面积的计算公式。
(教学目标)。
知识与能力目标:使学生运用数的平方法和填充法,探索平行四边形面积的计算公式,初步感受变换思想;使学生掌握平行四边形面积的计算公式,并能正确地利用该公式计算出平行四边形的面积。
过程和方法目标:通过操作、观察和比较,培养学生的空间概念,培养学生运用转化思维方法解决问题的能力;创造独立和谐的探究情境,使学生在不断的尝试中自我展示、自我激励、体验成功,激发求知欲,陶冶情操。
情感态度与价值目标:通过活动,培养学生的合作意识和探索创新精神,体验数学知识的奇妙。
【学习情况分析】。
平行四边形面积教学是在学生掌握并灵活运用矩形面积计算公式的基础上,了解平行四边形的特点而进行的。此外,对这部分知识的学习和应用,将为学生学习后的三角、梯形等平面图形的绘制打下良好的基础。由此可见,本课程是促进学生空间概念发展、渗透转化、等体积变形等数学思维方法的重要环节。学好这一部分对于解决生活中的实际问题有着重要的作用。这节课,让他们练习,边做边学,体验画平行四边形面积公式的过程,让孩子们认识到数学就在身边,培养学生的发散思维,进一步激发学生的学习思维,进一步激发学生学习数学的热情。
【教学辅助工具】两个相同的平行四边形、不规则图形、黑板、剪刀、多媒体、课件。
(教学过程)。
首先,创建情景并引入主题。
1.游戏介绍:小魔术师。老师展示不规则的图形。
老师:你能直接算出这个图形的面积吗?
老师:你能算出这个图形的面积吗?告诉我怎么用它?
老师:现在变成什么样了?你能算出这个图形的面积吗?如何计算矩形的面积?
2.小结:刚才同学们把不平整的部分剪掉,然后移动它来填补空白,然后把不规则的图形转换成学习矩形,这是一种重要的数学思维方法——变换。将未知图形转换为可识别的图形。什么改变了转换后的图形?什么是相同的?(形状变化,面积不变)。
平行四边形的面积教案篇五
九年义务教育六年制小学数学第九册70页一72页。
1.使学生理解平行四边形面积计算公式的来源,能运用公式正确地计算平行四边形的面积,并会计算一些简单的有关平行四边形面积的实际问题。
2.培养学生初步的逻辑思维能力和空间观念。
3.结合教材渗透转化思想。
课前准备:投影器、长方形框架、平行四边形纸片等。
师:同学们,你们知道曹冲称象的故事吗?曹冲是怎样称出大象的重量的?
学生自由发言。
师:长方形花坛的面积你们肯定会算,知道什么就可以了?平行四边形的面积会算吗?今天咱们就一起来探讨平行四边形的面积。(板书)。
1、自主探索。
出示一平行四边形纸片,这是一张平行四边形的纸片,想一想,你们有办法知道它的面积吗?也可以和组里的同学商量讨论,如果有需要的材料可以到我给大家准备的学具袋里去找一找,咱们比比看,哪个小组的同学最先知道这个平行四边形的面积!
学生以小组为单位开展活动,教师巡视。
汇报、反馈:都有结果了吧,哪个小组先来汇报?
各小组派代表发言。
2、对比分析。
每个小组都得到了这个平行四边形的面积,咱们一起来看看这些方法。课件展示学生的主要方法。
3、归纳总结。
1、(课件出示例题)这是五二班选的花坛的相关数据,现在能求出它的面积了吧?
2、p82看第2题。
3、课件出示:p83第题,这两个平行四边形的面积相等吗?为什么?
平行四边形的面积教案篇六
本节课教法上最大的特点是让学生动手操作,把静态知识转化成动态,把抽象数学知识变为具体可操作的规律性知识。指导学生理论联系实际,开展多次讨论,使他们自主、快乐地解决问题。
在本节课中,我还力图体现出学生学习方法的转变:从被动接受学习变为在自主、探究、合作中学习。让学生自己提出问题,再自己想办法解决,并能以小组为单位共同合作完成;让学生亲身体验知识的形成过程,促进学生思维的发展。
在导入部分我采用了创设生活情境,设疑引入的方法来激发学生的学习兴趣,这为充分发挥学生主体作用奠定了基础。
在探究过程中,我很重视学生动手操作、自主探索和合作交流的学习方式,大胆放手,给学生时间和空间,让他们在熟悉的具体情境中,通过探究和体验,感受新知;联系生活经验,构建新知;小组合作交流,扩展新知;创新活动设计,超越新知。
平行四边形的面积教案篇七
义务教育课程标准实验教科书人教版小学数学五年级上册第五单元《平行四边形的面积》第一课时(包括教材80―81页例1、例2和“做一做”,练习十五中的第1―4题。)通过实验、操作、观察图形的拼摆、割补理解平行四边形的面积计算公式的来源,从而进行分析、概括出面积计算公式,进一步发展学生的思维能力和发展学生的空间观念。
学情分析。
1、学生在以前的学习中,初步认识了各种平面图形的特征,掌握了长方形、正方形的面积计算,加上这些平面图形在生活中随处可见,应用也十分广泛,学生学习时并不陌生。
2、从学生的现实生活与日常经验出发,设置切近生活的情境,把学习过程变成有趣的活动。
教学目标。
知识与技能。
过程与方法:
2、发展学生的空间观念。
情感态度与价值观:引导学生运用转化的思想探索知识的变化规律,培养学生分析问题和解决问题的能力。通过演示和操作,使学生感悟数学知识内在联系的逻辑之美,加强审美意识。
教学重点和难点。
重点、难点:理解和掌握平行四边形的面积计算公式;理解平行四边形的面积计算公式推导过程。
教学过程。
一、复习导入。
1、什么叫面积?常用的面积计量单位有那些?
2、出示一张长方形纸,他是什么形状?它的面积怎么算?
二、探究新知。
2、用数方格的方法计算面积。
(1)用幻灯出示教材第80页方格图:我们已经知道可以用数方格的方法得到一个图形的面积。现在请同学们用这个方法算出这个平行四边形和这个长方形的面积。
说明要求:一个方格表示1cm2,不满一格的都按半格计算。把数出的数据填在表格中(见教材第80页表格)。
(2)同桌合作完成。
(3)汇报结果,可用投影展示学生填好的表格。
(4)观察表格的数据,你发现了什么?通过学生讨论,可以得到平行四边形与长方形的底与长、高与宽及面积分别相等;这个平行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。
(2)归纳学生意见,提出:通过数方格我们已经发现这个平行四边形的面积等于底乘高,是不是所有的平行四边形都可以用这个方法计算呢?需要验证一下。因为我们已经会计算长方形的面积,所以我们能不能把一个平行四边形变成一个长方形计算呢?请同学们试一试。
a、学生用课前准备的平行四边形和剪刀进行剪和拼,教师巡视。
b、请学生演示剪拼的过程及结果。
c、教师用教具演示剪。
平行四边形的面积教案篇八
平行四边形的面积是在学生已经掌握并能灵活运用长方形面积计算公式,理解平行四边形特征的基础上进行教学的,它同时又是进一步学习三角形面积、梯形面积、圆的面积和立体图形表面积计算的基础。由此可见,本节课是促进学生空间观念发展,渗透转化、等积变形等数学思想方法的重要环节。学好这部分内容,对于解决生活中的实际问题的能力有重要的作用。
五年级的学生已经掌握了平行四边形的特征和长方形面积的计算方法。这些都为本节课的学习奠定了坚实的知识基础。但是小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。
1、知识目标:使学生在理解的基础上掌握平行四边形面积的计算公式,能正确计算平行四边形面积。
2、能力目标:通过对图形的观察,比较和动手操作,发展学生的空间观念,渗透转化和平移的思想,并培养学生的分析,综合,抽象概括和动手解决实际问题的能力。
3、情感目标:通过活动,激发学习兴趣,培养探索的精神,感受数学与生活的密切联系。
教学重点:使学生理解和掌握平行四边形的面积的计算公式,并能正确地计算平行四边形的面积。
教学难点:使学生理解平行四边形面积公式的推导方法及过程。
1、情景导入(出示课件)。
板书:长方形的面积=长×宽。
正方形的面积=边长×边长。
1.用数方格的方法计算面积。
(1)课件出示教材第80页方格图:现在请同学们用这个方法算出这个平行四边形和这个长方形的面积。说明要求:一个方格表示1平方米,不满一格的都按半格计算。把数出的数据填在表格中(见教材第80页表格)。
(2)合作完成,汇报结果,可展示学生填好的表格。
(3)观察表格的数据,你发现了什么?
通过学生讨论,得到:平行四边形的底与长方形的长相等、平行四边形的高与长方形的宽相等;这个平行四边形面积等于长方形的面积。
(1)引导:我们已经知道长方形的面积用长乘宽计算,平行四边形的面积怎样计算呢?请大家大胆猜测一下吧。
(3)引导解决方法:这只是我们的一种猜想,是不是这样呢,需要验证一下。能不能把平行四边形转化成长方形呢?实践操作是验证猜想的好办法。
(4)学生活动:拿出你们准备的平行四边形,以四人为一小组,用课前准备的平行四边形和剪刀进行剪拼,教师巡视指导。
(5)学生汇报演示剪拼的过程及结果。
(6)教师用课件演示剪—平移—拼的过程。
(8)出示讨论题,小组讨论。
(9)小组汇报交流,教师归纳:
把平行四边形转化成一个长方形,它的面积与原来的平行四边形面积相等。
这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,因为长方形的面积=长×宽,所以平行四边形的面积=底×高。
3.教师指出在数学中一般用s表示图形的面积,a表示图形的底,h表示图形的高,请同学们把平行四边形的面积计算公式用字母表示出来。
s=a×h。
s=a.h或s=ah。
1、出示例1、一块平行四边形花坛的底是6米,高是4米,它的面积是多少?
(1)读题并理解题意。
(2)学生试做,交流做法和结果。
s=ah=6×4=24(m2),。
答:它的面积是24平方厘米。
2、我们的生活中,有很多图形是不规则的,比如我国台湾省的地形图。台湾地形图的实际底大约是300千米,实际高大约是120千米,你有办法算出它的大概面积吗?(课件出示)。
s=a.h。
=300×120。
=36000(平方千米)。
答:台湾省的大概面积是36000平方千米。
这节课你是怎么学习的?你有哪些收获?
我们今天学习了平行四边形面积的计算方法,智慧爷爷想出题来考考大家。请听听:
1、猜谜游戏:有一个平行四边形,它的面积是12平方分米,请你猜一猜它的底和高各应是多少?看谁猜出的答案最多。
2、思考:用求平行四边形面积的方法,想一想三角形的面积可以怎样求?
平行四边形的面积教案篇九
1、掌握平行四边形的面积计算公式,并运用平行四边形的面积计算公式解决实际问题。
2、通过数、剪、拼等动手操作活动,探索平行四边形面积计算公式的推导过程,渗透转化的数学思想,发展学生的空间观念。
3、在解决实际问题的过程中,感受数学与生活的联系,培养学生的数学应用意识。
掌握平行四边形的面积计算公式,能运用公式解决实际问题。
理解平行四边形面积计算公式的推导方法与过程。
平行四边形、学习单等。
课前布置预习第87——88页内容,完成预习单。
一、创设情境,导入新课。
1、课前交流与小故事
师:同学们,今天我们班上来了非常多的老师听课,你们的心情怎么样呢?
生紧张,激动……
师:同学们,你们知道曹冲称象的故事吗?谁来说一说?
生:古时候有一个叫曹冲的人看到一群人围着一头大象,没有办法把它称重。曹冲想了一个办法,先把大象赶到船上,然后做好标记,再把石头装入船上到了刚刚大象称的刻度,那石头的重量就是转化成了大象的重量。
师:说的非常好,讲的非常详细,小小老师。对,曹冲称象其实就是把大象的重量转化成了石头的重量。转化是数学中非常重要的数学思想,转化就是把我们没有学过的转化成学过的,把复杂的转化成简单的,今天我们也来学习关于转化的数学问题。
师:同学们,看老师手上拿着的是什么图形呢?
生:长方形
生:表面的大小,面积计算公式是长乘宽。
生:平行四边形
师:平行四边形的面积怎么计算呢?今天我们就一起来学习探究平行四边形的面积。(板书:平行四边形的面积)
平行四边形的面积教案篇十
教学目标:
1.通过剪一剪,拼一拼的方法,探索并掌握平行四边形的面积计算公式。能正确计算平行四边形的面积。
2.通过电子白板的操作、探究、对边、交流,经历平行四边形的推导过程,初步认识转化的思想方法,发展学生的空间观念。
3.运用猜测、验证的方法,使学生积极的情感体验。发展学时自主探索、合作交流的能力,感受数学知识的价值。
教学重点:
教学难点:
教学工具:
电子白板课件、平行四边形模型、剪刀、初步探究学习卡。
教学过程:
一、课前引入、渗透转化。
1.课前通过同学们的谈话,轻松引入主题。师:同学们,你们都玩过七巧板吗?
2.播放制作七巧板的视频。
3.出示一组图形,学生观察,数方格算出面积。拉开幕布,学生们看到露出一点点的图案,调动了学生的积极性,都跃跃欲试,学生动手逐个拖拽出想拖里面的美丽图案。在学时汇报平移的方法时,教师利用电子白板中的拖动图片平移的功能,直接在屏幕上操作演示,感知割补、平移,转化等学习方法。导出视频,拖动、平移等功能。
二、创设情境,揭示课题。
1.电子白板导出两个花坛,比一比,哪个大?
2.揭示课题。学生比一比,猜想这两个花坛的面积大小。让学生猜一猜、想一想,导出两个花坛的课件。
三、对手操作,探究方法。
1.利用数方格,初步探究。
2.出示“初步探究学习卡”同桌交流一下填法,汇报。用数方格的方法得出图形的面积,是学生熟悉的、直观计量面积的方法。同时呈现这两个图形,暗示了他们之间的联系,为下面的探究作了很好的铺垫。导出“初步探究学习卡”
四、白板演示,验证猜想。
2.观察拼出的图形,你发现了什么?在班内交流操作,重点演示两种转发方法。
4.引导学生用字母来表示:s表示面积,a表示底,h表示高。那么面积公式就是s=ah利用白板的拖动功能,根据学生反馈的转发方式,随机演示。白板演示、突出拖动、旋转等功能。
五、巩固练习,加深理解。
1.课件出示例1。
六、课堂小结,反思回顾。
平行四边形的面积教案篇十一
本节课主要探索并掌握平行四边形面积计算公式,如何把平行四边形转化成长方形是本节课教学的重要内容。掌握这个过程和方法,将为学生探索三角形、梯形等面积的计算打下基础。教材从实际出发,设计了四个递进的问题。第一个问题是猜想如何求平行四边形的面积;第二个问题是借助方格纸验证猜想是否正确;第三个问题是运用割补法把平行四边形转化为长方形;第四个问题是探究平行四边形面积的计算公式。
二年级同学们已经学过如何计算长方形的面积,在四年级同学们已经认识了平行四边形,在上一节课中又认识了平等四边形的底和高,并能在平行四边形中正确画出与指定底边相对应的高,知道了平形四边形有无数条高。本节课则通过动手操作探究,推导出平行四边形面积计算公室,并能运用平行四边形面积公式解决相关问题。
经历平等四边形面积猜想与验证的探究活动,体验数方格及割补法在探究中的应用,获得成功探索问题的体验。
掌握平行四边形面积计算公式,并能正确计算平形四边形的面积。
能运用平形四边形的面积计算公式解决相关的问题。
实验探究、推理验证、小组合作学习。
课件、剪刀、准备平行四边形若干。
一、开门见山,导入新课。
二、新知探究。
1.分析平行四边形给定的3个数据所表示的意义。
猜想:
(1)借助长方面的面积计算方法,用相邻的两边相乘来计算的。
(2)提出来数方格的。方法来试一试。看选择哪两个数来计算比较好。
3.借助方格纸数一数,比一比。
学生动手,可以用长为6厘米,宽为5厘米的长方形摆一摆,也可以用主题图中等比例缩放的平行四边形放在方格纸上数一数。
要求:
(1)独立完成。
(2)小组内交流一下你的想法。
(3)方法展示。
这只是我们的猜想,那如何来验证我们的猜想是否成立呢?
4.平形四边形如何转化为长方形,验证猜想。
(提示:你也可以用剪刀将图形剪一剪。看能不能转化成我们已经学过的知识来解决这个问题)。
(1)学生经且为单位,动手操作,体会平行四边形转化为长方形的过程。
(2)是不是沿任意一条高剪开都可以拼成长方形呢?
动手操作,验证猜想。
(3)将转化后的长方形与原来的平等四边形比一比,它们之间什么变了,什么没变?
生:它们的形状变了,由平形四边形转化成了长方形。周长变小了,面积没有变。
(4)再仔细观察,你还有什么发现?
生:转化后的长方形的长相当与原平行四边形的底,转化后的长方形的宽相当与原平等四边形中与底所对应的高。因为长方形的面积=长×宽,所以平行四边形的面积=底×高。
(2)你会填吗?
a、把一个平行四边形转化成一个长方形,它的面积与原来平形四边形的面积(),长方形的长相当于平行四边形的(),长方形的宽相当于平行四边形的(),因为长方形的周长=(),所以平行四边表的面积=()。
b、如果用s表示平行四边形的面积,用a和h分别代表平行四边形的底和高,那么平等四边形的面积公式可以写成:s=()。
三、实践应用,巩固与提高。
1.计算下列图形的面积(抢答)。
(1)底为4厘米,高为2厘米。
(2)底为5分米,高为9分米。
(3)底为3米,高为7米。
2.判断,并说明理由。
四、课堂小结。
1.你今天学习了什么?有何收获?
长方形的面积=长×宽。
s=ah。
平行四边形的面积教案篇十二
师:我们一起回忆一下,已经学过关于长方形的哪些知识?(出示长方形,并且让学生回忆有关它的周长和面积的知识)
师:今天我们来研究平行四边形的面积。这里有两个图形,请大家先测量有关数据,再计算它们的面积。(图略)
生活动后汇报如下:
长方形的长6厘米,宽4厘米,长方形的面积=6×4=24平方厘米
(1)平行四边形底6厘米,另一条底4厘米,它的面积=6×4=24平方厘米
(2)平行四边形底6厘米,高3厘米,它的面积=6×3=18平方厘米
1、师:计算同一个平行四边形的面积,大家有几种不同的想法,可以肯定其中必定有错误。请大家看清楚,每种猜想的意思,然后作出判断。
你觉得哪种更合理?能不能举个例子,证明哪种是错误的。
生:我觉得可以用底乘底来计算。我们知道平行四边形容易变形,如果把一条底边拉直,就变成了长方形,长方形的面积等于长乘宽,所以平行四边形的面积等于底乘底。
师:这位同学想到了平行四边形容易变形的'特征。大家觉得有道理吗?
生:我发现平行四边形在变形过程中,面积边了,而两条边的长度始终不变。所以用“底乘底”计算平行四边形的面积是错误的。
师:在平行四边形变形过程中,随着面积的变化,什么也同时发生了变化?(再次演示长方形渐变成平行四边形。)
生:(兴奋地)高!
师:现在,你觉得平行四边形的面积与它的什么有关?
生:我觉得平行四边形的面积与它的高有很大的关系。
3、师:用什么办法可以比较它们的面积大小呢?
生:把平行四边形多出来的三角形剪下来,补到另一边,看出长方形大,平行四边形小。
师:变成长方形后,面积大小变了没有?
生:没有
师:那么要计算平行四边形的面积,应该怎么办?
生:要求出平行四边形的面积,就知道长方形的面积,所以这个平行四边形的面积应是6乘3来计算,而不是6乘4。
生:6是长方形的长,也是平行四边形的底,3是拼成后的长方形的宽,也是平行四边形的高,所以第二种猜想是正确的。
师:这位同学把“计算平行四边形的面积”这个问题转化成了“计算长方形的面积”,利用旧知识解决了新问题。
师:是不是所有的平行四边形都可以剪拼成长方形呢?请同学们任意拿一个平行四边形,想一想,怎样可以把它转化成一个长方形。
根据学生反馈情况进行课件演示,出现几种拼法(略)
师:这几种剪拼方法有什么相同之处?
生:都是先沿着平行四边形底边上的高剪开,再拼成一个长方形。
生:在剪拼过程中,图形的形状变了,面积不变。
师:为什么平行四边形的面积可以用“底乘高”来计算?
生:因为长方形的长相当于平行四边形的底,长方形的宽相当于平行四边形的高,长方形面积等于长乘宽,所以平行四边形面积等于底乘高。
师:这个平行四边形公式是不是适用于所有的平行四边形呢?为什么?
生:对任何一个平行四边形,只要沿着底边上的高剪开,一定都可以拼成长方形,所以平行四边形的面积=底×高。
师:我们用s表示平行四边形的面积,用a表示底,用h表示高,那么计算平行四边形的面积公式用字母表示为s=ah。
师:今天我们遇到了一个什么新问题?我们是怎样解决的?有什么收获?
平行四边形的面积教案篇十三
教材分析:
平行四边形的面积计算教学是在学生掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,它同时又是进一步学习三角形面积、梯形面积、圆的面积和立体图形表面积计算的基础。教材以平行四边形的面积计算为重点,先用数方格方法计算图形的面积,帮助学生进一步理解面积和面积单位的含义,为推导平行四边形的面积计算公式提供感性材料。再是通过割补实验,把一个平行四边形转化为一个与它面积相等的长方形,把新旧知识联系起来,使学生明确图形之间的内在联系,便于从已经学过的图形面积计算公式推导出新的图形面积计算公式,使学生明确面积计算公式的意义和来源。在引导学生动手操作的基础上,初步培养学生的空间想象力和思维能力。使他们从“学会”到“会学”,培养学生良好的学习习惯和学习品质。教学中以长方形的面积公式为基础,通过学生比一比、看一看、动一动、想一想得出平行四边形的面积公式,并来在实际生活中用一用。
几何初步知识的教学是培养学生抽象概括能力、思维能力和发展空间观念的重要途径。本节教学中向学生渗透了平移旋转的思想,为将来学习图形的变换积累一些感性认识。
教学目标:
3、培养学生初步的空间观念。
4、培养学生积极参与、团结合作、主动探索的精神。
教学准备:学具、课件。
教学过程:
一、质疑引新。
1、显示长方形图。
2、电脑展示长方形变形为平行四边形。
原来的长方形变成了什么图形?它的面积怎样求呢?
二、引导探究。
(一)、铺垫导引。
出示第42页三幅图,先让学生说出一个小正方形的边长是几厘米,然后数出它们的面积。
小结:用数方格的方法求面积比较麻烦,用什么方法可以很快求出它们的面积呢?
实验、操作(小组合作):把后两幅图转化成长方形。
电脑在学生感到有困难的时候提示,利用闪烁功能,先把两个小长方形比较,表明两个小长方形形状相同。根据学生讨论结果,演示剪、移、拼过程。
集体交流,重点讨论第二幅图的多种剪、移、拼方法(根据学生回答电脑演示不同的剪拼过程)。
讨论:
剪拼前后,图形的形状变了没有?面积有没有变?
做了这个实验你想到了什么?
(二)、实验探索。
学生实验操作。
1、提出实验要求:在平行四边形上找到一条线段,沿这条线段剪开,移一移、拼一拼,把它拼成一个长方形。
2、分小组实验操作,把实验结果填在书上表格内,鼓励多种剪拼法。
3、集体交流,展示不同的剪拼结果。根据学生的回答,电脑分别演示不同的剪拼过程。
结合学生发言提问:
在学生回答的基础上小结:沿着平行四边形底边上的任意一条高,都可以把一个平行四边形剪拼成一个长方形。
(三)总结归纳。
问:
2、剪拼成的长方形的长和宽分别与平行四边形的底和高有什么关系?(电脑演示比较长方形的长与平行四边形的底的长度、长方形的宽分别与平行四边形的高的长度。)。
追问:要求平行四边形的面积,必须知道哪两个条件?
用字母表示公式。
学生自学p44~p45有关内容。
集体交流:s=a×h。
s=a·h。
s=ah。
教师强调乘号的简写与略写的方法。
三、深化认识。
1、验证公式。
2、应用公式。
a) 例题。
学生列式解答,并说出列式的根据。
b) 做练一练。
四、巩固练习。
底5厘米,高3.5厘米 底6厘米,高2厘米。
2、计算下面图形的面积哪个算式正确?(单位:米)。
3×8 3×6 4×8 6×8 3×4 4×6。
面积:56平方厘米。
底:8厘米。
4、开放题:山西地形图。先根据信息猜测是哪个省市的地形图,山西南北大约590千米,东西大约310千米,估计它的土地面积。
以小组为单位探讨多种想法。
五、总结全课(电脑显示、学生口答)。
把一个平行四边形沿着高剪成两部分,通过( )法,可以把这两部分拼成一个( )形。这个长方形的( )等于平行四边形的( ),这个长方形的( )等于平行四边形的( ),因为长方形的面积=长×宽,所以平行四边形的面积等于( ), 用字母表示平行四边形的面积公式( )。
平行四边形的面积教案篇十四
师:我们一起回忆一下,已经学过关于长方形的哪些知识?(出示长方形,并且让学生回忆有关它的周长和面积的知识)。
师:今天我们来研究平行四边形的面积。这里有两个图形,请大家先测量有关数据,再计算它们的面积。(图略)。
生活动后汇报如下:
长方形的长6厘米,宽4厘米,长方形的面积=6×4=24平方厘米。
(1)平行四边形底6厘米,另一条底4厘米,它的面积=6×4=24平方厘米。
二、否定错误猜想。
1、师:计算同一个平行四边形的面积,大家有几种不同的想法,可以肯定其中必定有错误。请大家看清楚,每种猜想的意思,然后作出判断。
你觉得哪种更合理?能不能举个例子,证明哪种是错误的。
生:我觉得可以用底乘底来计算。我们知道平行四边形容易变形,如果把一条底边拉直,就变成了长方形,长方形的面积等于长乘宽,所以平行四边形的面积等于底乘底。
师:这位同学想到了平行四边形容易变形的特征。大家觉得有道理吗?
生:我发现平行四边形在变形过程中,面积边了,而两条边的长度始终不变。所以用“底乘底”计算平行四边形的面积是错误的。
师:在平行四边形变形过程中,随着面积的变化,什么也同时发生了变化?(再次演示长方形渐变成平行四边形。)。
生:(兴奋地)高!
3、师:用什么办法可以比较它们的面积大小呢?
生:把平行四边形多出来的三角形剪下来,补到另一边,看出长方形大,平行四边形小。
师:变成长方形后,面积大小变了没有?
生:没有。
生:要求出平行四边形的面积,就知道长方形的面积,所以这个平行四边形的面积应是6乘3来计算,而不是6乘4。
生:6是长方形的长,也是平行四边形的底,3是拼成后的长方形的宽,也是平行四边形的高,所以第二种猜想是正确的。
师:这位同学把“计算平行四边形的面积”这个问题转化成了“计算长方形的面积”,利用旧知识解决了新问题。
三、归纳计算方法。
师:是不是所有的平行四边形都可以剪拼成长方形呢?请同学们任意拿一个平行四边形,想一想,怎样可以把它转化成一个长方形。
根据学生反馈情况进行课件演示,出现几种拼法(略)。
师:这几种剪拼方法有什么相同之处?
生:都是先沿着平行四边形底边上的高剪开,再拼成一个长方形。
生:在剪拼过程中,图形的形状变了,面积不变。
生:因为长方形的长相当于平行四边形的底,长方形的宽相当于平行四边形的高,长方形面积等于长乘宽,所以平行四边形面积等于底乘高。
师:这个平行四边形公式是不是适用于所有的平行四边形呢?为什么?
生:对任何一个平行四边形,只要沿着底边上的高剪开,一定都可以拼成长方形,所以平行四边形的面积=底×高。
师:我们用s表示平行四边形的面积,用a表示底,用h表示高,那么计算平行四边形的面积公式用字母表示为s=ah。
四、反思探究过程。
师:今天我们遇到了一个什么新问题?我们是怎样解决的?有什么收获?
平行四边形的面积教案篇十五
本节课是小学义务教育教科书五年级上册第五单元的内容,是在学生(四年级)学习了面积单位和长、正方体的面积的认知基础上展开教学的。本节课既是培养学生空间图形中平面几何观念的奠基课之一,更是给学生渗透“等积转化”重要思想的开启课。
本节课的教学紧扣教材,紧紧贴合教材的呈现顺序,重难点突出,使学生经历了“猜测———验证———得出结论————应用结论————再次论证”的科学探究过程,程序符合学生的认知规律。首先从教材中呈现的生活情境图中提出问题:
1、你能找到那些平面图形?
2、你学过那些平面图形的面积计算?并给两组数据让学生计算,说说计算公式。由此引发学生的认知记忆,找到学生的认知原点或起点,找到学生学习新知识的有效生长点。然后再来认识平行四边形的形、底和相对应的高、邻边等。引发猜想,提出大问题:平行四边形的面积与它的什么有关?有怎样的关系?让学生在保留自己猜想的基础上进行多方法、多角度的探究,用数格子法、割补转化法(等积转化法)等方法来验证自己的猜想,并得出统一的结论或推翻自己原先不合理的猜想,然后再总结提炼计算公式,并及时应用(套公式计算)。最后,再通过拉一拉的方法,让学生观察拉的前后什么没变?什么变了,再一次验证了割补转化法(等积转化法)的合理性与存在的意义。本堂课的半数设计简洁、合理、美观、重难点突出。
从本节课中可以看出,贾老师很注重对孩子阅读教材的能力的培养。只是本节课自始至终老师都让学生看书:
1、看书上的情境图找平面图形;
3、探究出公式后读书例1;
4、练习完成书上的做一做等过程都是看书,在师的一句一句细致的引导下如长方形的长占几格?宽占几格?面积占几格?平行四边形的底是几格?高是几格,面积占几格……一节课就那么35分钟,如何保证大班额下每个同学都能紧跟老师的指导,跟随老师的思路,在翻书与观察老师的演示和板书交替中,回过神来细细品读教材和理解教材的用意呢?本节课有很多好的课件可以借用,为什么老师只有在复习长、正方体面积计算给出两组数据时才应用了课件?课件的辅助教学功能没有体现出来。
平行四边形的面积教案篇十六
本节课的教学模式大部分是在新授时采用先复习长方形的面积计算公式,接着出示一平行四边形,让学生求其面积,学生很茫然而导致不知其面积,老师就教会学生用数方格的方法让学生数出面积,紧接再比较平行四边形和长方形,它们的什么变了,什么没变,长方形长、宽和平行四边形的底、高有什么关系,既而猜测出平行四边形的面积计算公式,最后进行验证。
结合我班的实际情况,我改变了这种教学模式,先出示一已经画过方格的不规则图形,采用数方格的方法知道其面积,紧接我把这一图形反过来,问:“如果没有这些方格,你有办法知道它的面积吗?略停了一会,其中一生说把凸出的部分剪下来补到凹的地方,这样割补的前后图形的面积没有发生变化,同时也把一个不规则的图形转化成已学的图形,学生顿时恍然大悟,明白了“割补”把问题转化的简单一些,学生在不知不觉中感受了“转化”思想在数学学习中的价值,并且轻松快乐地学着。
第二步:我出示一个长方形框架,告诉长和宽,让学生求面积,学生很快完成,我拉动两角,它变成一个平行四边形,它的面积会发生怎样的变化呢?学生兴致很浓地说出它的变化,为什么会变小呢?平行四边形的面积与什么有关呢?带着这些问题,学习今天的内容。
第三步:学生拿出准备好的平行四边形,让他们测量出需要的数据,求其面积,学生充分调动自己的脑、手、口,参与到探究的过程中。
第四步:想办法验证自己求的面积是否正确?有的学生剪、拼,有的学生看书帮忙,有的小组商议,学习气氛热烈,很快验证完毕,并总结出计算公式。
通过本节课的教学,我认为老师应给学生“做数学”的机会,并提供“做数学”的活动,让学生不仅知其然,而且知其所以然,这样的学习才是有效的,也是学生自己需要的。再一方面,在这种总结公式类型的课,我们不妨多给学生充足的时间和空间,把学生放在主体地位上,多让学生自己去探索、去建构数学模型,这样,学生经历了自我探索,自我发现的过程,学生学习的积极性和主动性也充分发挥出来,同时也树立学习的自信心,学习效率也自然高起来。
平行四边形的面积教案篇十七
今天下午有幸听了白老师的讲课,讲了一节五年级数学上册关于“平行四边形的面积”的课程,从听课中可以总结出一下几点:
一、课堂以复习旧知加情境展现导入,首先复习了学过的平面图形,了解长方形和正方形的面积以及平行四边形的特点,还针对性的找到平行四边形的底和高的长度为本节课学习做好的准备工作,其次是利用校园门口的两个花坛比较大小来提出问题,从而开始本节课额学习。
二、在使用第一种方法——数方格来计算平行四边形的面积时,让学生自读题目要求和说明,找到关键的点。接着出现课本上的填表格数据,通过完成表格进行汇报数据,可以横着汇报也可以竖着汇报,同两次汇报让学生发现特点和关系,初步知道平行四边形的面积计算。
三、进行验证推理时,出示了三个问题让学生进行动手操作发现关系,操作过后让学生就三个问题进行回答,发现长方形和平行四边形的关系,教师又接着提问:为什么一定要沿着高剪下来呢?深入挖掘知识的内涵,为学生提供方法,掌握知识的本质。
四、教师设计练习多样化,从各个方面考察了本节课的内容,首先是练习提的设计层次清晰,以闯关的方式进行,从基础练习包括计算面积和寻找相对应的底和高,到知道面积求底或高,题中渗透着不同的知识点,最后又有难度提升来判断不同平行四边形的面积关系,展示长方形和平行四边形的转换过程,让学生明白变化量和不变量,知识方方面面都有突破。
建议:
1、用数方格的方法进行计算面积时稍微解释一下数的方法,有学困生并不会数方格也不知道边长是多少,高的位置在哪。
2、练习题的设计有点跳跃,梯度可以稍微小一些,较难的题放到后面,先开始练习一下基础的题,再着手一些难题,过渡太大的话,可能对于学困生来说不好掌握,理解上也有困难。不知道该如何下手计算。
平行四边形的面积教案篇十八
本次联片教研活动的主题《追求三步导学精致化》,朗老师参与本次活动做课,之前经过3次磨课,磨课过程体现了我们对本次活动的重视和积极参与的认真态度,一节优质的课展现了联合体团队的智慧和授课教师孜孜不倦的探究精神。本节课的教学思想体现了三步导学精致化,学生成为学习主体。
在上课之前,朗老师以这样的方式和学生交流:成功=勤于动脑+合作探究+正确方法简单的一个公式,有数学的特色,运算符号参与简单明了,老师的解读给学生以信心和合作探究重要性。
好的开端等于成功的一半。本节课具有一下特点:
开课导入,郎老师采用设疑的方法让学生猜一猜屏幕上长方形和平行四边形两个图形哪个面积大,同学们在问题驱动下大胆猜想,同时有了操作、尝试的欲望。通过猜一猜,比一比方法,产生了不同的结果,这时自然的引发了学生的认知冲突,老师顺势引导把问题大胆的抛给学生。出示:请同学们动手动脑,想办法探求平行四边行的面积,并在小组内交流自己的方法。郎老师抛弃了纯课件演泽的方法,尊重学生的认知规律,让学生动手操作、观察比较、分析讨论,借助课本图示和文字的帮助,在小组内探究平行四边形的底和高与长方形的长和宽有怎样的关系,老师让学生呈现自己真实的想法,让他们充分讨论、辨析,直到真理越辩越明,知识点自然生成,乃至水落石出。最后郎教师再把课件展示了平移拼补过程,和同学们共同归纳总结,充分体现新课程提倡的重视过程与方法,营造了一个真实的课堂。认知冲突是学生学习动机的源泉,也是学生积极参与思维学习的动力。在教学中不断设置认知冲突,激发了学生的参与欲望,把主动权还给学生,让学生主动参与操作、思考,思维的火花在不断碰撞,课堂富有生命力。在整个教学过程中郎老师充分发挥学生主动性,师生互动,充分调动了学生的学习兴趣,让学生享受学习,快乐学习。
在讲台上,郎老师仪表堂堂,教态自然,表情亲切,整节课始终面带微笑。课堂中郎老师语言清晰、简练、生动、有趣,对学生的评价真诚而富有真情,充满赏识与鼓励,一次掌声,一个抚摸,一个点头微笑,都体现了郎老师对每一位学生的尊重。学生只有思维上的困惑,没有任何心理压力。
郎老师十分注重学生的知识性、个性和创造性的发展,当学生通过自己动手运用割补平移这种转化的思想时,郎老师让她在巡视过程中发现的每位同学的思路都展示给大家。在最后一个练习环节老师还渗透了微积分的思想,为以后初小学衔接好铺垫。正是因为老师给了每一位学生开发的思维空间,注重了数学思想的培养,学生们才会得到不同层次的提高,展现出不同的精彩。
最后谈谈两个方面的问题值得我们共同探讨、商榷。
1、练习的设计应更具有层次性、有坡度,帮助学生对于平行四边形的面积是底和高决定的,底乘所对应的高的理解。
2、本节课在有效的时间里,面积公式的推导能否让更多的学生参与交流。
优质课堂需要具有教育专业知识和教育智慧的优秀教师。郎老师从教案的设计到课堂的生成无不显露着智慧的光芒,相信老师们听后一定会有所启发,本节课堂的氛围在我们身边萦绕,这种扑面而来的升本课堂令人振奋、令人鼓舞、会让我们的老师更智慧更健康,让我们的升本课堂焕发生机与活力,让我们的学生充满兴趣和积极性,让我们共同努力吧,打造升本课堂的魅力。
平行四边形的面积教案篇十九
生1:卡片。
生2:奖品。
……
(学生逐个上台从信封中拿出物品)
生1:我拿出的是剪刀,打算用它剪东西。(师:板书:剪)
生2:我拿出的是一格格的东西,打算用它来量。
师: 我们给它一个名字,透明方格纸,用它量什么呢?
生2:我想用它量书本。
师: 书本的 ……(停顿)
生2:书面有几格?
师: 书的表面有几格其实就是它的面积,我们用1平方厘米的方格纸数它的面积 。(板书:数)
生3:我拿出的是平行四边形(学具),我想知道它的许多秘密。
师: 平形四边形的秘密,这词用得真好!你的写作水平一定高。待会我们来研究它
这节课我们就用刚才这些学具来研究平行四边形的面积。
教学反思
不!俗话说:磨刀不误砍柴功。我认为直接出示学具,不能引起学生对学具的重视,对其作用更是模棱两可,将为小组合作学习埋下“隐患”。学生面对一堆学具,面对要完成的任务手足无措,不知该从哪下手。这样岂不是更浪费时间,或者学具将失去它的作用,平形四边形、三角形的面积公式无法推导。
……
(学生动手操作,不久就纷纷举手)
生1:老师,我把对角一剪就变成了两个三角形。
生2:老师,我剪出的三角形两个一样的.。
师: 你们真厉害!对角一剪就变成了两个完全一样的三角形,你能从平行四边形的
面积公式推导出三角形的面积公式吗?
(学生小组讨论)
生3:就是除以2。
师: 你能完整的说一说什么除以2吗?
生3:平行四边形的面积除以2。用字母表示:s=ab2。
生4:我能把它剪成两个梯形教后反思
现在使用的教材存在着许多的弊端,教师如果只是根据教材按部就班有时就出现事倍功半的现象,而且难以达到预定的效果。而如果教师能运用教材进行灵活的运用,或是根据学生的特点重新组织教材,创设更有效的更能引起学生注意的课题导入设计、问题设计,让学对本节课产生极高的兴趣,让学生自己去发现问题,去解决问题,使教师的教和学生的学达到理想的境界,正如肖川教授所说的“使我们的教学达到完美的教育。”
平行四边形的面积教案篇二十
教学内容:教材第79~81页的内容。
知识目标:通过长方形面积计算知识迁移,理解平行四边形面积的计算公式,并能正确计算平行四边形面积。
能力目标:在剪一剪,拼一拼、比一比中发展空间观念;在看一看,想一想中初步感知等积转化的思想方法,提高分析问题、解决问题的能力。
情感目标:通过活动,激发学习兴趣,培养互相合作、交流、探索的精神,感受数学与生活的密切联系。
教学重点:掌握平行四边形的面积计算公式,能正确计算平行四边形的面积。
教学难点:初步认识转化的思想方法在研究平行四边形面积时的作用,并培养学生的分析、综合、抽象。概括能力和运用转化的方法解决实际问题的能力。
探索新知教学片段:
1、比一比,估一估。
生:一样大。
生:长方形比较大。
……。
师:大家都有不同的猜测,有很多同学都说一样大,那么,谁的想法正确呢?我们可以用什么方法来验证呢?四人小组讨论。
生:可以用数格子的方法。(将课本放展示台上。)我先数出整块的,然后这些剩下的小块拼一拼,还可以拼成整块的。
师:请大家看屏幕。(点击课件,边点击边说)。
师:用数方格的方法数数看。数一数,它们的面积各是多少?
……。
师:哦,你们数的结果是都是72平方米,说明……。
师:也就是……。
师:长方形的面积我们可以用公式来计算,那平行四边形的面积是不是也有计算公式呢,这就是我们今天要一起探讨的问题。(板书:平行四边形的面积)。
2、师:还有什么方法可以验证这两个图形的面积哪个比较大呢?
……。
生:我用割一割,补一补的方法,把平行四边形象这样剪开,然后再把它补到另一边去。
师:非常好,有自己的方法。下面我们用割补法来看看平行四边形的面积有多大?请同学们先仔细观察,然后说说你的'发现。
师点击课件,学生观察平行四边形变成长方形的过程……。
师:谁来说说自己的发现?
生:平行四边形的底和长方形的长一样长,平行四边形的高和长方形的宽一样长。
生:无数条。
师:所以,我们沿着平行四边形的任意一条高剪开,再通过平移,都可以把平行四边形转化成一个长方形。(边说边演示平行四变形通过割补法转化成长方形的过程。)。
生:平行四边形的底=长方形的长,平行四边形的高=长方形的宽。
生:我觉得平行四边形的面积与它两条边的长度不完全有关系。因为老师黑板上第一个平行四边形与第三个平行四边形的两条边长度一样,但第一个的面积明显比第三个大。
6、师:刚才应用了“转化”的思想,大家都值得表扬。
(师板书“s=a×h”)。
8、师小结:面对着求平行四边形面积的问题,我们利用割补的方法把平行四边形转化成学过的长方形,用旧知识解决了新问题,以后我们还要用这种思想方法继续学习其他图形的面积计算。
9、实际运用。
师:知道了平行四边形的面积公式,我们就可以利用它方便地计算平行四边形的面积了。
(1)(出示例1)请大家做一做。
谁来说一说你是怎么做的?
师:通过这道题,请大家想一想,要求平行四边形的面积,我们必须知道哪些条件?
学生回答,老师小结:求平行四边形的面积我们只要知道其中一组底和高就能求面积了。
(2)有一块地近似平行四边形,底是43米,高是20。1米。这块地的面积约是多少平方米?(得数保留整数)。
【本文地址:http://www.xuefen.com.cn/zuowen/14483343.html】