高中数学二次函数有哪些教案(优秀18篇)

格式:DOC 上传日期:2023-11-23 16:24:11
高中数学二次函数有哪些教案(优秀18篇)
时间:2023-11-23 16:24:11     小编:MJ笔神

教案是教师为了指导学生学习而制定的一种教学计划。教师编写教案时应注意培养学生的自主学习能力,注重启发学生思考和解决问题的能力。小编整理了一些来自专家的教案范文,希望能给大家一些启示和借鉴。

高中数学二次函数有哪些教案篇一

1、先做简单题,后做难题。

2、遇到较难的大题,把所有跟该题有关的知识点都写出来,要知道数学讲究步骤分。

3、若是证明题,万一不会,可以先写出已知条件,再写出要证明的最后一步,再一步一步往上推,中间步骤随便写点。(使用于粗心的教师,但我们不提倡,重点是要平时学好)。

一、整体把握、抓大放小。

拿到试卷后可以先快速浏览一下所有题目,根据积累的考试经验,大致估计一下每部分应该分配的时间。对于能够很快做出来的.题目,一定要拿到应得的分数。

二、确定每部分的答题时间。

1、考试时占用了很多时间却一点也没有做出来的题目。对于这类题目,你以后考试时就应该尽量减少时间,或者放弃,等以后学习进阶了再尝试着做。

2、考试时花了过多的时间才做出来的题目。对于这类题目,你以后平时做题时要尽量加快速度,或者通过“反复训练”等提高反应速度,这样,你下次考试时能用较少的时间做出来。

三、碰到难题时。

1、你可以先用“直觉”最快的找到解题思路;。

2、如果“直觉”不管用,你可以联想以前做过的类似的题目,从而找到解题思路;。

3、如果这样也不行,你可以猜测一下这道题目可能涉及到的知识点和解题技巧。

4、对于花了一定时间仍然不能做出来的题目,要勇于放弃。

四、卷面整洁、字迹清楚、注意小节。

做到卷面整洁、字迹清楚,把标点、符号、解题步骤等小的地方尽量做好,不要丢掉应得的每一分。

高中数学二次函数有哪些教案篇二

一、教材分析:

《34.4二次函数的应用》选自义务教育课程标准试验教科书《数学》(冀教版)九年级上册第三十四章第四节,这节课是在学生学习了二次函数的概念、图象及性质的基础上,让学生继续探索二次函数与一元二次方程的关系,教材通过小球飞行这样的实际情境,创设三个问题,这三个问题对应了一元二次方程有两个不等实根、有两个相等实根、没有实根的三种情况。这样,学生结合问题实际意义就能对二次函数与一元二次方程的关系有很好的体会;从而得出用二次函数的图象求一元二次方程的方法。这也突出了课标的要求:注重知识与实际问题的联系。

本节教学时间安排1课时。

二、教学目标:

知识技能:

1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.

2.理解抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.

3.能够利用二次函数的图象求一元二次方程的近似根。

数学思考:

1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神.

2.经历用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验.

3.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想。

解决问题:

1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。

2.通过利用二次函数的图象估计一元二次方程的根,进一步掌握二次函数图象与x轴的交点坐标和一元二次方程的根的关系,提高估算能力。

情感态度:

1.从学生感兴趣的问题入手,让学生亲自体会学习数学的价值,从而提高学生学习数学的好奇心和求知欲。

2.通过学生共同观察和讨论,培养大家的合作交流意识。

三、教学重点、难点:

教学重点:

1.体会方程与函数之间的联系。

2.能够利用二次函数的图象求一元二次方程的近似根。

教学难点:

1.探索方程与函数之间关系的过程。

2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。

四、教学方法:启发引导合作交流。

五:教具、学具:课件。

六、教学过程:

[活动1]检查预习引出课题。

预习作业:

1.解方程:(1)x2+x-2=0;(2)x2-6x+9=0;(3)x2-x+1=0;(4)x2-2x-2=0.

2.回顾一次函数与一元一次方程的关系,利用函数的图象求方程3x-4=0的解.

师生行为:教师展示预习作业的内容,指名回答,师生共同回顾旧知,教师做出适当总结和评价。

教师重点关注:学生回答问题结论准确性,能否把前后知识联系起来,2题的格式要规范。

设计意图:这两道预习题目是对旧知识的回顾,为本课的教学起到铺垫的作用,1题中的三个方程是课本中观察栏目中的三个函数式的变式,这三个方程把二次方程的根的三种情况体现出来,让学生回顾二次方程的相关知识;2题是一次函数与一元一次方程的关系的问题,这题的设计是让学生用学过的熟悉的知识类比探究本课新知识。

[活动2]创设情境探究新知。

问题。

1.课本p94问题.

3.结合预习题1,完成课本p94观察中的题目。

师生行为:教师提出问题1,给学生独立思考的时间,教师可适当引导,对学生的解题思路和格式进行梳理和规范;问题2学生独立思考指名回答,注重数形结合思想的渗透;问题3是由学生分组探究的,这个问题的探究稍有难度,活动中教师要深入到各个小组中进行点拨,引导学生总结归纳出正确结论。

教师重点关注:

1.学生能否把实际问题准确地转化为数学问题;。

2.学生在思考问题时能否注重数形结合思想的应用;。

3.学生在探究问题的过程中,能否经历独立思考、认真倾听、获得信息、梳理归纳的过程,使解决问题的方法更准确。

设计意图:由现实中的实际问题入手给学生创设熟悉的问题情境,促使学生能积极地参与到数学活动中去,体会二次函数与实际问题的关系;学生通过小组合作分析、交流,探求二次函数与一元二次方程的关系,培养学生的合作精神,积累学习经验。

[活动3]例题学习巩固提高。

问题。

例利用函数图象求方程x2-2x-2=0的实数根(精确到0.1).

师生行为:教师提出问题,引导学生根据预习题2独立完成,师生互相订正。

教师关注:(1)学生在解题过程中格式是否规范;(2)学生所画图象是否准确,估算方法是否得当。

设计意图:通过预习题2的铺垫,同学们已经从旧知识中寻找到新知识的生长点,很容易明确例题的解题思路和方法,这样既降低难点且突出重点。

[活动4]练习反馈巩固新知。

高中数学二次函数有哪些教案篇三

1.质疑问难是学生自主学习的重要表现,优化课堂结构,激活学生的主体意识,必须鼓励学生质疑问难。教师要创造和谐融合的课堂气氛,允许学生随时“插嘴”、提问、争辩,甚至提出与教师不同的看法。

2.二次函数是初中阶段继一次函数、反比例函数之后,学生要学习的最后一类重要的代数函数,它也是描述现实世界变量之间关系的重要的数学模型。

3.学生有疑而问、质疑问难,是用心思考、自主学习、主动探究的可贵表现,理应得到老师的热情鼓励和赞扬。现在对学生的随时“插嘴”,提出的各种疑难问题,应抱欢迎、鼓励的态度给与肯定,并做出正确的解释。

4.初中阶段主要研究二次函数的概念、图像和性质,用二次函数的观点审视一元二次方程,用二次函数的相关知识分析和解决简单的实际问题。

高中数学二次函数有哪些教案篇四

二、立足课堂,提高效率:做到教师入题海,学生出题海.教师应多做题、多研究近几年的中考试题,并根据本班学生的实际情况,从众多复习资料中,选择适合本班学生的最佳练习,也可通过对题目的重组。

三、教师在设计教学目标时,要做到胸中有书,目中有人,让每一节课都给学生留有时间,让他们有独立思考、合作探究交流的过程,最大限度的调动学生的参与度,激发他们的学习兴趣,达到最佳的复习效果.

四、激发兴趣,提高质量:兴趣是学习最好的动力,在上复习课时尤为重要.因此,我们在授课的过程中,在关注知识复习的同时,也要关注学生的学习欲望和学习效果,要让学生在学习的过程中体验成功的快感.这样他们才会更有兴趣的学习下去.

高中数学二次函数有哪些教案篇五

老师讲课认真听讲,不会的问题及时标记。在课堂上,做一个好学生,认真听讲,对于老师讲的问题及时记录,进行相应的标记,在下课的时候,及时询问老师,早日解决问题。

一定要课前预习一下知识点。在上课前或平时闲暇时间,一定要注意课下多多预习,预习比复习更加重要,真的很重要,关乎到课堂的思维能力的转变,多多看看,对自己的理解有帮助。

课上要学会学习,记笔记,也要记住老师讲的知识点。课堂上,自己要活跃一点,带给老师感觉,让老师对你有印象,便于日后学习高中数学,与老师探讨学习方法,记笔记,记住讲的重点。

多做一些比较普通而又常出的问题,来熟悉自己学的知识。在课下的时候,自己找出适合自己做的题,在做题中找出适合自己的题目,来进行做和学,总有一份题目适合自己做,便会更熟悉自己学的知识。

学会总结本节课的知识点,重点,做一个学会学习的人。及时总结所学的知识点,做一个学好习的人,让自己的心中有着大致的思路,能够解答出老师的,这便是可以了。

建立一个记错本,错误的题记录到本子上。将自己以前做过的错题,及时的整理出来,并且能够及时的回顾,便于日后在本子上学习到知识,能够复习到自己以前错过的题。

与老师经常交流学习方法,总有一个适合你。多多的与老师交流,给老师留下一个好印象,便于自己和老师更深入的交流学习,及时的询问一下高中数学的学习方法,总有一个适合自己。

高中数学二次函数有哪些教案篇六

选择题因其答案是四选一,必然只有一个正确答案,那么我们就可以采用排除法,从四个选项中排除掉易于判断是错误的答案,那么留下的一个自然就是正确的答案。

即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。用特殊值法解题要注意所选取的值要符合条件,且易于计算。

这类方法在近年来的初中题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。

有些选择题本身就是由一些填空题、判断题、解答题改编而来的,因此往往可采用直接法,直接由从题目的条件出发,通过正确的运算或推理,直接求得结论,再与选择项对照来确定选择项。我们在做解答题时大部分都是采用这种方法。

要求某个函数关系式,可先假设待定系数,然后根据题意列出方程(组),通过解方程(组),求得待定系数,从而确定函数关系式,这种方法叫待定系数法。

当某个数学问题涉及到相关多乃至无穷多的情形,头绪纷乱很难下手时,行之有效的方法是通过对若干简单情形进行考查,从中找出一般规律,求得问题的解决。

高中数学二次函数有哪些教案篇七

二次函数的最大值,最小值及增减性的理解和求法·。

三、解答题。

7·(1)请在坐标系中画出二次函数y=x2—2x的大致图象;

(3)观察图象,直接写出方程x2—2x=1的根(精确到0·1)·。

(1)当t=3时,求足球距离地面的高度;

(2)当足球距离地面的高度为10米时,求t;

高中数学二次函数有哪些教案篇八

教学任务分析:

(1)理解幂函数的概念,会画五种常见幂函数的图像;

(2)结合幂函数的图像,理解幂函数图像的变化情况和性质;

(3)通过观察、总结幂函数的性质,培养学生概括抽象和识图能力。

教学重点:

常见幂函数的的概念、图像和性质。

教学难点:

幂函数的单调性及比较两个幂值的大小。

教具准备:

多媒体课件、投影仪、打印好的作业。

教学情景设计。

问题。

问题2:如果正方形的边长为x,那么正方形面积y=?

问题3:如果正方体的棱长为x,那么正方体体积y=。

问题4:如果正方形场地的面积为x,那么正方形的边长?y=?

问题5:如果某人x秒内骑车行进1千米,那么他骑车的平均速度y=(千米/秒)引导学生探索发现:

引导学生归纳结论。

(1)?指数为常数。

1、即(是)。

2、(不是)。

3、(不是)。

定义域。

值域。

高中数学二次函数有哪些教案篇九

1.质疑问难是学生自主学习的重要表现,优化课堂结构,激活学生的主体意识,必须鼓励学生质疑问难。教师要创造和谐融合的课堂气氛,允许学生随时“插嘴”、提问、争辩,甚至提出与教师不同的看法。

2.二次函数是初中阶段继一次函数、反比例函数之后,学生要学习的最后一类重要的代数函数,它也是描述现实世界变量之间关系的重要的数学模型。

3.学生有疑而问、质疑问难,是用心思考、自主学习、主动探究的可贵表现,理应得到老师的热情鼓励和赞扬。现在对学生的随时“插嘴”,提出的各种疑难问题,应抱欢迎、鼓励的态度给与肯定,并做出正确的解释。

4.初中阶段主要研究二次函数的概念、图像和性质,用二次函数的观点审视一元二次方程,用二次函数的相关知识分析和解决简单的实际问题。

高中数学二次函数有哪些教案篇十

1.经历探索二次函数y=ax2的图象的作法和性质的过程,获得利用图象研究函数性质的经验。

2.能够利用描点法作出函数y=ax2的图象,并能根据图象认识和理解二次函数y=ax2的性质,初步建立二次函数表达式与图象之间的联系。

3.能根据二次函数y=ax2的图象,探索二次函数的性质(开口方向、对称轴、顶点坐标)。

教学重点:二次函数y=ax2的图象的作法和性质。

教学难点:建立二次函数表达式与图象之间的联系。

教学方法:自主探索,数形结合。

利用具体的二次函数图象讨论二次函数y=ax2的性质时,应尽可能多地运用小组活动的形式,通过学生之间的合作与交流,进行图象和图象之间的比较,表达式和表达式之间的比较,建立图象和表达式之间的联系,以达到学生对二次函数性质的真正理解。

一、认知准备:

1.正比例函数、一次函数、反比例函数的图象分别是什么?

2.画函数图象的方法和步骤是什么?(学生口答)。

你会作二次函数y=ax2的图象吗?你想直观地了解它的性质吗?本节课我们一起探索。

二、新授:

(一)动手实践:作二次函数y=x2和y=-x2的图象。

(同桌二人,南边作二次函数y=x2的图象,北边作二次函数y=-x2的图象,两名学生黑板完成)。

(二)对照黑板图象议一议:(先由学生独立思考,再小组交流)。

1.你能描述该图象的形状吗?

2.该图象与x轴有公共点吗?如果有公共点坐标是什么?

3.当x0时,随着x的增大,y如何变化?当x0时呢?

4.当x取什么值时,y值最小?最小值是什么?你是如何知道的?

5.该图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点。

(三)学生交流:

1.交流上面的五个问题(由问题1引出抛物线的概念,由问题2引出抛物线的顶点)。

2.二次函数y=x2和y=-x2的图象有哪些相同点和不同点?

3.教师出示同一直角坐标系中的两个函数y=x2和y=-x2图象,根据图象回答:

(1)二次函数y=x2和y=-x2的图象关于哪条直线对称?

(2)两个图象关于哪个点对称?

(3)由y=x2的图象如何得到y=-x2的图象?

(四)动手做一做:

1.作出函数y=2x2和y=-2x2的图象。

(同桌二人,南边作二次函数y=-2x2的图象,北边作二次函数y=2x2的图象,两名学生黑板完成)。

2.对照黑板图象,数形结合,研讨性质:

(1)你能说出二次函数y=2x2具有哪些性质吗?

(2)你能说出二次函数y=-2x2具有哪些性质吗?

(3)你能发现二次函数y=ax2的图象有什么性质吗?

(学生分小组活动,交流各自的发现)。

3.师生归纳总结二次函数y=ax2的图象及性质:

(2)性质。

a:开口方向:a0,抛物线开口向上,a〈0,抛物线开口向下[。

b:顶点坐标是(0,0)。

c:对称轴是y轴。

d:最值:a0,当x=0时,y的最小值=0,a〈0,当x=0时,y的最大值=0。

e:增减性:a0时,在对称轴的左侧(x0),y随x的增大而减小,在对称轴的右侧(x0),y随x的增大而增大,a〈0时,在对称轴的左侧(x0),y随x的增大而增大,在对称轴的右侧(x0),y随x的增大而减小。

4.应用:(1)说出二次函数y=1/3x2和y=-5x2有哪些性质。

(2)说出二次函数y=4x2和y=-1/4x2有哪些相同点和不同点?

三、小结:

通过本节课学习,你有哪些收获?(学生小结)。

1.会画二次函数y=ax2的图象,知道它的图象是一条抛物线。

2.知道二次函数y=ax2的性质:

a:开口方向:a0,抛物线开口向上,a〈0,抛物线开口向下。

b:顶点坐标是(0,0)。

c:对称轴是y轴。

d:最值:a0,当x=0时,y的最小值=0,a〈0,当x=0时,y的最大值=0。

e:增减性:a0时,在对称轴的左侧(x0=,y随x的增大而减小,在对称轴的右侧(x0),y随x的增大而增大,a〈0时,在对称轴的左侧(x0),y随x的增大而增大,在对称轴的右侧(x0),y随x的增大而减小。

高中数学二次函数有哪些教案篇十一

引入课题1.观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:

yx1-11-1yx1-11-1yx1-11-1。

1随x的增大,y的值有什么变化?2能否看出函数的最大、最小值?

2.画出下列函数的图象,观察其变化规律:

f(x)=x1从左至右图象上升还是下降______?2在区间____________上,随着x的增大,f(x)的值随着________.

yx1-11-1。

2.f(x)=-2x+11从左至右图象上升还是下降______?2在区间____________上,随着x的增大,f(x)的`值随着________.

1在区间____________上,f(x)的值随着x的增大而________.

2在区间____________上,f(x)的值随着x的增大而________.

高中数学二次函数有哪些教案篇十二

在整个中学数学知识体系中,二次函数占据极其关键且重要的地位,二次函数不仅是中高考数学的重要考点,也是线性数学知识的基础。那老师应该怎么教呢?今天,小编给大家带来初三数学二次函数教案教学方法。

一、重视每一堂复习课数学复习课不比新课,讲的都是已经学过的东西,我想许多老师都和我有相同的体会,那就是复习课比新课难上。

四、要多了解学生。你对学生的了解更有助于你的教学,特别是在初三总复习间断,及时了解每个学生的复习情况有助于你更好的制定复习计划和备下一堂课,也有利于你更好的改进教学方法。

二、立足课堂,提高效率:做到教师入题海,学生出题海。教师应多做题、多研究近几年的中考试题,并根据本班学生的实际情况,从众多复习资料中,选择适合本班学生的最佳练习,也可通过对题目的重组。

三、教师在设计教学目标时,要做到胸中有书,目中有人,让每一节课都给学生留有时间,让他们有独立思考、合作探究交流的过程,最大限度的调动学生的参与度,激发他们的学习兴趣,达到最佳的复习效果。

四、激发兴趣,提高质量:兴趣是学习最好的动力,在上复习课时尤为重要。因此,我们在授课的过程中,在关注知识复习的同时,也要关注学生的学习欲望和学习效果,要让学生在学习的过程中体验成功的快感。这样他们才会更有兴趣的学习下去。

1、质疑问难是学生自主学习的重要表现,优化课堂结构,激活学生的主体意识,必须鼓励学生质疑问难。教师要创造和谐融合的课堂气氛,允许学生随时“插嘴”、提问、争辩,甚至提出与教师不同的看法。

2、二次函数是初中阶段继一次函数、反比例函数之后,学生要学习的最后一类重要的代数函数,它也是描述现实世界变量之间关系的重要的数学模型。

3、学生有疑而问、质疑问难,是用心思考、自主学习、主动探究的可贵表现,理应得到老师的热情鼓励和赞扬。现在对学生的随时“插嘴”,提出的各种疑难问题,应抱欢迎、鼓励的态度给与肯定,并做出正确的解释。

4、初中阶段主要研究二次函数的概念、图像和性质,用二次函数的观点审视一元二次方程,用二次函数的相关知识分析和解决简单的实际问题。

1、教学案例、教学设计、教学实录、教学叙事的区别:教学案例与教案:教案(教学设计)是事先设想的教育教学思路,是对准备实施的教育措施的简要说明,反映的是教学预期;而教学案例则是对已发生的教育教学过程的描述,反映的是教学结果。

2、教学案例与教学实录:它们同样是对教育教学情境的描述,但教学实录是有闻必录(事实判断),而教学案例是根据目的和功能选择内容,并且必须有作者的反思(价值判断)。

4、教学案例必须从教学任务分析的目标出发,有意识地选择有关信息,必须事先进行实地作业,因此日常教育叙事日志可以作为写作教学案例的素材积累。

高中数学二次函数有哪些教案篇十三

会运用图象判断单调性;理解函数的单调性,能判断或证明一些简单函数单调性;注意必须在定义域内或其子集内讨论函数的单调性。

重点。

难点。

一、复习引入。

1、函数的定义域、值域、图象、表示方法。

(1)单调增函数。

(2)单调减函数。

(3)单调区间。

二、例题分析。

1、画出下列函数图象,并写出单调区间:

(1)(2)(2)。

2、求证:函数在区间上是单调增函数。

3、讨论函数的单调性,并证明你的结论。

变(1)讨论函数的单调性,并证明你的结论。

变(2)讨论函数的单调性,并证明你的结论。

三、随堂练习。

1、判断下列说法正确的是。

(1)若定义在上的函数满足,则函数是上的单调增函数;。

(2)若定义在上的函数满足,则函数在上不是单调减函数;。

(4)若定义在上的函数在区间上是单调增函数,在区间上也是单调增函数,则函数是上的单调增函数。

2、若一次函数在上是单调减函数,则点在直角坐标平面的()。

a.上半平面b.下半平面c.左半平面d.右半平面。

3、函数在上是______;函数在上是_______。

3.下图分别为函数和的图象,求函数和的单调增区间。

4、求证:函数是定义域上的单调减函数。

四、回顾小结。

课后作业。

一、基础题。

(1)(2)。

2、画函数的图象,并写出单调区间。

二、提高题。

3、求证:函数在上是单调增函数。

4、若函数,求函数的单调区间。

5、若函数在上是增函数,在上是减函数,试比较与的大小。

三、能力题。

6、已知函数,试讨论函数f(x)在区间上的单调性。

变(1)已知函数,试讨论函数f(x)在区间上的单调性。

高中数学二次函数有哪些教案篇十四

一、课前准备:

【自主梳理】。

1、形如的函数叫幂函数.

2、幂函数有哪些性质?(分析幂函数在第一象限内图像的特点.)。

(1)图像必过点.

(2)时,过点,且随x的增大,函数图像向y轴方向延伸。在第一象限是函数.

(3)时,随x的增大,函数图像向x轴方向延伸。在第一象限是函数.

(4)时,随x的增大,函数图像与x轴、y轴无限接近,但永不相交,在第一象限是函数.

【自我检测】。

1.指数函数是r上的单调减函数,则实数a的取值范围是.

2.要使的图像不经过第一象限,则实数m的取值范围.

3.已知函数过定点,则此定点坐标为.

4.下面六个幂函数的图象如图所示,试建立函数与图象之间的对应关系.

二、课堂活动:

课堂小结。

三、课后作业。

1.函数的定义域是.

2.的解析式是.

3.是偶函数,且在是减函数,则整数的值是.

4.幂函数图象在一、二象限,不过原点,则的奇偶性为.

5.若不等式对于一切成立,则a的取值范围是.

6.若关于x的方程在有解,则实数m的取值范围是.

高中数学二次函数有哪些教案篇十五

合作是社会发展的一种趋势,也是一种比较具有创新意识的教学方式。近年来,合作教学也逐渐普及并广泛地在各大学校中开展。通过教学方式能够有效地转变教师和学生的教学观念,摆脱传统教学模式对教师的负面影响。除此之外,还能够调动课堂气氛,增加学生的学习热情,培养学生对于英语的学习兴趣;通过合作教学还能够增加学生与教师、学生与学生之间的交流和沟通,增进友情,有利于培养学生的团结合作精神。因此,在高中英语教学过程中应用合作教学是至关重要的。随着社会的不断发展,各大企业对人才的要求也越来越高,为了顺应社会的发展,各个学校就应该根据市场的需求来培养人才。近年来,教育部门也开始对教育事业进行改革,通过转变教学方式来促进学生的个性化发展。在高中英语的教学过程中,各个学校要将合作教学融入其中,这不仅能够培养学生的合作能力和学习独立性,还能够培养学生的创新意识,是未来教育发展的必然趋势。

1.科学设计教案。

在竞争激烈的现代社会中,合作更显得尤为重要。因此,在高中英语的教学过程中有必要进行合作教学。所以,教师要做好准备工作,首先,教师要充分了解新课改要求下的教学大纲,并充分掌握教材内容,通过教材的教学内容和大纲要求对英语教材中的重点知识和难点内容进行归纳和分类。同时,教师还要将自己学校的学生实际情况相结合,用科学的方法设计教学方案。在规划教学方案的过程中,教师要认真观察学生的性格特点,充分利用学生的兴趣将合作教学方式融入教学过程中。比如,unit1friendship这一部分的教学主要讲的是友谊;pre-reading部分的问题我们要引导学生对“友谊”和“朋友”进行思考,使学生懂得不仅人和人之间可以成为朋友,日记也是人们的朋友;reading部分anne'sbestfriend就以日记的方式展示了犹太女孩安妮的故事;学生可以通过合作学习来讨论和了解课文所表达的朋友的重要性。值得注意的是,教师在开展合作教学过程中,要把握好教学的重点性和全面性,在培养学生个性化的同时,不要忘记教学的根本。

2.科学划分小组。

在传统的高中教学中,相对于初中教学相比,高中教材的知识量较大,知识难度较高,学生的课余时间较短,这些原因使学生对于英语的兴趣不高,有的学生甚至已经出现厌学的情绪。而有些自觉性较强的学生仍然保持良好的学习状态,学生自觉性较高,这时就会出现较大的学生差距。在高中英语的合作教学过程中,教师要重视这个问题,由于每个学生的英语基础不同,因此,教学时要科学地划分小组。在小组划分过程中,教师要熟悉每个学生的英语基础,根据每个学生的英语水平合理划分,()使每个小组中的成员都有成绩好的学生和一些差生,使每个小组成绩均衡。同时,教师还要在每个小组选出一个具有领导能力的组长,使每个组长不仅能够帮助教师做好一些工作,还能够带领小组成员一同进步,从而提升学生的学习效率。

3.重视实践活动。

在合作教学的'过程中教师要重视实践活动,在实践过程中还要合理地分配小组内的任务。在进行实践之前,教师要合理地划分教学小组,在每一个小组内部要划分教学工作任务,明确每个小组的各自任务,比如,语法差的学生小组要布置加强语法的任务,听力能力弱的学生小组要下达加强听力的任务等。在这个时候,领导者应发挥积极作用,有效、有序地指导团队成员协作学习。因此,小组成员之间要相互团结,互帮互助。在这其中,组长要首当其冲,对于任务的认知程度较差的学生,组长要进行详细的解说,让学生真正理解和掌握,这也直接影响到学习任务的最终完成质量、合作学习的完成情况。除此之外,完成过程中和完成之后,教师要给予真实的评价,通过教师对学生提出一些意见来使学生不断改进,从而提升学生的合作学习空间。

总之,在高中英语教学过程中,教学方法的选择是至关重要的。因此,英语教师要将合作教学融入教学之中。教师通过合作学习可以克服大量不利因素,为学生提供更多的实践机会;可以有效地提高学生的英语综合表达能力,促进学生的互帮互助,并培养他们的合作意识。因此,教师应该通过科学设计教案,科学划分小组,重视实践活动,真实地对学生进行总结评价,从而将合作学习应用到高中英语教学过程中,进而有效地推动英语教育事业的稳步发展。

参考文献:

[1]俞婷。新课程改革背景下高中英语教学的思考[j].当代教育与文化,2010(05)。

[2]仇雪燕。探讨新课程下的高中英语合作学习[j].语数外学习:英语教育,2012(10)。

(作者单位甘肃省天水市一中)。

高中数学二次函数有哪些教案篇十六

1.从具体函数的图象中认识二次函数的基本性质,了解二次函数与二次方程的相互关系.

2.探索二次函数的变化规律,掌握函数的最大值(或最小值)及函数的增减性的概念.能够利用二次函数的图象求一元二次方程的近似根.

3.通过具体实例,让学生经历概念的形成过程,使学生体会到函数能够反映实际事物的变化规律,体验数学来源于生活,服务于生活的辩证观点.

教学重点。

二次函数的最大值,最小值及增减性的理解和求法.

教学难点。

二次函数的性质的应用.

高中数学二次函数有哪些教案篇十七

地位及重要性。

函数的单调性一节属高中数学第一册(上)的必修内容,在高考的重要考查范围之内,函数的单调性是函数的一个重要性质,也是在研究函数时经常要注意的一个性质,并且在比较几个数的大小、对函数的定性分析以及与其他知识的综合应用上都有广泛的应用。通过对这一节课的学习,既可以让学生掌握函数单调性的概念和证明函数单调性的步骤,又可加深对函数的本质认识。也为今后研究具体函数的性质作了充分准备,起到承上启下的作用。

教学目标。

(1)了解能用文字语言和符号语言正确表述增函数、减函数、单调性、单调区间的概念;。

(2)了解能用图形语言正确表述具有单调性的函数的图象特征;。

(4)培养学生严密的逻辑思维能力、用运动变化、数形结合、分类讨论的方法去分析和处理问题,以提高学生的思维品质;同时让学生体验数学的艺术美,养成用辨证唯物主义的观点看问题。

教学重难点。

重点是对函数单调性的有关概念的本质理解,

二.说教法。

根据本节课的内容及学生的实际水平,我尝试运用“问题解决”与“多媒体辅助教学”的.模式。力图通过提出问题、思考问题、解决问题的过程,让学生主动参与以达到对知识的“发现”与接受,进而完成对知识的内化,使书本知识成为自己知识;同时也培养学生的探索精神。

三.说学法。

在教学过程中,教师设置问题情景让学生想办法解决;通过教师的启发点拨,学生的不断探索,最终把解决问题的核心归结到判断函数的单调性。然后通过对函数单调性的概念的学习理解,最终把问题解决。整个过程学生学生主动参与、积极思考、探索尝试的动态活动之中;同时让学生体验到了学习数学的快乐,培养了学生自主学习的能力和以严谨的科学态度研究问题的习惯。

四.说过程。

通过设置问题情景、课堂导入、新课讲授及终结阶段的教学中,我力求培养学生的自主学习的能力,以点拨、启发、引导为教师职责。

设置问题情景。

[引例]学校准备建造一个矩形花坛,面积设计为16平方米。由于周围环境的限制,其中一边的长度长不能超过10米,短不能少于4米。记花坛受限制的一边长为x米,半周长为y米。

写出y与x的函数表达式;。

(用多媒体出示问题,并让学生思考)。

高中数学二次函数有哪些教案篇十八

今天我说课的课题是二次函数图像及其性质。下面我将从以下几个方面进行阐述:

首先,我对本节教材进行简要分析。

本节内容是人民教育出版的九年级数学课程标准实验教科书《数学》第二册第二十七章第二节第三课时,属于数与代数领域的知识。在此之前,学生已学习了二次函数的概念和二次函数的图像及其性质。本节内容是对二次函数图像及其性质的相关知识的复习总结和综合运用,是后续研究二次函数图像的变换的基础。二次函数在初中函数的教学中有重要地位,它不仅是初中代数内容的引申,也是初中数学教学的重点和难点之一,更为高中学习一元二次不等式和圆锥曲线奠定基础。

本节课中的教学重点是梳理所学过的二次函数及其性质的相关内容,建构符合学生认知结构的知识体系,教学难点是运用数形结合的思想,选用恰当的数学关系式解决二次函数的问题,以及把实际问题转化成二次函数问题并利用二次函数的性质来解决。

基于以上对教材的认识,根据数学课程标准,考虑到学生已有的认知结构与心理特征,制定如下的教学目标。

【知识与技能】:

了解二次函数解析式的二种表示方法,会用配方法转化二次函数的表示形式;

会用描点法画出二次函数的图象,能从图象上认识二次函数的性质;

会根据公式确定抛物线的顶点坐标、开口方向、对称轴以及抛物线与坐标轴的交点坐标。

【过程与方法】:

3、数学的思想方法去观察、研究和解决实际问题,体验数学建模的思想。培养学生运用二次函数图像及其性质的相关知识解决数学综合题和实际问题的能力。

【情感与态度目标】:

在数学教学中渗透美的教育,让学生感受二次函数图像的对称之美,激发学生的学习兴趣。运用二次函数解决实际问题,使学生进一步认识到数学源于生活,用于生活的辩证观点。

为突出重点、突破难点、抓住关键,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈设计思路。

教法选择与教学手段:基于本节课的特点是复习总结所学过的知识及其综合运用,应着重采用复习与总结的教学方法与手段,即利用任务驱动进行复习总结,构建二次函数图像及其性质的综合化、网络化、结构化。通过提问思考、归纳总结、综合运用等形式对二次函数图像及其性质的相关知识和基本解题方法进行有针对性的、系统性的、综合性的教学。复习课例题教学的模式为学生思考,教师分析,解题小结三个环节。

学法指导:让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和解决问题的能力。

最后,我来具体谈一谈本节课的教学过程。

(一)由任务导引相关回忆。

为对二次函数图像及其性质的相关知识进行重构做准备。通过两题练习回忆复习二次函数图像及其性质的相关知识。第一题用配方法把二次函数的一般式化为顶点式的形式,并指出开口方向,对称轴和顶点坐标,引导学生复习回忆,了解二次函数解析式的二种表示方法,掌握用配方法转化二次函数的表示形式,会根据公式确定抛物线的顶点坐标、开口方向、对称轴。第二题用描点法画出二次函数的图象,并说出为何值时随增大而增大,为何值时,随增大而减小,引导学生掌握用描点法画出二次函数的图象,能从图象上认识二次函数的性质。

运用联想、概括方法对二次函数图像及其性质的相关知识进行梳理,由以上练习引导学生回忆、理解二次函数图像及其性质的相关知识,并形成相关的知识结构体系。通过知识回顾帮助学生梳理有关知识点,二次函数的定义、解析式的形式、图像画法、图像及其性质。

通过对二次函数图像及其性质的相关知识的复习,让学生运用相关概念、性质进行解题,采用学生思考,教师分析,解题小结三个环节构成的练习题讲解模式,巩固求解二次函数图像及其性质的基本题目的一般解题方法,并进一步研究二次函数图像及其性质的应用。第五题及第六题是运用二次函数图像及其性质的相关知识解决实际问题,领悟数形结合的思想方法,发展学生的化归迁移的数学思维,培养学生的转化能力。

(四)反思概括,方法总结。

总结本节课的知识点、重点和难点,着重理解二次函数图像及其性质的相关知识和基本解题方法,领悟数形结合的数学思想方法,学会用化归思想,解决实际问题。培养学生由题及法,由法及类的数学总结归纳方法。

(五)作业。

课后通过练习来巩固本节课所复习的知识点、重点和难点,强化教学目标。

各位老师,以上所说只是我预设的一种方案,但课堂上是千变万化的,会随着学生和教师的灵性发挥而随机生成的,预设效果如何,最终还有待于课堂教学实践的检验。

本说课一定存在诸多不足,恳请各位老师提出宝贵意见,谢谢!

【本文地址:http://www.xuefen.com.cn/zuowen/14438969.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档