数学教案长方体和正方体的体积(汇总14篇)

格式:DOC 上传日期:2023-11-23 15:36:11
数学教案长方体和正方体的体积(汇总14篇)
时间:2023-11-23 15:36:11     小编:文轩

教案是教师在备课过程中编写的一种详细的教学计划,它包括了教学目标、教学内容、教学方法、教学过程等内容。教案的编写可以帮助教师全面理解教材内容,合理组织教学活动,有效提高教学效果。教案不仅是一份指导教学的工具,也是评估教学质量的依据。因此,教师需要认真编写教案,确保教学过程的科学性和有效性。编写教案应该符合教学设计的原则,如明确目标、因材施教、激发兴趣、重视巩固等。小编整理了一些编写教案的常见问题和解决思路,供大家参考修正。

数学教案长方体和正方体的体积篇一

1、进一步掌握体积、容积单位之间的进率,并能比较熟练地进行化聚。

2、能根据有关体积、容积的计算方法,解答实际问题。

能比较熟练地进行化聚,并能根据有关体积、容积的计算方法,解答实际问题。

458立方厘米=()立方分米。

20.6立方分米=()立方米。

7060毫升=()升=()立方分米。

130毫升=()立方厘米=()立方分米。

800升=()立方分米=()立方米。

0.02立方米=()立方分米=()升。

2、一节货车车厢,从里面量长13米,宽2.7米,装的煤高1.2米。如果每立方米煤重1.3吨,这节车厢里装了多少吨煤?(得数保留整数)。

(1)学生独立完成。

(2)说说解题思路。

第一题:18×5=90(立方分米)90(立方分米)=90升。

90×0.74=66.6(千克)。

第二题:13×2.7×1.2=42.12(立方米)。

42.12×1.3≈55(吨)。

第三题:60×60×80=288000(立方厘米)。

2分米=20厘米。

20×20×20=8000(立方厘米)288000÷8000=36(个)。

第四题:9.6×4.2=40.32(平方米)。

9.6×4.2×2.5=100.8(立方米)。

第五题:80×40×(60-10)=160000(立方厘米)。

160000(立方厘米)=160升。

160000÷(40×40)=100(厘米)。

(3)重点分析第5题。

水面离箱口10厘米,说明水的高度是50厘米。从而求出水的容量。再根据底面边长40厘米的长方体水箱,求得水的高度。

1、学生独立研究。

2、小组讨论。

3、教师评议。

数学教案长方体和正方体的体积篇二

教学目的。

1.使学生认识长方体的特征,初步掌握长方体的概念,建立和发展初步的空间观念。

2.培养学生动手操作和观察的能力。

3.通过学生的实践活动,培养学生学习数学的兴趣。

教学过程。

一、复习。

教师:我们已经学习了一些平面图形,都有哪些图形呢?

二、新授。

1.导入。

教师出示教具,导入新课。

(1)学生拿出自己准备的长方体。

(2)研究长方体的特征。

(3)认识长方体的立体图形。

3.教学例2。

三、巩固练习。

1.下列图中哪些是长方体,哪些不是长方体,是长方体的指出它的长、宽、高。

2.判断题。

(1)相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。()。

(2)长方体有可能相邻的两个面的面积相等。()。

(3)长方体的每一个面一定是长方形。()。

3.说出下面长方体的长、宽、高各是多少厘米?

四、家庭作业:第23页第1、2、3题。

教学目的。

2.培养学生观察、比较、抽象概括的能力。

3.渗透事物是相互联系、发展变化的辩证唯物主义观点。

教学过程。

一、复习。

1.长方体有()个面,()条棱,()个顶点。长方体的6个面一般都是()形,也有可能有两个相对的`面是()形,()面积相等;()长度相等。

2.有一个长方体,长5分米,宽3分米,高2分米,它所有棱的棱长之和是()。

二、新授。

1.展示动画图像:

(1)将长方体的较长边缩短,使长、宽、高都相等。

(2)将长方体的较短边延长,使长、宽、高都相等。

2.观察学具正方体。

3.继续展示动画图像,进一步明确:

(1)正方体的六个面是完全相同的正方形;

(2)正方体的12条棱长度相等;

(3)有8个顶点。

5.填表。

三、巩固练习。

1.判断题。

(1)正方体的六个面面积一定相等。()。

(2)相交于一点的三条棱相等的长方体一定是正方体。()。

2.一个正方体每条棱长3分米,它的棱长之和是多少分米?

3.用一条长48厘米的铁丝折成一个正方体的框架,这个正方体的棱长是多少厘米?

四、家庭作业:第23页4――10题。

数学教案长方体和正方体的体积篇三

3.培养学生归纳推理,抽象概括的能力.。

教学重点。

教学难点。

教学用具。

教具:1立方厘米的立方体24块,1立方分米的立方体1块.。

学具:1立方厘米的立方体20块.。

教学过程。

一、复习准备.。

1.提问:什么是体积?

2.请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排.。

教师提问:拼成了一个什么形体?(长方体)。

这个长方体的体积是多少?(4立方厘米)。

你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成)。

如果再拼上一个1立方厘米的正方体呢?(5立方厘米)。

谈话引入:要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们。

数学教案长方体和正方体的体积篇四

1、结合具体情境和实践活动,经历探索长方体、正方体体积的计算方法,掌握并能正确计算长方体、正方体的体积。

2、经历观察、操作、探索的过程,发展动手操作、抽象概括、归纳推理的能力。进一步发展空间观念。

3、运用体积计算公式解决一些简单的实际问题。

4、探究活动中体验学习数学、发现数学的乐趣,学会与人合作。

2、教学重点/难点。

教学重点:引导学生探索长方体体积的计算方法。

教学难点:理解长方体体积公式的意义。

3、教学用具。

教学课件、一个长方体拼制模型。

4、标签。

一、启发谈话,激趣引入。

二、学习“体积”、“体积单位”的概念。

2、出示差不多大的土豆和一个长方体石块,你知道它们哪个大吗?那你有什么办法?

演示书上的实验,得出:土豆占的空间小,石块占的空间大。

4、计量体积的大小,要用到什么呢?常用的体积单位有哪些?请同学们自学14页中间部分。

5、学生汇报:

(1)常用的体积单位。

(2)拿出课前做的1立方厘米、1立方分米的小正方体,说说哪边哪些物体的体积大约是1立方厘米、1立方分米。

(3)立方米是怎么规定的?老师用3根1米长的木条搭成一个互相垂直的架子,放在墙角感知1立方米的大小,并说说生活中哪些物体的体积跟1立方米差不多大。

6、摆一摆:用棱长是1厘米的正方体木块,摆成下图中不同形状的模型,你知道它们的体积是多少立方厘米?(见教材)。

得出:要计量一个物体的体积,就要看这个物体含有多少个体积单位。

2、实践:拼摆长方体,四人一组,用不少于16块小正方体拼摆长方体,并分别记下摆出的长方体的长、宽、高和体积。

3、小组合作:学生四人一小组操作并做好实验记录。

思考:

(1)每排摆几个?每层摆了几排?摆了几层?

(2)一共摆了多少个小正方体?

(3)这个图形的体积是多少?

4、汇报实验结果。

每排个数。

每层排数。

层数。

小正方体个数。

让学生观察表格中填写的各数,你发现了什么?

小正方体的个数=每排个数×每层排数×层数。

‖‖‖‖。

长方体的体积=长×宽×高。

6、学生汇报,交流,板书。

读题,思考:求砖的体积就是求什么?这个长方体的长、宽、高分别是什么?利用公式,直接求出体积。

生:正方体是长、宽、高都相等的特殊的长方体。

师:根据这种关系,你能推导出正方体的体积公式吗?

2、师生共同归纳:正方体的体积=棱长×棱长×棱长。

用字母表示为:v=a×a×a=a3。

师强调:读作a的立方,表示3个a相乘。3a表示3个a相加。

3、应用公式:

例题2:一块正方体的石料,棱长是6厘米,这块石料体积是多少?课堂小结。

回顾一下,今天的学习大家有什么收获?

板书。

物体所占空间的大小,叫做物体的体积。

常用的体积单位有:立方米、立方分米、立方厘米。

小正方体的个数=每排个数×每层排数×层数。

‖‖‖‖。

长方体的体积=长×宽×高。

v=abh。

正方体的体积=棱长×棱长×棱长。

v=a×a×a=a3。

数学教案长方体和正方体的体积篇五

3.培养学生归纳推理,抽象概括的能力.。

教学重点。

教学难点。

教学用具。

教具:1立方厘米的立方体24块,1立方分米的立方体1块.。

学具:1立方厘米的立方体20块.。

教学过程()。

一、复习准备.。

1.提问:什么是体积?

2.请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排.。

教师提问:拼成了一个什么形体?(长方体)。

这个长方体的体积是多少?(4立方厘米)。

你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成)。

如果再拼上一个1立方厘米的正方体呢?(5立方厘米)。

谈话引入:要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们。

数学教案长方体和正方体的体积篇六

一、填空:

1、叫体积。

2、长方体体积公式是:;用字母表示:

3、正方体体积公式是:;用字母表示:

4、一个正方体棱长5厘米,它的棱长和是,表面积是,体积是。

5、一个长方体木箱的长是6分米,宽是5分米,高是4分米,它的棱长和是占地面积是,表面积是,体积是。

6、一个长方体方钢,横截面是边长4厘米的正方形,长2分米,体积是立方厘米。

7、一个长方体水池占地24平方米,深3.5米,它能蓄水立方米。

8、一个长方体木料,长4米,如果把它截3段,表面积增加24平方分米,这根木料的.体积是。

9、用棱长3厘米的小正方体拼成一个大正方体,至少需这样的小正方体块。

10、将一个长2米,宽3分米,高2.6分米的长方体木料,将它平均截成两段,表面积增加平方分米。

二、操作题:

右图是长方体展开图,测量所需数据,并求长方体体积。(取整厘米)。

三、解决问题。

1、一个无盖的长方体金鱼缸,长8分米,宽6分米,高7分米。制作这个鱼缸共需玻璃多少平方分米?这个鱼缸能装水多少升?(玻璃厚度忽略不计)。

数学教案长方体和正方体的体积篇七

1、能进一步认识长方体、正方体的表面积和体积及其计算方法,并能正确地计算,理解它们的内在联系。

2.通过学生的合作交流和自主探索,使学生学会在系统复习的基础上理清知识网络、进行分析归纳、逻辑推理,联系生活实际科学运用,提高自己的学习能力。

使学生知道知识的内在联系,提高学生灵活运用知识的能力。

橡皮

一、回顾昨天整理的有关长方体、正方体的知识。

设计意图:让学生回顾有关的知识点,可以唤起学生对所学过知识的再现,为本课的学习作好铺垫。

二、理解应用,走进生活乐乡学苑

通过上节课的整理,我们已经对长方体和正方体有了更清楚的了解和认识,大家的表现都很好!这节课我们就运用这些知识,帮助工人叔叔去解决他们在生产橡皮的过程中遇到的一些实际问题。

提醒:量出的数据保留整厘米数。

设计意图:从学生熟悉的橡皮入手,动手量橡皮的长宽高再计算其体积,比较贴近学生的生活,容易激发学习兴趣。

2、如果把这块橡皮平放在桌面上,它所占桌面的面积最大是多少,最小是多少?

学生自己解答:指名到前面演示,怎样摆放占桌面的面积最大,怎样摆放占桌面的面积最小。

师:以后在摆放物品时,就可以利用这个知识合理利用空间。

设计意图:通过这样摆一摆,让学生加深对“底面积”的理解。知道,在生活中有时只需要求长方体的一个面的面积。

3、如果要给这块橡皮做一个盒子最少需要多少平方厘米硬纸片,该怎样算呢?(不计算接头处与损耗材料)

设计意图:练习求6个面的长方体的表面积。

4、给这块橡皮四周贴上商标纸(贴满),商标纸的面积最少是多少平方厘米?

师:类似这样只算4个面面积的情况,在我们生活中还有哪些?(长方体立柱的油漆面积、火柴盒外壳等)

设计意图:练习求4个面的长方体的表面积。

师:你还能举出类似这样只计算5个面面积的例子吗?(粉刷教室的墙壁和顶棚、给游泳池四壁和底面贴瓷片等)

设计意图:练习求5个面的正方体的表面积。

设计意图:通过拼拼说说算算,让学生有不同层次的发现,从简单的“体积不变,表面积变了”到每一种拼法具体减少了哪两个面的面积。

设计意图:拓展学生运用知识的解决问题的能力,开拓思维。

8、这个外包装箱的容积是多少立方厘米?合多少立方分米?

三、学生展示自己出的关于长方体、正方体知识的数学问题,让全班同学解答、交流。

设计意图:平时学生习惯了老师出题,学生答题,现在让学生自己出题更能激发练习的兴趣。

四、课堂小结

像橡皮这样的一系列问题,在生活中有很多,这就说明数学就在我们身边,我们今后要学会用数学的眼光去观察物体,从中发现问题,解决问题。

五、课外延伸(作业)

夏天到了,哪些同学喜欢游戏呢?你们想在今后我们的校园内建个游戏池,今天请你们帮我们学校校园内设计一个游戏池吧!

本节课从学生平时接触较多的“橡皮”入手,给学生一种亲切与熟悉的感觉,能更好地使学生从心理上拉近数学与生活的距离,实践练习学生自己测量出数据,解决实际问题,这自然需要学生能灵活运用所学知识,这种练习设计体现了课标所倡导的“基础性”、“层次性”、“应用性”的特点。

数学教案长方体和正方体的体积篇八

在理解底面积的基础上,使学生掌握长方体和正方体体积的统一计算公式,提高学生综合运用知识的能力,发展学生的空间概念。。

理解底面积。

投影仪

1、指出下图中长方体的长、宽、高和正方体的棱长。(投影显示)

2、填空。

(1)长、正方体的体积大小是由确定的。

(2)长方体的体积=。

(3)正方体的体积=。

1.观察。

(1)长方体体积公式中的“长×宽”和正方体体积公式中的“棱长×棱长”各表示什么?(将复习题中的图用投影显示出“底面积”)

结论:长方体的体积=底面积×高

正方体的体积=底面积×棱长

2.思考。

(1)这条棱长实际上是特殊的什么?

(2)正方体的体积公式又可以写成什么?

结论:长方体(或正方体)的体积=底面积×高,用字母表示:

v=sh

1.做第35页的“做一做”的第1题。学生独立做后,学生讲评。

2.做第35页的“做一做”的第2题。

首先帮助学生理解:什么是横截面;把这根木料竖起来实际上就是什么?再让学生做后学生讲评。

3.做练习七的第9题,学生独立解答,老师个别辅导,集体订正。

学生今天学习的内容

做练习七的第10、11、12题。

数学教案长方体和正方体的体积篇九

3、能较灵活地运用所学知识解答简单的实际问题;

1.谈话

师:你们快要毕业了,我们班级陈艾菲的妈妈为我们班级的每个孩子准备了一份特殊的礼物。对!是一本长方体的相册,里面有我们班每一个同学的照片。

多媒体:相册

2.引题

师:你能说说什么是长方体的表面积呢?

板书:长方体六个面的总面积,叫做它的表面积。

1.提出问题。

师:长方体的表面积和什么有关呢?

师:小组可以先讨论讨论,再把算式写在纸上,贴到黑板上来。

2. 分组合作进行计算。

3. 小组讨论并把算式贴在黑板上:

方法一:30282+3052+2852

方法二:(3028+305+285)2

4. 在完整解答过程中要注意什么?注意写解,单位。

5. 小结:计算长方体的表面积一般有哪几种方法?

(根据总结,演示多媒体)

6. 练习:

师:老师的难题解决了。那你们昨天不是回家测量了长方体形状物体的长、宽、高,现在你们给同桌求它的表面积好吗?注意只列式不计算。

出示几份学生计算物体的表面积:

(1) 餐巾纸盒

问:求餐巾纸盒的表面积有什么用呢?

(2)大橱

问:求大橱的表面积有什么用呢?

7. 出示课题:

师:今天这节课我们探讨了什么问题呢?

出示课题:长方体的表面积计算

8. 这里有个长方体,看看哪个算式是正确的?

(1)已知长方体的长2厘米、宽7厘米、高6厘米,求它的表面积的正确算式是( )

a.272+672+62

b.(27+26+67)2

c.27+26+67

(2)给一个长和宽都是1米、高是3米的长方体木箱的表面喷漆,求喷漆面积的正确算式是( )

a.(11+13+13)2

b. 112+134

c.112+143

问:那2、3、两个算式有什么道理呢?小组可以先讨论讨论。

师:先说说112+134有什么道理?

(多媒体演示)

师:那112+143有什么道理呢?

生:112求的是上下底的面积,正方形的边长就是长方形的宽。14就是4个长方形拼成的大长方形的长,3就是大长方形的面积。

(3)一个长方体的长、宽、高都是4m,它的表面积是多少?( )

a. 444

b. (44+44+44)2

c. 446

问:为什么第3个答案也是正确的?

(多媒体演示)

9.问:这节课你掌握了哪些本领?

完整板书:和正方体

(小组讨论)

生:计算的结果是能做成的

生:66=36(平方分米)

(41.5+42+21.5)2=34(平方分米)

师:铁皮的面积是36平方分米,书箱的表面积是34平方分米,看来是够的,那老师就开始做了。

(教师演示)

问:不够了,为什么会不够呢?

问:那怎么办?

生:把旁边多余的切下来移到左面这里,用焊接的方法拼起来。

师:所以在制作物品的过程中,还不能单看表面积的大小是否合适,还需要考虑到其他种种因素,我们不能把所学的知识生搬硬套地运用到实践中去,要具体问题具体分析。

多媒体出示:一个火柴盒

问:如果用纸板做一个这样的火柴盒,我们该怎样知道至少要多少纸板呢?可以怎样计算?

师:我就把这个问题留给同学们,请同学们课后来解决好吗?可以独立思考,也可以几个同学合作解决。明天上课时我们来作交流。

数学教案长方体和正方体的体积篇十

长方体、正方体的知识是小学数学”空间与图形“领域的重要内容。原《大纲》要求是:长方体和正方体的特征。长方体和正方体的表面积。《数学课程标准》的具体内容是:

(1)通过观察操作,认识长方体、正方体,认识长方体、正方体的展开图;

(2)结合具体情境,探索并掌握长方体、正方体表面积的计算方法。

《数学课程标准》与《大纲》相比,增加了许多新的内容和要求,真正落实了几何教学要重视空间观念的培养的要求。首先,重视空间观念的培养。空间观念的主要内容包括”能够由实物的形状想象出几何图形,有几何图形想象出实物的形状,进行几何图与其三视图、展开图之间的转化“,这是一个包括观察、想象、比较、综合的过程,是建立在对周围环境直接感知基础上的、对空间与平面相互关系的理解和把握。不仅是一个思考过程,更是一个实际操作的过程。无论是做长、正方体的模型还是画出图形,都要在头脑加工和组合的基础上,通过实际尝试和动手操作来实现,所以,《数学课程标准》强调操作、经历过程,同时,增加了长方体、正方体展开图的内容。其次,在对长、正方体表面积的认识上,《数学课程标准》强调要结合具体的情境,探索并掌握表面积的计算方法,淡化了概念的记忆和理解,强化了对测量的实际意义的理解,以及对测量过程的体验。通过具体的长、正方体具体表面积的测量,让学生掌握测量的方法和知识,了解测量的必要性,而不把”测量“当作单纯的图形面积计算。第三,《大纲》教材中,把长方体、正方体的认识以及它们的表面积、体积计算安排在同一单元,由于内容比较多,计算枯燥、复杂,且表面积与体积计算混在一起,再加上学习的主要目的是识记图形特征、掌握计算技能,使学生感到难学,没有兴趣。

本册教材把这部分内容分成两个单元:本单元认识长方体、正方体(包括平面展开图)及表面积计算;第七单元学习长、正方体体积的计算。这样安排的主要目的有三点:第一,加强长方体、正方体特征及平面展开图的认识,充分发挥这些内容在发展学生空间观念方面的重要作用;第二,利用展开图的知识,促使学生自主理解、建构表面积计算的知识。第三,减少表面积和体积计算的复杂性和相互干扰,减轻学生负担。

过去的教材在认识立体图形的特征时,虽然也有操作活动,但是不够充分,仅仅是为了得出结论而操作。本教材在设计这部分内容时,进一步加强了操作活动,并把操作、体验、探索的学习过程作为活动的目标之一。如先用细棒和珠子搭成长方体、正方体模型,然后认识长方体、正方体的棱及顶点的特征;再如,长方体、正方体展开图的认识。过去平面展开图的学习只是作为计算表面积的准备,在讲表面积时只作一个简单介绍。现在将平面展开图单独安排一课时,先后设计了动手剪长方体、正方体盒子、展示剪开后的平面图形、找平面展开图中相对的面等活动,这种立体与平面之间的相互变换的认识活动,不仅有助于进一步认识长方体、正方体的特征,使学生在头脑中形成立体图形转化为平面图形的清晰表象。为自主探索长方体、正方体表面积的计算方法做准备,更有利于促进学生空间观念的发展。

如,在认识长方体、正方体时,设计了自己数面、棱、顶点的个数,自己归纳长方体、正方体的特征,它们的异同点;在认识长方体、正方体的展开图时,让学生自己剪长方体纸盒;在学习长方体、正方体表面积时,先让学生试算,然后交流各自的计算方法,最后由学生自己归纳表面积的计算方法。这样编写,给学生创造了自主探索的空间,使学生学会知识,培养自主探索的意识和能力。把数学学习的过程真正变成学生自主建构新知的过程。

本单元主要内容包括:长方体、正方体的特征,长方体、正方体的展开图,长方体、正方体的表面积计算及简单应用。共4课时。结合单元内容,安排了”包装磁带“的综合应用活动。

1、通过观察、操作,认识长方体、正方体以及它们的展开图。

2、结合具体情境,探索并掌握长方体、正方体表面积的计算方法,能解决表面积计算的问题。

3、在探索长方体、正方体特征以及它们展开图的过程中,进一步发展学生的空间观念。

4、探索出解决问题的有效方法,并试图寻找其他方法;能表达解决问题的过程,并尝试解释所得到的结果。

5、能主动参与观察、操作、尝试计算、交流等数学活动,获得自主解决问题的成功体验和经验,增强数学学习的信心。

教材首先选择了学生非常熟悉的物品,让学生从中找出形状是长方体、正方体的物体,再自己举例,丰富学生对长方体、正方体的直观认识。接着,认识长方体、正方体的特征,教材共设计了两个活动。活动一,先观察长方体、正方体模型,认识长方体、正方体的面、棱、顶点三个概念,以及长方体、正方体面的基本特征。再让学生观察用细棒和珠子搭成正方体、长方体框架,并数一数各有几条棱、几个顶点。然后,通过说一说”正方体的棱有什么特点?长方体的棱有什么特点?“丰富学生关于长方体正方体的认识,为抽象正方体、长方体棱的特征做好准备。活动二,、归纳长方体、正方体的特征,了解它们之间的关系。教材设计了把长方体正方体的特征在表中的活动,并呈现长方体、正方体特征的表格。在”议一议“中提出了”正方体和长方体有哪些相同的地方?哪些不同的地方?“的问题,通过讨论弄清长方体和正方体之间的关系,得出正方体是特殊的长方体。教材最后介绍长方体的长、宽、高及正方体的棱长等概念。教学中,要给学生充分的观察、思考、交流、自主探索的空间。如,认识长方体、正方体面、棱的特征时,分别采取先通过观察、数、讨论等方式认识长方体面、棱的特征,再让学生自己发现、交流正方体面、棱的特征。再如,长方体、正方体特征的,可先让学生在空白表上自己,再进行交流、归纳,让学生自己出长方体、正方体的异同点,真正理解为什么说”正方体是特殊的长方体“。

教材设计了两个活动。活动一,认识长方体的平面展开图,设计了三个层面的活动。

1.”把一个长方体纸盒剪开,铺成一个平面“。让学生在动手操作中亲身体验”立体“变成”平面“的过程。2.展示剪开的平面图,使学生直观看到,一个长方体剪开变成平面图形后,可以有不同的形状。同时认识这些平面图形都叫做长方体的平面展开图。3.观察自己剪的展开图,找出展开图上相对的面,并用不同的符号表示出来。从而认识平面图各部分与原来立体图各面之间的对应关系,发展空间观念。活动二,认识正方体的平面展开图。在认识长方体展开图的基础上,设计两个层面的活动。1.让学生剪开正方体纸盒,并在展开图上将相对的面涂上相同的颜色。2.交流涂色后的平面展开图,并用语言描述展开后的形状。

教材选择了学生熟悉的给长方体礼品盒贴彩纸的事例,提出了”至少需要多少彩纸“的问题和”自己试着算一算“的要求。让学生把已有的长方形面积计算和长方体平面展开图的知识迁移到长方体表面积计算中来。然后,交流学生个性化算法的过程中掌握长方体表面积的计算方法,认识并理解表面积的概念。由于正方体表面积的计算比较简单,所以,在”试一试“中由学生自主探索正方体表面积的计算方法。教学中,教师首先要帮助学生理解”给礼品盒表面贴彩纸“的意思就是把长方体的6个面都贴上彩纸,然后再鼓励学生自己试着计算。交流时,要给学生充分展示不同计算方法的机会,肯定学生合理的计算方法,并在比较中,使学生学会比较简单的计算方法。不要求一定列出综合算式计算。

教材选择了学生身边的学校粉刷教室墙壁的现实问题,用文字和情境对话的方式给出教室的长、宽、高和门窗、黑板的面积等有关数据,提出了”需要粉刷多少平方米?“和”自己试着算一算“的要求。让学生把长方体表面积的知识灵活应用到解决问题中来。然后,在交流学生个性化算法的过程中,认识到计算粉刷教室墙壁的面积时,要减去地面面积、门窗面积及黑板的面积,从而学会灵活运用长方体表面积计算公式解决实际问题。在”试一试“中设计了计算制作没有盖的长方体铁皮水箱的实际问题,再次给学生创造应用长方体表面积计算的方法灵活解决现实问题的素材。

教材共设计了两个探索活动。活动一,包装6盒磁带。教材首先提出了”把6盒磁带包装在一起,可以怎么摆放?“的问题,让学生以小组合作的方式用磁带实际摆一摆,然后交流不同的摆放方法。接着设计了两个问题。

(1)估计一下哪种包装方式更节省包装纸。

(2)实际测量一下,哪种包装方式用纸少。教材选择了三种比较典型的磁带摆放方式,让学生分别实际测量它们的长、宽、高,计算它们的表面积,也就是用包装纸的面积。并将相关数据填入表格中。通过实际测量、计算,用数据证明哪种包装方式用纸最少。活动二,包装8盒磁带。教材提出”包装8盒磁带,哪种方式更省包装纸?“的问题,先让学生想一想有几种包装方式,再比较哪种方式更省包装纸。通过两个活动,使学生认识到:重叠的面越大、越多时,其表面积就越小,也就越省包装纸。实际活动中,学生可能还有其他摆放的方法,教师要给与关注。也可以让学生实际测量一下。

数学教案长方体和正方体的体积篇十一

通过总复习中最后几道题的综合复习,检查学生综合运用知识。解决问题的能力。

复习内容和过程。

教学札记。

一、复习解方程。

1、完成教材第134页”期末复习“第28题。

(1)独立完成。

(2)集体订正,说说解方程的依据。

2、解下列方程。

x--=x++=。

1、完成课本第134页”期末复习“第29题。

(1)独立完成。

(2)集体订正,说说你是怎样想的。

2、练一练:

三、复习分数的加法和减法。

1、完成教材第123页期末复习第30题。

(1)独立完成。

(2)集体订正,说说的解题思路,如有错解,则分析错误原因。

2、练一练:

修路队第一天修路4/5千米,比第二天多修了2/15千米,两天一共修路多少千米?

四、作业:

教材第134页期末复习第31题。

数学教案长方体和正方体的体积篇十二

使学生理解长方体和正方体体积的计算公式,初步学会计算长方体和正方体的体积,培养学生实际操作能力,同时发展他们的空间观念。

一、创设情境。

填空:

2、常用的体积单位有:、、。

3、计量一个物体的体积,要看这个物体含有多少个。

师:我们已经知道计量一个物体的体积,要看这个物体含有多少个体积单位,那么怎样计算任意一个长方体、正方体的体积?这节课我们就来学习长方体、正方体体积的计算方法。(板书课题)。

二、实践探索。

1.小组学习------长方体体积的计算。

出示:一块长4厘米、宽3厘米、高2厘米的长方体橡皮泥,用刀将它切成一些棱长1厘米的小正方体。

提问:请你数一数,它的体积是多少?有许多物体不能切开,怎样计算它的体积?

实验:师生都拿出准备好的12个1立方厘米的小正方块,按第32页的第(1)题摆好。

观察结果:(1)摆成了一个什么?

(2)它的长、宽、高各是多少?

板书:长方体:长、宽、高(单位:厘米)。

431。

含体积单位数:4×3×1=12(个)。

体积:4×3×1=12(立方厘米)。

(3)它含有多少个1立方厘米?

(4)它的体积是多少?

同桌的同学可将你们的小正方体合起来,照上面的方法一起摆2层,再看:

(1)摆成了一个什么?

(2)它的长、宽、高各是多少?

(3)它含有多少个1立方厘米?

(4)它的体积是多少?(同上板书)。

通过上面的实验,你发现了什么?(可让学生分小组讨论)。

用字母表示:v=a×b×h=abh。

应用:出示例1,让学生独立解答。

2.小组学习——正方体体积的计算。

用字母表示为:v=a3。

说明:a×a×a可以写成a3,读作:a的立方。

应用:出示例2,让学生独立做后订正。

三、课堂实践。

1.做第34页的“做一做”的第1题。

(1)先让学生标出每个长方体的长、宽、高。

(2)再根据公式算出它们各自的体积。

(3)集体订正。

2、做第33页的“做一做”的第2题。

3、做练习七的第4、6题。

四、课堂。

五、课后实践。

做练习七的第5、7题。

数学教案长方体和正方体的体积篇十三

1、使学生理解并掌握长方体、正方体表面积的含义和计算方法,能运用长方体和正方体表面积的计算方法解决一些简单的实际问题。

2、使学生在活动中进一步积累探索有关图形问题的学习经验,发展空间观念和数学思考。

3、使学生进一步感受立体图形的学习价值,增强学习数学的兴趣。

理解并掌握长方体和正方体的表面积的计算方法。能运用长方体和正方体的表面积的计算方法解决一些简单的实际问题。

长方体模型、框架,长方体形状的纸盒等

一、复习准备

谈话:前两节课我们探索了长方体和正方体的基本特征,这节课我们继续学习有关长方体与正方体的知识。

出示长方体和正方体纸盒(与教材中例4和“试一试”同样大小的长方体和正方体)。

提问:长方体有几个面?这几个面之间有什么关系?它们可分为哪几组?正方体呢?

二、探究新知

1.探究长方体表面积的计算方法。

(1)出示问题:如果告诉你这个长方体纸盒的长、宽、高

你能算出做这个长方体纸盒至少要用多少平方厘米硬纸板吗?

在交流中明确:求至少需要多少平方厘米硬纸板,只要算出这个长方体6个面的面积之和。

(3)指名回答是怎样列式的,并相机板书如下算式:

6×4×2+5×4×2+6×5×2; (6×4+5×4+6×5)×2

(4)比较小结:这两种方法都反映了长方体的什么特征?你认为计算长方体6个面的面积之和时,最关键的环节是什么? (要根据长方体的长、宽、高,正确找出3组面中相关面的长和宽)

(5)提出要求:用这两种方法计算长方体6个面的面积之和都是可以的。请你用自己喜欢的方法算出结果。

2.探究正方体表面积的计算方法。

(1)谈话:根据长方体的特征我们解决了做长方体纸盒至少需要多少硬板纸的问题。如果纸盒是正方体的,你还会解决同样的问题吗? (出示‘‘试一试’’)

(2)学生独立尝试解答。

(3)组织交流反馈,提醒学生根据正方体的特征进行思考。

3.揭示表面积的含义。

谈话:刚才我们在求做长方体和正方体纸盒至少各要用多少硬纸板的问题时,都算出了它们6个面的面积之和,长方体(或正方体)6个面的总面积,叫做它的表面积。

三、应用拓展

1.做“练一练”。

先让学生独立计算,再要求学生结合自己的列式和题中的直观图具体说明思考的过程。

2.做练习四第1题。

让学生看图填空,再要求同桌同学互相说说每个面的长和宽,并核对相应的面积计算是否正确。

3.做练习四第2题。

让学生独立依次完成题中的两个问题,适当提醒学生运用第(1)题的结果来解答第(2)题,并要求学生说说用这样的方法求表面积的根据。

4.做练习四第5题。

让学生根据表中列出的各组数据对每一个物体是长方体还是正方体作出判断,并说明判断的理由;再让学生独立计算,并将结果填人表中。最后引导学生比较求长方体的表面积与求正方体表面积的过程和方法,说说求长方体或正方体表面积时各要注意什么。

四、全课小结

五、布置作业

做练习四第3、4题。补充习题相关内容

1.探究长方体表面积的计算方法。

(1)出示问题:如果告诉你这个长方体纸盒的长、宽、高

你能算出做这个长方体纸盒至少要用多少平方厘米硬纸板吗?

在交流中明确:求至少需要多少平方厘米硬纸板,只要算出这个长方体6个面的面积之和。

(3)指名回答是怎样列式的,并相机板书如下算式:

6×4×2+5×4×2+6×5×2; (6×4+5×4+6×5)×2

(4)比较小结:这两种方法都反映了长方体的什么特征?你认为计算长方体6个面的面积之和时,最关键的环节是什么? (要根据长方体的长、宽、高,正确找出3组面中相关面的长和宽)

(5)提出要求:用这两种方法计算长方体6个面的面积之和都是可以的。请你用自己喜欢的方法算出结果。

修改之处:

数学教案长方体和正方体的体积篇十四

(二)学习新课。

教师出示长方体教具,用手摸一下前面(面对学生的面),说明这是长方体的一个面,这个面的大小就是它的面积;再用手摸一下左边的面,说它也是长方体的一个面,它的大小是它的面积。

教师:长方体有几个面?学生:6个面。

教师用手按前、后,上、下,左、右的顺序摸一遍,说明这六个面的总面积叫做它的表面积。

请学生拿着自己准备的长方体盒子也摸一摸,同时两人一组相互说一说什么是长方体的表面积。

再请同学拿着正方体盒子,两人一组边摸边说什么是正方体的表面积。

学生讨论。(把六个面展开放在一个平面上。)。

教师演示:把长方体盒子、正方体盒子展开,剪去接头粘接处,贴在黑板上。也请每位同学把自己准备的长、正方体盒子的表面展开铺在课桌上。

教师:请再说一说什么是长、正方体的表面积。(学生口答。)。

2.长方体表面积的计算方法。

学生四人一组边操作边讨论后归纳:

请同学用自己的展开图练习找各面的长宽。然后再请一两位同学上讲台,指出黑板上展开图中相等的面和对应的长和宽。

3.正方体表面积的计算方法。

(1)教师:看看自己的正方体表面展开图,能说出正方体的表面积如何求吗?

(2)试解下面的题。

例2(投影片)一个正方体纸盒,棱长3厘米,求它的表面积。

请同学们填在书上,一位同学板书:

32×6。

=9×6。

=54(厘米2)。

答:它的表面积是54厘米2。

教师:如果这个盒子没有盖子,做这个盒子要用多少纸板该如何列式?

学生:少一个面。列式:32×5。

教师:说表面积是指六个面,实际问题中有的不是求长方体、正方体的表面积,审题时要分清求的是哪几个面的和。

(3)练习:课本p26做一做。(请两位同学写投影片,其余同学做本上。)。

用学生投影片集体订正。

(三)巩固反馈。

课堂教学设计说明。

本节新课教学分为三部分。

第三部分教学正方体表面积的计算方法。

板书设计。

【本文地址:http://www.xuefen.com.cn/zuowen/14426483.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档