传统文化是一个国家和民族的瑰宝,我们应该传承和弘扬。写一篇完美的总结需要提前准备,明确总结的目标和主题,梳理出要点和重要观点。以下是一些经典案例,希望能够给您提供一些灵感和参考。
考研数学学习心得篇一
第一段:引言(100字)。
数学是考研的一门重要科目,对于许多考生来说也是最具挑战的一门。为了在考研数学中取得好成绩,我在备考的过程中不断总结经验,探索出一些有效的学习方法和技巧。本文将分享我在学习考研数学过程中的心得体会,希望对广大考生有所帮助。
第二段:制定合理的学习计划(200字)。
学习考研数学首先要制定一个合理的学习计划,明确每天的学习目标和时间安排。我在备考期间,一般会将每周的复习内容和学习任务分配到每天,以避免过度压力和拖延情绪的出现。此外,为了检验自己的学习效果,我会定期进行模拟测试,每次模拟测试后都会仔细分析自己的答题情况和错题原因,有针对性地进行针对性的强化训练。
第三段:理解概念,强化基础知识(300字)。
考研数学的学科体系庞大而且涉及广泛,因此在备考时,我一直强调理解概念和强化基础知识。首先,我会重点复习数学的基础知识,如代数、几何、数论等,通过细致的阅读教材和参考书籍,加深对这些知识的理解。其次,在学习过程中,我会使用脑图等形式将各个知识点和概念进行分类整理,使之成为自己脑中的知识体系,这有助于加深对知识点间关系的理解。
第四段:多做习题,培养解题技巧(300字)。
在数学这门学科中,只有通过不断练习和考察,才能真正掌握其中的解题技巧。为此,我在备考过程中,会选择一些经典教材和试题进行刷题练习。在做习题时,我会注意每一道题目的解题方法和思路,将难点和关键点分析总结整理,以备后续的学习和回顾。此外,我还会尝试寻找一些解题技巧和经验,例如利用对称性、代入法、排除法等,从而提高解题效率和准确度。
第五段:坚持课外知识的拓展(200字)。
虽然考研数学主要考察的是基本知识和解题能力,但根据往年的考研情况来看,课外知识的拓展也是很重要的。因此,我在备考期间会积极主动地拓展自己的数学知识。我会阅读一些数学类的科普读物和期刊,了解数学应用于生活的各个领域,这不仅提升了我的数学修养,也激发了我对这门学科的兴趣,加深了对数学的理解和热爱。
总结(100字)。
学习考研数学需要有一定的耐心和恒心,同时还需要合理的学习计划,理解概念强化基础,多做习题培养解题技巧,以及坚持课外知识的拓展。通过长期的积累和努力,相信每一个考生都能在考研数学中取得优异的成绩。希望本文的经验和体会能对广大考生有所启发和帮助。
考研数学学习心得篇二
1、等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用,前提是必须证明拆分后极限依然存在,e的_次方-1或者(1+_)的a次方-1等价于a_等等。全部熟记(_趋近无穷的时候还原成无穷小)。
2、洛必达法则(大题目有时候会有暗示要你使用这个方法)。首先他的使用有严格的使用前提!必须是_趋近而不是n趋近!(所以面对数列极限时候先要转化成求_趋近情况下的极限,当然n趋近是_趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的,不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(_),没告诉你是否可导,直接用,无疑于找死!!)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。洛必达法则分为3种情况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成第一种的形式了;0的0次方,1的无穷次方,无穷的0次方。对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,ln_两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候,ln_趋近于0)。
3、泰勒公式(含有e的_次方的时候,尤其是含有正余弦的加减的时候要特变注意!)e的_展开sina,展开cosa,展开ln1+_,对题目简化有很好帮助。
4、面对无穷大比上无穷大形式的解决办法,取大头原则最大项除分子分母!!!看上去复杂,处理很简单!
5、无穷小于有界函数的处理办法,面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数,可能只需要知道它的范围结果就出来了!
6、夹逼定理(主要对付的是数列极限!)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。
7、等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1)。
8、各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限)可以使用待定系数法来拆分化简函数。
9、求左右极限的方式(对付数列极限)例如知道_n与_n+1的关系,已知_n的极限存在的情况下,_n的极限与_n+1的极限时一样的,因为极限去掉有限项目极限值不变化。
10、两个重要极限的应用。这两个很重要!对第一个而言是_趋近0时候的sin_与_比值。第2个就如果_趋近无穷大,无穷小都有对有对应的形式(第2个实际上是用于函数是1的无穷的形式)(当底数是1的时候要特别注意可能是用地两个重要极限)。
11、还有个方法,非常方便的方法,就是当趋近于无穷大时候,不同函数趋近于无穷的速度是不一样的!_的_次方快于_!快于指数函数,快于幂数函数,快于对数函数(画图也能看出速率的快慢)!!当_趋近无穷的时候,他们的比值的极限一眼就能看出来了。
12、换元法是一种技巧,不会对单一道题目而言就只需要换元,而是换元会夹杂其中。
13、假如要算的话四则运算法则也算一种方法,当然也是夹杂其中的。
14、还有对付数列极限的一种方法,就是当你面对题目实在是没有办法,走投无路的时候可以考虑转化为定积分。一般是从0到1的形式。
15、单调有界的性质,对付递推数列时候使用证明单调性!
16、直接使用求导数的定义来求极限,(一般都是_趋近于0时候,在分子上f(_加减某个值)加减f(_)的形式,看见了要特别注意)(当题目中告诉你f(0)=0时候f(0)导数=0的时候,就是暗示你一定要用导数定义!
函数是表皮,函数的性质也体现在积分微分中。例如他的奇偶性质他的周期性。还有复合函数的性质:
3、复合函数之间是自变量与应变量互换的关系;。
4、还有个单调性。(再求0点的时候可能用到这个性质!(可以导的函数的单调性和他的导数正负相关):o再就是总结一下间断点的问题(应为一般函数都是连续的所以间断点是对于间断函数而言的)间断点分为第一类和第二类剪断点。第一类是左右极限都存在的(左右极限存在但是不等跳跃的的间断点或者左右极限存在相等但是不等于函数在这点的值可取的间断点;第二类间断点是震荡间断点或者是无穷极端点(这也说明极限即使不存在也有可能是有界的)。
考研数学学习心得篇三
一、基本内容及历年大纲要求。
本章内容包括行列式的定义、性质及展开定理。从整体上来看,历年大纲要求了解行列式的概念,掌握行列式的性质,会应用行列式的性质及展开定理计算行列式。不过要想达到大纲中的要求还需要考生理解排列、逆序、余子式、代数余子式的概念,以及性质中的相关推论是如何得到的。
二、行列式在线性代数中的地位。
行列式是线性代数中最基本的运算之一,也是考生复习考研线性代数必须掌握的基本技能之一(另一项基本技能是求解线性方程组),另外,行列式还是解决后续章节问题的一个重要工具,不论是后续章节中出现的重要概念还是重要定理、解题方法等都与行列式有着密切的联系。
三、行列式的计算。
由于行列式的计算贯穿整个学科,这就导致了它不仅计算方法灵活,而且出题方式也比较多变,这也是广大考生在复习线性代数时面临的第一道关卡。虽然行列式的计算考查形式多变,但是从本质上来讲可以分为两类:一是数值型行列式的计算;二是抽象型行列式的计算。
1.数值型行列式的计算。
主要方法有:
(2)利用公式,主要适用二阶、三阶行列式的计算;。
(3)利用展开定理,主要适用出现零元较多的行列式计算;。
(4)利用范德蒙行列式,主要适用于与它具有类似结构或形式的行列式计算;。
(5)利用三角化的思想,主要适用于高阶行列式的计算,其主要思想是找1,化0,展开。
2.抽象型行列式的计算。
主要计算方法有:
(1)利用行列式的性质,主要适用于矩阵或者行列式是以列向量的形式给出的;。
(2)利用矩阵的运算,主要适用于能分解成两个矩阵相乘的行列式的计算;。
(5)利用单位阵进行变形,主要适用于既不能不能利用行列式的性质又不能进行合并两个矩阵加和的行列式计算。
考研数学学习心得篇四
拿到考卷以后,先把名字及其他试卷要求信息写上,虽然这是最基本的常识,但每年都有不少考生会犯这个低级错误。
(2)浏览整套试卷。
将试卷浏览一遍,看看哪些题目自己比较熟悉,哪些题没有思路,这套卷子大概哪部分做起来会比较困难,做到心中有数,以便合理分配时间。
(3)切忌心中发慌。
如果这套题看起来有很多陌生的题,也不要心慌。毕竟有些试题万变不离其宗,相信只要做到心中不乱、仔细思考就会产生思路。
(4)合理掌握时间。
如果一道考题思考了大约有二十分钟仍然没有思路,可以先暂时放弃这道题目,不要在一道试题上花费太多的时间,导致会做的题反而没有时间去做,那就太可惜了。
(5)学会适当放弃。
当确实没有思路的时候要暂时放弃,如果放弃的是一道选择题,建议大家标记一下此题,防止因此题使答题卡顺序涂错,如果时间充足还可再做。
但是,标记要慎重,以免被视为作弊,可以用铅笔标记,交试卷之前用橡皮察去。
(6)确定做题顺序。
在做题顺序上可以采用选择、填空、计算、证明的顺序。完成选择填空后,做大题时,先通观整个试题,明确哪些分数是必得的,哪些是可能得到的,哪些是根本得不到的,再采取不同的对应方式,才能镇定自如,进退有据,最终从总体上获胜。
比如说,如果你对概率部分的题比较熟悉,那么这部分的题做题就是有套路,那你就可以先把概率部分做了。通常来说,概率部分是三门课中最简单最好拿分的。其次就是线代了,当然线代两个大题可能有一个难度稍微大一点,另外一个难度相对比较小,那么你可以选择把其中简单一点的,自己有思路的那题先做了。最后再来做高数部分的题,高数一共有5个大题,如果是数一的同学,出现难题通常是在无穷级数,中值定理,曲线、曲面积分,应用题。也就是说高数部分有一道大题是相对简单的,可以先把这道题做了,通常这道题也就是在大题的第一题。就是说,这4道大题,一定要先把分给拿住了。最后再来解决稍微难一点的。当然剩下的几个题,也要有选择性的来做,如果有一点思路的,可以先考虑,完全没有思路的最后处理。
(7)适当运用做题技巧。
做选择题的时候,可以巧妙的运用图示法和特殊值法。这两种方法很有效,平时用得人很多,当然不是对所有的选择题都适用。
做大题的时候,对于前面说的完全没有思路的题不要一点不写,写一些相关的内容得一点“步骤分”。
(8)做题要细心。
做题时一定要仔细,该拿分的一定要拿住。尤其是选择题和填空题,因为体现的只是最后结果,一个小小的错误都会令一切努力功亏一篑。很多同学认为选择和填空的分值不大而对其认识不够,把主要的精力都放在了大题上面,但是需要引起大家注意的是:两道选择或填空题的分值就相当于一道大题,如果这类题目失分过多,仅靠大题是很难把分数提很高的。做完一道选择、填空题时只需要大家再仔细的验算一遍即可,并不需要一定要等到做完考卷以后再检查,而且这样也不会花费大家很长时间。
(9)注意步骤的完整性。
解答题的分数很高,相应的对于考生知识点的考察也更全面一些,有些考题甚至包含了三、四个考察点,因此要求考生答题时相应的知识点应该在卷面上有所体现,步骤过简势必会影响分数。
(10)注意问题之间的联系。
好多试题的问题并非一个,尤其是概率题,对于此类考题的第一问一定要引起注意。因为它的第二问,甚至第三问可能会与第一问产生直接或间接的联系,第一问如果答错将会导致第二、三问的错误,那么这道考题的分数就会失分很多。
(11)试卷检查。
如果答完考卷,最好是将试卷再仔细的看一遍,看看还有没有落题。然后再将答题卡与选项核对一下,防止顺序涂错。如果不能保证答完以后还有时间,可以在把填空题答完后就核对一下。
(12)书写要整洁。
要保持卷面的整洁和美观,以获得“印象分”。字如果写得不好没关系,至少要写得工整,这样批改试卷的老师也会给一定的分数。相反如果自己思路对了,但是写得乱七八糟的很有可能被扣掉小部分分数。
(13)保持良好的心态。
考研数学学习心得篇五
近年来,考研日益升温,研究生院校的数学专业成为众多考生追逐的梦想。然而,数学作为一门理科学科,对学生的数理基础要求极高,学习起来也充满了挑战。在我学习考研数学的过程中,我总结了几点心得体会,希望能给后来的考生一些借鉴。
首先,要树立正确的学习态度。数学是一门需要耐心和毅力的科学,学习它需要付出大量的时间和精力。因此,考生首先要调整好心态,面对困难和挫折时要坚持不懈,遇到困难不退缩,要相信只要努力就一定能够取得好的成绩。
其次,确定学习目标和计划。数学的学习需要有一个明确的目标和计划,否则学习起来会很茫然。在制定学习目标时,要考虑自己的实际情况,合理分配时间和精力;在制定学习计划时,要将整个学习过程合理安排,分解任务,确保每天都有充足的学习时间。
第三,注重基础知识的学习。数学考研的内容非常广泛,但中心核心还是基础知识。因此,考生要从基础知识开始学习,构建起一个牢固的知识体系,才能够更好地理解和掌握后面的知识点。对于基础知识的学习,可以通过参考教材、习题册和网络等多种方式,做到既广泛又系统地学习。
第四,梳理思路,注重方法和技巧的学习。数学考研的题目往往有一定的难度,解题方法不唯一,需要考生灵活运用数学知识来解决问题。因此,考生需要梳理思路,善于运用各种方法和技巧解决问题。可以通过做大量的习题来提高解题能力,培养自己的思维灵活性。
最后,要进行合理的复习和总结。复习是学习过程中不可或缺的一部分,通过复习可以巩固已学的知识,找出自己的不足之处,及时纠正错误。总结是复习的重要环节,通过总结可以将知识点串联起来,思路更加清晰。因此,考生要在复习时注重对知识的回顾和总结,可以制作知识点归纳表,方便随时温故知新。
学习考研数学需要长期坚持和勤奋学习,没有捷径可走。通过树立正确的学习态度,确定学习目标和计划,注重基础知识的学习,梳理思路和掌握方法技巧,进行合理复习和总结,相信每个考生都能够取得优异的成绩。希望我的这些心得体会可以对广大考研数学学习者有所帮助,让更多的人能够实现自己的考研梦想。
考研数学学习心得篇六
对微积分中的基本概念重新过一遍。特别是在考纲中要求“理解”的概念更要重视。例如,函数(一元或多元)、极限、连续、导数(偏导数)、微积分(全微分)、各种积分;极值与最值、曲线的凹凸性与拐点;曲线的三支渐进线。曲率、曲率圆与曲率半径、梯度、散度、旋读;常数项级数的收敛与发散、任意项级数的绝对收敛与条件收敛。幂级数的收敛区间与收敛域。幂级数的和函数;微积方程的阶、解、通解和特解等。
对于微积分中的一些定理,要记住定理的条件和结论,知道怎样用这些定理解决有关问题。例如:在闭区间上连续函数的性质(有界性、最大值最小值定理、介值定理、零点定理)、微分中值定理(罗尔定理、拉格朗日中值定理、泰勒定理、柯西中值定理)、积分中值定理、隐函数存在定理等。
2.必须牢记数学公式。
一定要反复熟悉微积分中的一些公式,做到牢记公式。例如两个重要极限,一些等价的无穷小量,倒数基本公式,常用的简单函数的高阶导数公式、基本积分公式、牛顿-莱布尼茨公式、积分限函数求导公式、格林公式、高斯公式、斯托克斯公式、初等函数的麦克劳琳展开式、一阶线性微分方程的求解公式、函数的傅里叶系数公式等。
3.适当做些中档题,切忌死抠难题。
在考卷中,中档题(难度系数0.3~0.8之间)约占75~80%。中档题主要考查基本概念、基本知识和基本运算。每天适当做些往年考研真题和模拟题中的中档题。对于深入理解概念,牢记公式,掌握基本方法是有好处的。可以使你保持良好的备战状态,以便应考。在考前的几天中花时间做难题是不划算的。请考生注意。
战术一:多次基本训练,抓住考研重点。
通过对历年试题的统计分析可以得出常考的内容,考试的重点,通过对近几年考题的分析可得出考试热点,抓住重点、热点可使复习针对性增强,加快复习进度并节省大量时间,提高考研竞争优势,为考场取得高分打下坚实的基础。
考研就是考“熟练”,只有把内容、方法搞熟练,才能获得最后的成功。学数学只有做大量的高质量的练习题才能把基本功练熟、练透,才能提高应试和解题的能力,总之数学需多做题,不能眼高手低。做题时要完整、认真演算,过一段时间要翻出来再看几遍。
战术二:考研数学记忆与理解很重要,学会举一反三。
考研数学一般考察考生的基础知识的掌握和运用解题的能力。数学的复习需要一步一步的积累知识、循序渐进的学习方法。数学的考题总是有严密的科学性,精确的答案,因而在打牢基础的前提下,万变不离其宗的灵活运用概念,一切难题都会迎刃而解。
基本概念是课程知识体系的支撑点,掌握了基本概念就等于抓住了纲。高数里的概念一般都很抽象,必须理解其数学意义。"万变不离其宗",从概念入手,一旦了解了概念,把握住概念中的核心词汇,理解概念中蕴藏的精髓所在,就如同把握了解题的命脉。在做题的时候就有坚实的基础,容易对症下药。同时记忆是学习过程中一个非常重要的环节,是掌握知识的手段。从某种意义上说,没有记忆就没有学习,人在认识过程中就无积累,就没有继承。当然也不能死记硬背,正如歌德所说:“你所不理解的东西,是你无法占有的。”而很多考生认为数学会做题就可以了,不需要记忆,但是通过和考研数学得高分的同学交流可以知道,在准备数学的最终阶段,还是需要记忆。只有先把基本的概念、解释记住了,才能进行下一步的理解、运用。
数学科目是循序渐进的,基础没打好,积下的问题在未来的学习中就会像滚雪球一样越滚越大,让人不堪重负。而一道高数题涉及的内容回到课本上可能是跨越好几个章节。所以学习数学时必须要学会举一反三。通过做题发现哪几个知识点比较容易连着一起出题。哪几个知识点又比较孤立,假如出现在同一道题里,又是怎样,并且尝试自己给自己出题,或者同学之间相互出题。
战术三:找准方法,持之以恒。
还有的考生认为现在离考试还远,没有紧迫感。今天没事干就看看书做两个题,明天有些事情就把书放在一边不理会了。这样的结果是看了后面忘了前面,知识没有连续性,形不成体系。考研的路程是漫长的,数学的学习是枯燥的,在复习过程中需要考生具有坚强的毅力。虽然2013的数学考试大纲未颁布,但万变不离其宗,考研数学的基本内容一般变化不大,考生可以参照去年的大纲和试题进行复习。详细了解本专业应考的数学卷种的基本要求,考试的题型、类别和难易度,以便更好的展开复习。凡是在大纲中表述为“会”、“理解”、“掌握”等的考试内容往往都是主要考点,务必要作为复习的重点。
数学复习不像英语、政治对辅导书的依赖性很大,主要靠课本来打下坚实的基础。翻一下数学大纲,上面列出的知识点全部来源于课本。所以考生一定要老老实实参照大纲的要求把原来的课本找出来,按照大纲对数学基本概念、基本方法、基本定理准确把握。数学学习中最重要的莫过于坚实的基础,包括对定理公式的深入理解,对基本运算的熟练和高正确率,对最基本的一些解题方法的掌握和运用。
战术四:正确选择资料。
选择资料:资料的使用关键要适合你的水平,这个要靠你自己在使用的过程中不断的总结和评价你的资料,必要的时候要即使的更换资料。因为我们都知道这个道理,拔苗助长。一本难度很高的资料,无疑于能够起到这种效果。如果出现这种情况,我认为那就得不偿失了。考研大约可以分为三个级别:高手、中手、庸手。高手水平很高,在他们的眼里,一切资料都那么简单。决个例子,那些能够考到400多分的,你可以设想一下,还有什么考研资料不是好的,不是简单,不是对他们来说有用。
市面上的资料五花八门,眼花缭乱,要想正确的选择,就要先进行了解。一般来说,考研复习资料根据内容、用途和针对性的不同,可以分为以下几大类:模拟试题、历年真题、考试大纲、专业教材以及各种考研辅导书和内部资料。试题及大纲一般网上都有下载,专业课的教材有的学校指定复习参考书目,应按学校指定参考书目去复习。不过近年不少院校都取消了参考书目的公布,所以大家更加要积极的去寻找往年的参考资料,以及你想考的专业本科阶段的教材去看。
制定任务:手头有一定复习资料后,就应该踏实看书复习了。关于如何复习,每个人都有自己的方法,当然也有一些大家经过摸索共同认可的方法。但考研复习毕竟是一个庞大的系统工程,复习课程多,时间跨度长,因此,考研复习必须有一个整体的规划,也就是说必须要制定一个适合自己的计划。这个计划是否合理,是否适合自己,往往在很大程度决定着你最后的结果。
最后,提醒同学们注意一定要在学习过程中写出自己的感受,可以在书上以题注的形式或者就是做笔记,尽量深挖例题内涵,这一点很重要在考研这条路,助大家早日修得正果!
考研数学学习心得篇七
我们应当掌握:
1、非齐次线性方程组解的结构及通解;。
5、向量、向量的线性组合与线性表示的概念;。
6、用初等行变换求解线性方程组的方法;。
7、基变换和坐标变换公式,过渡矩阵。(数一)。
8、向量空间、子空间、基底、维数、坐标等概念;(数一)。
10、向量组的极大线性无关组和向量组的秩的概念和求解;。
11、向量组等价的概念,矩阵的秩与其行(列)向量组的秩之间的关系;。
矩阵的特征值特征向量与二次型相当于是求解线性方程组的应用,出题比较灵活,有些题目技巧性较强,复习起来也是比较有意思的一章。在考试中也是比较容易出大题的内容。
其中我们应当掌握:
1、规范正交基、正交矩阵的概念以及它们的性质;。
2、内积的概念,线性无关向量组正交规范化的施密特(schmidt)方法;。
3、矩阵的特征值和特征向量的概念及性质,求矩阵的特征值和特征向量;。
4、实对称矩阵的特征值和特征向量的性质;。
7、正定二次型、正定矩阵的概念和判别法。
8、正交变换化二次型为标准形,配方法化二次型为标准形。
考研数学学习心得篇八
每一个例题,每一道习题,这是你以后成功的保证。对于概念,定理,要有自己的理解,可以用自己的语言来描述,可以知道他们彼此之间的关系,能做到合起书,将一个个定理在草稿纸上推导出来,知道书中各个章节的顺序,并且知道他们之间的联系。说得夸张一点,你可以默写出书中各个章节的标题,包括小标题。如果你能做到以上的,你的概念和理论就没有一点问题了。
再说例题,课本上的例题很简单,但是很典型,最简单的例子最容易说明最重要的问题,你就不会被繁琐的解题步骤弄的不知道例题到底想说明什么。举个例子,在一阶导数的例题里,仔细看看,你就会发现,例题中包括所有的求导方法。也许,你自己却从未意识到,还在看考研参考书里的分类,永远记住,课本是最好的参考书。
最后说习题,书上的习题,相信没有多少考研的人每一道题都认真做过。但是,习题,就如同例题,简单,但是最能要你明白你所需要学习的知识点。所以,对于课后习题,你用过仔细认真的去做每一道题。会做并能做对每一道题是最基本的要求,你还要明白你所做的每一道题是考察你什么知识点,用的'是什么方法,可以尝试在习题旁边写上出题人的意图。能做到以上3点,可以说你就拥有一个很好的基础了。高数,线代,概率,这三门课是一样的。线代,其实最简单,如果你能不看书推到出每一个定理(如果能,你就知道他们之间的联系,那思路一定会很清晰),那么我想如果你不会做的题,那90%的人肯定不会做。
概率,看起来公式太多,很难记住,同样,推导每一个公式,平时练习的时候做到不看书查公式,查定理,忘记了或者记不住了,就推导。慢慢你就会发现,你都可以记住了,即使考试一紧张忘记了,也能用很短的时间推导出公式了。曾经在考研论坛上看到过,刚开始复习的时候觉得高数简单,线代和概率太难。随着复习的深入,就会发现线代和概率是那么的简单,高数有点难,这就对了。我觉得课本至少看两遍,一直看到,闭着眼,能回想起书中的每一个知识点。当然,根据自己的基础,如果你还觉得哪些知识点薄弱,那就多做习题,不要把盲点留到最好。在复习课本的时候就可以做真题了,我选的是黄先开的那本历届数学真题解析,将近20年的数学真题分章节讲解,练习题也是真题,不过不是数一的。认真的做每一道题,然后思考出题者的意图,这一点很重要。
大概10月份的时候,我就复习完了。可以模拟考试了,那本书后面有数学的20年真题,那几张白纸,在白纸上写答案,3个小时做完。然后对答案,自己给自己打分。可以发现,前20年到前10年的题很简单,基本可以做到140,后10年难点,但不会低于120分。将自己做错的题分析一下,看看为什么做错了,是自己不细心还是方法不对还是压根就不会,认真总结错误的原因。第一遍模拟考试做完以后,将自己做错的题目再做一遍,然后就可以只做最近10年的题目,同样的方法,再做一遍,相信这个时候你就不会觉得自己担心数学了。
平时我模拟做真题都是130分以上,最后考了120分,还算不错。数学,是很细心的,所以你要从一开始就培养自己细心做题,踏踏实实一步一步的写,考试的时候才不会犯错误。选择,填空,最多只能错一个,不然你一定不会高分。我始终坚持一点,会做的题目一定不能失分,我可以有不会做的题目。这样,考试也就没压力,还能拿高分。在这里告诫各位,做题一定要大脑清晰,不要拿到题就梦着头做,要不了最后你还是觉得自己很多东西都不会。做题不在多少,一定要注重质量。到11月份以后,我基本上两天做一份真题,也就花3个小时来复习数学,这样才有时间复习专业课。随偶时间不多,但是最后却感觉有点简单,自己都有点担心,不过后来看来是多虑的,一定要相信自己。
将本文的word文档下载到电脑,方便收藏和打印。
考研数学学习心得篇九
高数定理证明之微分中值定理:。
这一部分内容比较丰富,包括费马引理、罗尔定理、拉格朗日定理、柯西定理和泰勒中值定理。除泰勒中值定理外,其它定理要求会证。
费马引理的条件有两个:1.f'(_0)存在2.f(_0)为f(_)的极值,结论为f'(_0)=0。考虑函数在一点的导数,用什么方法?自然想到导数定义。我们可以按照导数定义写出f'(_0)的极限形式。往下如何推理?关键要看第二个条件怎么用。“f(_0)为f(_)的极值”翻译成数学语言即f(_)-f(_0)0(或0),对_0的某去心邻域成立。结合导数定义式中函数部分表达式,不难想到考虑函数部分的正负号。若能得出函数部分的符号,如何得到极限值的符号呢?极限的保号性是个桥梁。
费马引理中的“引理”包含着引出其它定理之意。那么它引出的定理就是我们下面要讨论的罗尔定理。若在微分中值定理这部分推举一个考频最高的,那罗尔定理当之无愧。该定理的条件和结论想必各位都比较熟悉。条件有三:“闭区间连续”、“开区间可导”和“端值相等”,结论是在开区间存在一点(即所谓的中值),使得函数在该点的导数为0。
该定理的证明不好理解,需认真体会:条件怎么用?如何和结论建立联系?当然,我们现在讨论该定理的证明是“马后炮”式的:已经有了证明过程,我们看看怎么去理解掌握。如果在罗尔生活的时代,证出该定理,那可是十足的创新,是要流芳百世的。
前面提过费马引理的条件有两个——“可导”和“取极值”,“可导”不难判断是成立的,那么“取极值”呢?似乎不能由条件直接得到。那么我们看看哪个条件可能和极值产生联系。注意到罗尔定理的第一个条件是函数在闭区间上连续。我们知道闭区间上的连续函数有很好的性质,哪条性质和极值有联系呢?不难想到最值定理。
那么最值和极值是什么关系?这个点需要想清楚,因为直接影响下面推理的走向。结论是:若最值取在区间内部,则最值为极值;若最值均取在区间端点,则最值不为极值。那么接下来,分两种情况讨论即可:若最值取在区间内部,此种情况下费马引理条件完全成立,不难得出结论;若最值均取在区间端点,注意到已知条件第三条告诉我们端点函数值相等,由此推出函数在整个闭区间上的最大值和最小值相等,这意味着函数在整个区间的表达式恒为常数,那在开区间上任取一点都能使结论成立。
拉格朗日定理和柯西定理是用罗尔定理证出来的。掌握这两个定理的证明有一箭双雕的效果:真题中直接考过拉格朗日定理的证明,若再考这些原定理,那自然驾轻就熟;此外,这两个的定理的证明过程中体现出来的基本思路,适用于证其它结论。
以拉格朗日定理的证明为例,既然用罗尔定理证,那我们对比一下两个定理的结论。罗尔定理的结论等号右侧为零。我们可以考虑在草稿纸上对拉格朗日定理的结论作变形,变成罗尔定理结论的形式,移项即可。接下来,要从变形后的式子读出是对哪个函数用罗尔定理的结果。这就是构造辅助函数的过程——看等号左侧的式子是哪个函数求导后,把_换成中值的结果。这个过程有点像犯罪现场调查:根据这个犯罪现场,反推嫌疑人是谁。当然,构造辅助函数远比破案要简单,简单的题目直接观察;复杂一些的,可以把中值换成_,再对得到的函数求不定积分。
高数定理证明之求导公式:。
2015年真题考了一个证明题:证明两个函数乘积的导数公式。几乎每位同学都对这个公式怎么用比较熟悉,而对它怎么来的较为陌生。实际上,从授课的角度,这种在2015年前从未考过的基本公式的证明,一般只会在基础阶段讲到。如果这个阶段的考生带着急功近利的心态只关注结论怎么用,而不关心结论怎么来的,那很可能从未认真思考过该公式的证明过程,进而在考场上变得很被动。这里给2017考研学子提个醒:要重视基础阶段的复习,那些真题中未考过的重要结论的证明,有可能考到,不要放过。
当然,该公式的证明并不难。先考虑f(_)_(_)在点_0处的导数。函数在一点的导数自然用导数定义考察,可以按照导数定义写出一个极限式子。该极限为“0分之0”型,但不能用洛必达法则,因为分子的导数不好算(乘积的导数公式恰好是要证的,不能用!)。利用数学上常用的拼凑之法,加一项,减一项。这个“无中生有”的项要和前后都有联系,便于提公因子。之后分子的四项两两配对,除以分母后考虑极限,不难得出结果。再由_0的任意性,便得到了f(_)_(_)在任意点的导数公式。
高数定理证明之积分中值定理:。
该定理条件是定积分的被积函数在积分区间(闭区间)上连续,结论可以形式地记成该定积分等于把被积函数拎到积分号外面,并把积分变量_换成中值。如何证明?可能有同学想到用微分中值定理,理由是微分相关定理的结论中含有中值。可以按照此思路往下分析,不过更易理解的思路是考虑连续相关定理(介值定理和零点存在定理),理由更充分些:上述两个连续相关定理的结论中不但含有中值而且不含导数,而待证的积分中值定理的结论也是含有中值但不含导数。
若我们选择了用连续相关定理去证,那么到底选择哪个定理呢?这里有个小的技巧——看中值是位于闭区间还是开区间。介值定理和零点存在定理的结论中的中值分别位于闭区间和开区间,而待证的积分中值定理的结论中的中值位于闭区间。那么何去何从,已经不言自明了。
若顺利选中了介值定理,那么往下如何推理呢?我们可以对比一下介值定理和积分中值定理的结论:介值定理的结论的等式一边为某点处的函数值,而等号另一边为常数a。我们自然想到把积分中值定理的结论朝以上的形式变形。等式两边同时除以区间长度,就能达到我们的要求。当然,变形后等号一侧含有积分的式子的长相还是挺有迷惑性的,要透过现象看本质,看清楚定积分的值是一个数,进而定积分除以区间长度后仍为一个数。这个数就相当于介值定理结论中的a。
接下来如何推理,这就考察各位对介值定理的熟悉程度了。该定理条件有二:1.函数在闭区间连续,2.实数a位于函数在闭区间上的最大值和最小值之间,结论是该实数能被取到(即a为闭区间上某点的函数值)。再看若积分中值定理的条件成立否能推出介值定理的条件成立。函数的连续性不难判断,仅需说明定积分除以区间长度这个实数位于函数的最大值和最小值之间即可。而要考察一个定积分的值的范围,不难想到比较定理(或估值定理)。
高数定理证明之微积分基本定理:。
该部分包括两个定理:变限积分求导定理和牛顿-莱布尼茨公式。
变限积分求导定理的条件是变上限积分函数的被积函数在闭区间连续,结论可以形式地理解为变上限积分函数的导数为把积分号扔掉,并用积分上限替换被积函数的自变量。注意该求导公式对闭区间成立,而闭区间上的导数要区别对待:对应开区间上每一点的导数是一类,而区间端点处的导数属单侧导数。花开两朵,各表一枝。我们先考虑变上限积分函数在开区间上任意点_处的导数。一点的导数仍用导数定义考虑。至于导数定义这个极限式如何化简,笔者就不能剥夺读者思考的权利了。单侧导数类似考虑。
“牛顿-莱布尼茨公式是联系微分学与积分学的桥梁,它是微积分中最基本的公式之一。它证明了微分与积分是可逆运算,同时在理论上标志着微积分完整体系的形成,从此微积分成为一门真正的学科。”这段话精彩地指出了牛顿-莱布尼茨公式在高数中举足轻重的作用。而多数考生能熟练运用该公式计算定积分。不过,提起该公式的证明,熟悉的考生并不多。
该公式和变限积分求导定理的公共条件是函数f(_)在闭区间连续,该公式的另一个条件是f(_)为f(_)在闭区间上的一个原函数,结论是f(_)在该区间上的定积分等于其原函数在区间端点处的函数值的差。该公式的证明要用到变限积分求导定理。若该公式的条件成立,则不难判断变限积分求导定理的条件成立,故变限积分求导定理的结论成立。
注意到该公式的另一个条件提到了原函数,那么我们把变限积分求导定理的结论用原函数的语言描述一下,即f(_)对应的变上限积分函数为f(_)在闭区间上的另一个原函数。根据原函数的概念,我们知道同一个函数的两个原函数之间只差个常数,所以f(_)等于f(_)的变上限积分函数加某个常数c。万事俱备,只差写一下。将该公式右侧的表达式结合推出的等式变形,不难得出结论。
考研数学学习心得篇十
一、高等数学:
二、线性代数。
三、概率与数理统计。
基础薄弱的同学,春季,也就是现在就可以投入复习了。建议大家报数学春季基础班,可以初步建立自己的复习思路,为自己的复习起一个好头。一般来说复习分为四个阶段:第一个是基础复习阶段,这一阶段的任务是主攻教材和课本,达到基础知识的了解和掌握;第二个阶段是强化训练阶段,顾名思义这一阶段的主要任务是全书阶段,全面地掌握各类知识点,并且详细地做笔记,对常考的题型做大量的练习;第三个阶段是巩固提高阶段,这一阶段是通过真题和模拟题的训练和分析来完成将数学的整体框架结构搭建起来;最后一个阶段是冲刺阶段,这一阶段的时间一般较短,主要是做一些题目来达到稳固水平的目的,并且再次地强化之前所记忆的知识点。
如何选择复习资料呢?数学资料有两类,一类是复习教科书,一类是考研辅导专家针对考研而编写的资料。教科书应是深广度适当,叙述详略得当,通俗易懂,便于自学,如同济六版的《高等数学》,浙大版的《概率论与数理统计》,同济版的《线性代数》;辅导书的选择应该严格按照考试大纲进行,选择的资料要紧扣考纲,不要购买含大量超纲内容的考研辅导资料。考生应根据需要选择适合自己的资料。老师提醒考生,资料不在多,关键在看透、掌握。找准复习重心,有了明确的学习重心,有了完整的复习主干,有了良好的复习方法,接下来就是要考察考生自己的学习能力了。这里值得一提的是,不要在复习开始的阶段就拿大量的`试题来做,做题虽然是数学学习的重点,但是如果连基本的数学知识,包括基本的概念公式定理等都没有掌握好的话,做题肯定是达不到效果的,而且只能是倍受打击。老师提醒考生,在数学复习的这个阶段,也就是强化期,大家万万不可只用眼看,一定要亲手进行推导。当时认识自己看的很明白了,但是过不了多长时间,你就会忘得一干二净。参考书就是你这个阶段复习的重要武器,按着顺序慢慢来,一点一点来,一章一章的复习,先掌握知识,再在试题中检验自己。
基础是提高的前提,打好基础的目的就是为了提高。考生要明白基础与提高的辩证关系,根据自身情况合理安排复习进度,处理好打基础和提高能力两者的关系。一般来说,基础与提高是交插和分段进行的,现阶段应该以基础为主,基础扎实了,再行提高。考生在这个过程中容易遇到这样的问题,就是感觉自已经过基础复习或一段时间的提高后几乎不再有所进步,甚至感到越学越退步,碰到这种情况,考生千万不要气馁,要坚信自己的能力,只要复习方法没有问题,就应该坚持下去。虽然表面上感到没有进步,但实际水平其实已经在不知不觉中提高了,因为有这样的想法说明考生已经认识到了自已的不足,正处于调整和进步中。这个时候需要的就是考生的意志力,只要坚持下去,就有成功的希望。
考研数学学习心得篇十一
尽管考题千变万化,但是题型相对固定,提炼题型的目的就是为了提高解题的针对性,形成思维定势。要取得数学考研的理想成绩,主要在于提高解题能力,除了反复训练基本功外,更重要的是在训练中不断总结题型及解题方法,探索如何着手解题的思路,使知识模块化,解题方法格式化。大纲虽是复习的方向,但考试大纲中列出的许多内容或者从没考过,或者几乎没有被考到过。这主要是研究生入学考试除了选拔人才,还要有助于课程教学,所以必须深入剖析大纲要求,提炼出复习重点。在对概念、定理、公式进行全面复习的基础上对重点和难点部分作重点复习,但不要去做偏题、难题、怪题。
2.反复的基本训练,紧抓重点。
通过对历年试题的统计分析可以得出常考的内容,考试的重点,通过对近几年考题的分析可得出考试热点,抓住重点、热点可使复习针对性增强,加快复习进度并节省大量时间,提高考研竞争优势,为考场取得高分打下坚实的基础。考研就是考“熟练”,只有把内容、方法搞熟练,才能获得最后的成功。学数学只有做大量的高质量的练习题才能把基本功练熟、练透,才能提高应试和解题的能力,总之数学需多做题,不能眼高手低。做题时要完整、认真演算,过一段时间要翻出来再看几遍。
3.多做模拟试题,重视真题。
充分重视历年考题,有助于把握考试重点。历年考题涵盖了各章节的典型题型,通过做历年考题不失为复习数学较好方法之一。此外,研究生入学考试每年举行一次,因此不可能每年的考题都是全新的,或者每道题都有新“花招”。事实表明最新的考题与往年考题非常雷同的占50%以上。在认真复习完教材和复习完数学指导书后,应多做模拟题。在规定的时间内做几套模拟试卷,一是可以了解一下自己对所考的知识点究竟掌握到什么程度,同时可以了解到自己的薄弱环节从而抓紧时间补上。再者通过平时的“练兵”可以给应试时提供点临场发挥的经验。有相当一部分考生的经验证明:如果考生能够通过做题将所遇到的各种题进行延伸或将试题的变式做到融汇贯通,一定会在考试中运用自如超常发挥,取得好成绩。
4.独立做题,不依赖答案并善于总结。
学习的过程中一定要力求全部理解和掌握知识点,做题的过程中先不要看答案,如果题目确实做不出来,可以先看答案,看明白之后再抛弃答案自己把题目独立地做一遍。不要以为看明白了就会了,只有自己真正做一遍,印象才能深刻。注意一定要在学习过程中写出自己的感受,可以在书上以题注的形式或者就是做笔记,尽量深挖例题内涵,这一点很重要,并且要贯彻前三轮的复习,如果最后一轮复习我们有了自己整理的笔记,就会很轻松。有同学说学习线性代数最好的办法就是亲自推导,这话很有道理,事实上如果我们学习什么知识都采取这种态度的话,那肯定都会学得非常好。
5.从掌握解题技巧,使其化为己有。
根据自己的总结或在辅导老师的帮助下,考生可以知道常规的题型和解题方法与技巧,但考生如何才能真正吸收消化这些知识以成为自己的知识呢?那就是要进行相当量的综合题练习。因为在复习过程中,不少考生会渐渐地有能力解答一些基本题目,但如果给他一道较为综合的大题,他就无从下手了。所以要做一定量的综合题。首先从心理上就不要害怕这样的题目,因为大题目肯定是可以分解为若干个小题目的。这样一来,考生要掌握的东西就显然被分为了两个大方向。一是小题目,实质上也就是基础知识点的掌握与常规题型的熟练掌握;二是要能够将大题目拆分为小题目,也就是说能够出题专家的思维方式来推测此大题目是想考我们什么知识点。陷阱在哪儿?我们应该分为几个步骤来解这道题。这两个方面的知识是考生平时复习整个过程中要加以思考的问题,因为基础知识点要不断地巩固加强,将大问题细分的能力是平时的日积月累而形成的本领。
最后,考研教育网小编提醒大家:数学复习要强调的是学习,要拿出重新学习的劲头亲自动手去做、去思考。在学习数学的时候,最好培养自己的兴趣,兴趣是最好的老师,只要培养出了兴趣自然而然就找到了学习数学的乐趣。如果实在提不起兴趣就拣一些简单的知识点复习,积累一定的自信和兴趣之后再逐一攻破。带着兴趣去学习,在快乐中考研!
考研数学学习心得篇十二
数学知识的学习是一个长期积累的过程,它具有基础性和长期性的特点,我们要遵循由浅入深的原则,先将书本上的知识基础打牢靠,一定要重视基础知识的学习,不要过于去追求技巧以及方法。近几年考研真题对基础知识的考察时很频繁的,像刚刚过去的20xx年考研数学中就有关于用导数定义来推导两个函数乘积的导数。所以,等我们把基础知识掌握牢靠后,再去学一些技巧以及方法。因此我们将基础知识的复习安排在第一阶段,希望大家给予足够重视。一个科学的学习计划,能更迅速有效地帮我们掌握数学知识。
对于大部分同学而言,由于高等数学学习的时间比较早,而且在大学课堂上学习所针对的难度并不是很大,再加上一些知识的遗忘,现在数学知识恐怕已经所剩无几了,所以,这一遍强调学习,要拿出重新学习的劲头亲自动手去做,去思考。
我们建议先学高等数学再学线性代数,然后再学概率论与数理统计。我们知道高等数学是线性代数和概率论与数理统计的基础,一定要先学习。我们并不主张三门课一起学习,毕竟三门课是有所区别的。我们一定要学一门就先学精了再继续学其他的,倘若你不学透就开始学其他的,每一门都有好多不懂的地方,到时你反而会耗费更多的时间去补前面的知识。当然,你确实也可根据自己的特殊情况调整复习顺序。
同学们一定要结合考研辅导书和大纲,先吃透基本概念、基本方法和基本定理,只有对基本概念深入理解,对基本定理和公式牢牢记住,才能找到解题的突破口和切入点。一些学生失分的一个重要原因就是对基本概念、基本定理理解不准确,基本解题方法没有掌握。因此,第一阶段学习必须要在数学基本概念、基本定理、重要的数学原理、重要的数学结论等方面加强学习。
数学考试主要就是解题,而考研数学中的基本概念、公式、结论等也只有在反复练习中才能真正理解和巩固。我们通过大量的训练可以切实提高数学的解题能力,做到面对任何试题都能有条不紊地分析和计算。
我们在学习的过程中一定要力求理解和掌握所有要考的知识点,做题的过程中一定不要先看答案,如果题目实在做不出来了,再看答案,看明白之后自己一定要把题目重新独立地做一遍。不要以为看明白了就会了,只有自己真正做一遍,印象才能深刻,才不会忘的过快,否则是无用的。
注意一定要在学习过程中写出自己的感受,可以在书上以题注的形式或者就是做笔记,尽量深挖例题内涵,这一点很重要,并且要贯彻前三轮的复习,如果最后一轮复习我们有了自己整理的笔记,就会很轻松。有同学说学习线性代数最好的办法就是亲自推导,这话很有道理,事实上如果我们学习什么知识都采取这种态度的话,那肯定都会学得非常好。
在考研的路上,你肯定会遇到很多困难,我们知道身体是革命的本钱,健康的身体对于我们是很重要的,所以平时多注意饮食和作息时间,而明确的学习方法和对考研的那份坚持,是你成为赢家的第二本钱。
考研数学学习心得篇十三
这册教材包括下面一些内容:位置,20以内数的退位减法,图形的拼组,100以内数的认识,认识人民币,100以内的加法和减法。
(一)认识时间,找规律,统计,数学实践活动。
重点教学内容是:100以内数的认识,20以内的退位减法和100以内的加减法口算。总复习的编排应对注意突出本学期的教学目标,以及知识间的内在联系,便于在复习时进行整理和比较,以加深学生对所学知识的认识。如把数概念、计算分别集中复习。在复习“100以内的加法和减法”时,把“20以内的退位减法”和100以内的口算结合起来进行复习,使学生更好地掌握知识间的前后联系,同时,注意计算与解决问题相结合,达到通过解决简单的实际问题来巩固计算熟练程度的作用。
1、通过总复习,使学生获得的知识更加巩固,计算能力更加提高,能用所学的数学知识解决简单的实际问题,全面达到本学期规定的教学目标。
2、引导学生主动整理知识,回顾自己的学习过程和收获,逐步养成回顾和反思的习惯。
3、通过总复习使学生在本学期学习到的知识系统化。巩固所学的知识,对于缺漏的知识进行加强。
4、通过形式多样化的复习充分调动学生的学习积极性,让学生在生动有趣的复习活动中经历、体验、感受数学学习的乐趣。
5、有针对性的辅导,帮助学生树立数学学习信心,使每个学生都得到不同程度的进一步发展。
复习的重点:主要放在数与数的运算这一块内容中的20以内的退位减法和100以内数的认识和100以内的加减法这几部分内容。
复习的难点:20以内的退位减法;100以内的退位及进位加法;钟面的认识;人民币的认识;物体的相对位置。
考研数学学习心得篇十四
数学中有很多概念。概念反映的是事物的本质,弄清楚了它是如何定义的、有什么性质,才能真正地理解一个概念。所有的问题都在理解的基础上才能做好。
定理是一个正确的命题,分为条件和结论两部分。对于定理除了要掌握它的条件和结论以外,还要搞清它的适用范围,做到有的放矢。
要特别提醒学习者的是,课本上的例题都是很典型的,有助于理解概念和掌握定理,要注意不同例题的特点和解法在理解例题的基础上作适量的习题。作题时要善于总结---- 不仅总结方法,也要总结错误。这样,作完之后才会有所收获,才能举一反三。
要对所学的知识有个整体的把握,及时总结知识体系,这样不仅可以加深对知识的理解,还会对进一步的`学习有所帮助。
高等数学中包括微积分和立体解析几何,级数和常微分方程。其中尤以微积分的内容最为系统且在其他课程中有广泛的应用。微积分的理论,是由牛顿和莱布尼茨完成的。(当然在他们之前就已有微积分的应用,但不够系统)
数学备考一定要有一个复习时间表,也就是要有一个周密可行的计划。按照计划,循序渐进,切忌搞突击,临时抱佛脚。
其实数学是基础性学科,解题能力的提高,是一个长期积累的过程,因而复习时间就应适当提前,循序渐进。大致在三、四月分开始着手进行复习,如果数学基础差可以将复习的时间适当提前。复习一定要有一个可行的计划,通过计划保证复习的进度和效果。一般可以将复习分成四个阶段,每个阶段的起止时间和所要完成的任务考生应给予明确规定,以保证计划的可行性。
第一个阶段是按照考试大纲划分复习范围,在熟悉大纲的基础上对考试必备的基础知识进行系统的复习,了解考研数学的基本内容、重点、难点和特点。这个时间段一般划定为六月前。
第二个阶段是在第一阶段的基础上,做一定数量的题,重点解决解题思路的问题。一般从七月到十月。这个阶段要注意归纳总结,即拿到题后要知道从什么角度,可以分几步去求解,每道题并不要求都要写出完整步骤,只要思路有了,运算过程会做了,可以视情况而灵活掌握,这样省出时间来看更多的题。所选试题可以是历年真题,也可以是书上的练习题,但真题一定要做,而且要严格按照实考的要求去做,把握真题的特点和解题思路及运算步骤。
第三个阶段是实战训练阶段,从十一月到十二月的中旬,这也是临考前非常重要的阶段。考生要对大纲所要求的知识点做最后的梳理,熟记公式,系统地做几套模拟试卷,进行实战训练,自测复习成果。在做模拟题前先要系统记忆掌握基本公式,做题要讲究质量,既要有速度,又要有严格的步骤、格式和计算的准确性。最后阶段是考前冲刺,从十二月下旬到考试。针对在做模拟试题过程中出现的问题作最后的补习,查缺补漏,以便以最佳的状态参加考试。
学好数学是一个长期的过程,来不得半点的投机取巧,所以考前突击,临时抱佛脚的做法是不足取的,只有按照自己的计划,踏踏实实的进行准备,才能以不变应万变,只要自己的综合能力提高了,不管考试如何变化,都能取得好的成绩。
数学的学习一定要每天都有个进度,每天都要有题量,我们不应该搞题海战术,但是通过做题提高实战经验也是必须的,首先有个大的学习框架,然后计划到每天,怎么去学习,每天做那方面的题,定期的查漏补缺,这样的学习才真正的有效果。
最后,预祝所有准备考研的学子都能榜上有名,考上理想的学校!
考研数学学习心得篇十五
“纲”是《数学考试大纲》,“本”为课本。虽然20xx年的数学考试大纲尚未颁布,但万变不离其宗,考研数学的基本内容一般变化不大,考生可以参照去年的大纲和试题进行复习。详细了解本专业应考的数学卷种的基本要求,考试的题型、类别和难易度,以便更好的展开复习。凡是在大纲中表述为“会”、“理解”、“掌握”等的考试内容往往都是主要考点,务必要作为复习的重点。
数学复习不像英语、政治对辅导书的依赖性很大,主要靠课本来打下坚实的基础。翻一下数学大纲,上面列出的知识点全部来源于课本。一定要老老实实参照大纲的要求把原来的课本找出来,按照大纲对数学基本概念、基本方法、基本定理准确把握。
数学学习中最重要的莫过于坚实的基础,包括对定理公式的深入理解,对基本运算的熟练和高正确率,对最基本的一些解题方法的掌握和运用。从这几年的数学统考试题来看很少有偏题、怪题。很多考生由于对基本概念、定理记不全、记不牢,理解不准确而丢分。所以数学首轮复习一定要注重基础。
研究生数学考试注重考察考生的综合能力,最终要看你解题的真功夫,而能力的提高要通过大量的练习,所以不能眼高手低,只看书不做题,每天可以做适量的题目。在做题的过程中才会发现考试重点、难点以及自己的薄弱环节。以便及时弥补自己的缺陷、把握重难点。
近年来的数学考研试题的一大特征是要求考生能将一些范围并不固定的几何、物理或者其它问题先建模抽象为数学问题,再利用相应的数学知识解答。(理工类已考过井底清污、雪堆融化、攀岩选址、压力计算、海洋勘测、汽锤作功、飞机滑行等问题)考研也考“熟练”度,只有通过针对性地实际训练才能真正地理解和巩固数学的基本概念、公式、结论。在练习过程中还要总结解题的技巧、套路,积累经验,把分散的知识在实际运用中联系起来,在理解的基础上触类旁通,熟能生巧后才能运用所学知识解决实际问题,以不变应万变。
因考数学的时间一般都安排在上午,故建议将数学的复习时间安排在每天早上9:00-12:00(可根据自身情况适当调整,但此时效果最好)。每天至少应安排花2.5-3个小时来复习数学,其中用1.5-2个小时左右的时间理解掌握概念、定义等,用1个小时左右来做习题巩固。对于数学基础较差的同学,建议每天再加1个小时的复习时间用来做习题并总结。
考研数学学习心得篇十六
大纲发布后,首先通读大纲,了解数学(一)对各类知识点的要求。20xx年,大纲对考研初试课程进行了调整,数学满分由原来的100分增加到150分,即在总分没有增加的情况下,数学的分数增加了50%,极大地加大了数学在总分中的分量。而数学由于其自身学科的特点,一直都是“拉分”的科目,即高分考生和低分考生之间的分差比较大,数学成绩往往决定着考研的成功与否。对于英语和政治,大部分理科考生的分数都集中在55分到70分之间,相对来说对总分的贡献不如数学那么明显,因而经常听到“得数学者得天下”的说法,这种说法可能并不那么正确,但却充分说明了数学的重要性。
暑假期间,我利用上辅导班的间隙通读了教材,几本比较经典的教材有陈老师本书所提到的陈老师均为陈文灯教授。在课堂上推荐的同济大学的《高等数学》和浙江大学的《概率论和数理统计》,此外同济大学的《线性代数》也相当不错。有很多同学认为读教材是浪费时间,只是埋头做题,结果题目做了很多,但效果并不好。我认为知识点是不变的,变的只是出题的方式和角度,只有对基本概念、基本定理有充分的理解、把握和运用,以不变应万变才是取胜之道。我将教材精读了三遍,定理的证明及课后的习题也已熟练掌握,为考高分打下了坚实基础。在其后遇到模棱两可的问题时,也经常重翻课本。对于像我一样数学成绩一般的学生来说,上数学强化班是非常必要的,而且一定要看完书后再去。因为讲课的速度非常快,许多知识点都是只讲关键部分,一带而过,不看书根本跟不上进度。我非常感谢陈老师,他的讲解深入浅出,言简意赅,总是一语就能抓住题目的关键,使我获益良多,极大地增强了考研的信心。在此对强化班的各位辅导老师致以最诚挚的谢意!
大四上学期开学后,课业负担不很重。9月至11月是考研数学复习中最重要和最累的阶段,即在该阶段内要有针对性地适量做题,这个阶段基本就决定了你的考试水平。我推荐陈文灯老师的《复习指南》本书所提到的《复习指南》、《数学复习指南》、《指南》均指陈文灯教授的《考研数学复习指南》一书。和《数学题型集粹与练习题集》以下简称为《题型集粹》。,经过多年的实践考验和不断修正,这两本书已经集考研之大成,成为每个考研学子的必备书。这两本书并不是看一遍两遍就可以的,对于大学数学成绩一般的学生来说,至少应该看三遍,尤其是一些理解得不太透彻的地方,需要反复地研读、揣摩、练习。第一遍是最吃力的,我大约用了一个半月的时间。看第二遍、第三遍的时候速度会快得多,尽管有很多以前不会做的题还是不会,但对题目的感觉强了很多,这样做能为下一轮的复习打下坚实的基础。题目做得越多,往往越能一眼抓住问题的关键所在,有的放矢。在第一遍复习过程中我把曾经做错的和不会做的习题都抄在一个笔记本上,并且随身携带、经常复习,了解自己错误的根源所在,搞清楚问题是出在理解得不透彻,还是思维出现了误区。开始的时候一天能抄30道错题,那自然是非常郁闷的,后来随着水平的提高,一天只有十几道了。这是一个蛹化蝶的过程,很漫长,也很痛苦,希望大家一定要坚持住。
到了12月份的冲刺阶段,主要任务是做模拟试题和真题。我一般规定自己每天在150分钟的时间内完成一套试题,每次都当成真正的考试,认真地在答题纸上做一遍,做完整套试卷以后严格按照标准答案批改,给自己打分,将所犯错误抄在一个专门的错题集上。将错题再认真地做一遍,这样一天做一套模拟试卷,周末专门拿出一整天来研究错题,查漏补缺。我做的是陈老师出的24套模拟题,全部认真做完。有些题即使做了十遍还是出错,这确实挺打击信心,但人的惯性思维是很难改变的,需要持之以恒的精神和永不服输的态度。真题的作用是不容忽视的,经过十几年的考试,相当多的题目模式已经定了下来,很多考研题目都是类似的。考研真题经过千锤百炼,在思想性上有较高的参考价值,需要多加揣摩。尤其是近两年的考题,反映了命题者出题的方式和思路,更需要注意。关于考试时的做题习惯问题,这需要平时的积累。在平时答题时,要注意培养好的习惯,如需根据题意注意是否需要分类讨论,分类讨论的结果最后记住要做一个总结,不定积分的结果不要忘记加一个常数,与实际有关的题不要忘记加单位等等。这些看上去微不足道的地方,都可能导致你的失分,如果是填空题,那就一分得不了了,被扣这样的分数是很冤枉的。随着“考研热”年年升温,竞争也越来越激烈,特别是大学的热门专业,就像今年我报考的清华自动化系仅招收41人,报考的人将近800,录取比例是20∶1,其中的热门专业更是远高于这个比例。一分的差距可能决定你录取与否,为了自己的理想,应该每分必争,不放弃任何成功的机会。
考研数学学习心得篇十七
随着“考研”在大学校园关注热度的一路飙升,广大学子进入备考阶段的时间点也一年早于一年。对数学公共课这种需要打持久战的科目而言,考研复习初期的基础阶段能够合理安排复习计划,打下牢固、良好的基础,对考试最终的结果有重要的影响。数学复习具有基础性和长期性的特点,数学知识的学习是一个长期积累的过程,要遵循由浅入深的原则,先将知识基础打牢,构建起知识体系,然后再去追求技巧以及方法,一座高楼大厦必定是建立在坚实的地基之上的,因此我们将基础知识的复习安排在第一阶段,希望大家给予足够重视。
一、20xx年数学一试卷结构。
种类。
内容比例。
题型比例。
单选题约21%。
线性代数22%。
填空题约16%。
概率论与数理统计22%解答题约63%。
命题从布局上看,覆盖面宽,几乎所有重点章节均有涉及,各个知识点分布合理。从难易度上讲,试题主要以考查数学的基本概念、基本理论、基本方法、基本能力为主,尤其是它们的延伸、扩展、转换、综合和应用。从发展趋势看,这种命题特点将持续,难度将会向下调整,计算技巧性过强的题将逐渐减少,而且绝不会出现超纲题、偏题、怪题,但由于选择题比重增加,题量有所增加,时间越来越紧。因此,在复习时,不要听信谣传,不要迷信押题,不要偏科,不要忽视基本功而去啃偏题、明显超纲题和计算量繁杂的题,相反,应该强调的是要整体把握好大纲各知识点,这些知识点是前后之间有逻辑联系的网络,网络的结点就是考点和重点。
二、下面我们要介绍该如何复习数学一。
首先,同学们需要把数学复习全书上总结好的知识点认真掌握。一般不同版本的复习全书上的知识点讲解都很全面、详细,还有例题讲解当中总结出的解题技巧和方法,推导出的公式、定理,都要重点记忆。对于基本知识、基本定理和基本方法,关键在理解,而且理解还存在程度的问题,不能仅仅停留在看懂了的层次上,对一些易推导的定理,有时间一定要动手推一推,对一些基本问题的描述,特别是微积分中的一些术语的描述,一定要自己动手写一写,这些基本功都很重要,到临场时就可以发挥作用了。同学们一定要注意,在掌握基本概念的同时不要忘记了要适当地将所有的公式、定理、概念联系起来复习,并且在此过程中要大量地做练习题,因为公式、定理不是你记住就代表你掌握了,关键是要运用到解题上。俗话说熟能生巧,对于数学的基本概念、公式、结论等只有在反复练习中才能真正理解与巩固。数学试题虽然千变万化,其知识结构却基本相同,题型也相对固定,往往存在一定的解题套路,熟练掌握后既能提高正确率,又能提高解题速度。
其次,看书做题有机结合。数学这一学科的特点决定了同学们复习的时候除了看书还需要及时通过做题巩固复习效果,否则对概念、原理的记忆和理解过一段时间就会变得很陌生。建议同学们参考考纲中的规定按章节循序渐进,在复习的时候通过看书形成清晰有条理的知识网络,熟悉知识点及常用公式结论之后做一些习题加深对概念、定理的理解和常用方法的应用。所谓万丈高楼平地起,基础阶段的关键在于透彻把握基础知识和基本的解题能力,因此这个阶段的做题最好从基本题型的训练开始,不宜一上来就钻研难度很大的题目。由于教材当中的题目并不仅仅针对某一类型的考研数学复习,大家可选取一些适合复习使用的参考书,如考研数学必做客观题1500题,由于辅导书中三大部分的章节安排、题目涉及的考点以及对应的难度要求与考纲完全一致,因此对考生来讲就像拥有了一个合理安排复习计划和进度的贴身教练,对复习的解题一关起到极大的辅助与促进作用。以客观题的专项训练作为基础阶段的解题训练的一部分,能最大程度上巩固加深对基本知识点和基本解题方法的认知,训练自己的解题思路和方法,达到熟能生巧,为后续的复习打下坚实的基础。
再次,善于归纳,学会总结,使知识调理化系统化。善于总结也是同学们在复习的过程中需要注意的一点。因为很多同学做题的过程就到对过答案或是纠正过错误就简单的结束了,一套题的价值也就到此为止了。大家在纠正完错误之后,再把这套试题从头看一遍,总结一下自己都在哪些方面出错了,原因是什么,这套题中有没有出现我不知道的新的方法、思路,新推导出的定理、公式等,并把这些有用的知识全都写到你的笔记本上,以便随时查看和重点记忆。对于大题的解题方法,要仔细想一想,都涉及到哪些科目和章节了,这些知识点之间有哪些联系等,从而使自己所掌握的知识系统化,以达到融会贯通。只有这样,才能使你做过的题目实现其最大的价值,也才算是你真正做懂了一套题。如果你能够这样做了,那么做过的题在以后的复习中如果没有时间了,就不用再拿出来重新看了,因为你已经把要掌握的精华总结好了,只需看你的笔记本就行了。解数学题一定要从思路,原理的角度入手。
最后,充分重视往年考研真题。从历年试卷可以看出,凡是考试大纲中提及的内容,都有可能考到。因此,以押题、猜题的复习方法来对付考研靠不住,很容易在考场上痛失分数而败北。另外,到11月份后还需要做一些合适的模拟题,要注意试题的质和量。同时,做的时候最好是参加模拟考场,或者自己设定一个时间,尽量按照考试的时间和状态去测试自己,置自身于考试环境与状态之中,也能达到预热效果。
三、复习进度表。
每天至少应该花3个小时左右来复习数学,这样才能保证在基础阶段把整个数学的基础知识复习完。其中用用一半时间理解掌握概念、定义等,用剩下的一半时间来做习题巩固。对于数学基础较薄弱的同学建议每天再加一个小时的复习时间用来做习题并总结。
考研数学一般考察考生的基础知识的掌握和运用解题的能力。数学的复习不像政治有的时候对于某些人是可以用突击的形式来完成的。数学与英语复习相似,需要一步一步的积累知识、循序渐进的学习方法。
最后,祝愿复习20xx年考研的同学们能够复习顺利。
考研数学学习心得篇十八
(1)通读大纲。大纲发布后,首先通读大纲,了解数学(一)对各类知识点的要求。2003年,大纲对考研初试课程进行了调整,数学满分由原来的100分增加到150分,即在总分没有增加的情况下,数学的分数增加了50%,极大地加大了数学在总分中的分量。而数学由于其自身学科的特点,一直都是“拉分”的科目,即高分考生和低分考生之间的分差比较大,数学成绩往往决定着考研的成功与否。对于英语和政治,大部分理科考生的分数都集中在55分到70分之间,相对来说对总分的贡献不如数学那么明显,因而经常听到“得数学者得天下”的说法,这种说法可能并不那么正确,但却充分说明了数学的重要性。
(2)通读教材。暑假期间,我利用上辅导班的间隙通读了教材,几本比较经典的教材有陈老师本书所提到的陈老师均为陈文灯教授。在课堂上推荐的同济大学的《高等数学》和浙江大学的《概率论和数理统计》,此外同济大学的《线性代数》也相当不错。有很多同学认为读教材是浪费时间,只是埋头做题,结果题目做了很多,但效果并不好。我认为知识点是不变的,变的只是出题的方式和角度,只有对基本概念、基本定理有充分的理解、把握和运用,以不变应万变才是取胜之道。我将教材精读了三遍,定理的证明及课后的习题也已熟练掌握,为考高分打下了坚实基础。在其后遇到模棱两可的问题时,也经常重翻课本。对于像我一样数学成绩一般的学生来说,上数学强化班是非常必要的,而且一定要看完书后再去。因为讲课的速度非常快,许多知识点都是只讲关键部分,一带而过,不看书根本跟不上进度。我非常感谢陈老师,他的讲解深入浅出,言简意赅,总是一语就能抓住题目的关键,使我获益良多,极大地增强了考研的信心。在此对强化班的各位辅导老师致以最诚挚的谢意!
(3)适量做题。大四上学期开学后,课业负担不很重。9月至11月是考研数学复习中最重要和最累的阶段,即在该阶段内要有针对性地适量做题,这个阶段基本就决定了你的考试水平。我推荐陈文灯老师的《复习指南》本书所提到的《复习指南》、《数学复习指南》、《指南》均指陈文灯教授的《考研数学复习指南》一书。和《数学题型集粹与练习题集》以下简称为《题型集粹》。,经过多年的实践考验和不断修正,这两本书已经集考研之大成,成为每个考研学子的必备书。这两本书并不是看一遍两遍就可以的,对于大学数学成绩一般的学生来说,至少应该看三遍,尤其是一些理解得不太透彻的地方,需要反复地研读、揣摩、练习。第一遍是最吃力的,我大约用了一个半月的时间。看第二遍、第三遍的时候速度会快得多,尽管有很多以前不会做的题还是不会,但对题目的感觉强了很多,这样做能为下一轮的复习打下坚实的基础。题目做得越多,往往越能一眼抓住问题的关键所在,有的放矢。在第一遍复习过程中我把曾经做错的和不会做的习题都抄在一个笔记本上,并且随身携带、经常复习,了解自己错误的根源所在,搞清楚问题是出在理解得不透彻,还是思维出现了误区。开始的时候一天能抄30道错题,那自然是非常郁闷的,后来随着水平的提高,一天只有十几道了。这是一个蛹化蝶的过程,很漫长,也很痛苦,希望大家一定要坚持住。
(4)做模拟试题和真题。到了12月份的冲刺阶段,主要任务是做模拟试题和真题。我一般规定自己每天在150分钟的时间内完成一套试题,每次都当成真正的考试,认真地在答题纸上做一遍,做完整套试卷以后严格按照标准答案批改,给自己打分,将所犯错误抄在一个专门的错题集上。将错题再认真地做一遍,这样一天做一套模拟试卷,周末专门拿出一整天来研究错题,查漏补缺。我做的是陈老师出的24套模拟题,全部认真做完。有些题即使做了十遍还是出错,这确实挺打击信心,但人的惯性思维是很难改变的,需要持之以恒的精神和永不服输的态度。真题的作用是不容忽视的,经过十几年的考试,相当多的题目模式已经定了下来,很多考研题目都是类似的。考研真题经过千锤百炼,在思想性上有较高的参考价值,需要多加揣摩。尤其是近两年的考题,反映了命题者出题的方式和思路,更需要注意。关于考试时的做题习惯问题,这需要平时的积累。在平时答题时,要注意培养好的习惯,如需根据题意注意是否需要分类讨论,分类讨论的结果最后记住要做一个总结,不定积分的结果不要忘记加一个常数,与实际有关的题不要忘记加单位等等。这些看上去微不足道的地方,都可能导致你的失分,如果是填空题,那就一分得不了了,被扣这样的分数是很冤枉的。随着“考研热”年年升温,竞争也越来越激烈,特别是大学的热门专业,就像今年我报考的清华自动化系仅招收41人,报考的人将近800,录取比例是20∶1,其中的热门专业更是远高于这个比例。一分的差距可能决定你录取与否,为了自己的理想,应该每分必争,不放弃任何成功的机会。
考研数学学习心得篇十九
阅读一个知识点,宏观上思考其在整个数学科目中作用及与其他科目之间的联系,微观上思考其本身概念的深度,其具有的特点及满足的性质等等。拿到一个题目,研究其条件与结论的联系,思考题目所在的知识点及可能使用的方法,能否用更多的方法来求解,能否找到最为简单的方法。看历年真题,总结考试题目的规律,思考命题特点及与考试大纲之间的联系。
二、高效解决问题的能力。
考试时不仅要正确解答题目,更重要的是要快速的达到目的。现在很多辅导资料对知识点的总结,题型的归纳都比较全面,如果能利用其对知识的归纳再加上自己的边看边思考,对知识点达到融会贯通不成问题。
三、快速判断所考知识点的能力。
考研数学大纲所规定的知识点是有限的,重要的知识点就更少一些,但考研数学已经进行了二十几年,重点之处年年考,但这些知识点每年都会换上新的外衣,乔装打扮,使不少考生被蒙蔽,之后悔之不及。
四、持之以恒的能力。
数学因其高于日常生活而常受到学生的冷落,这样就会产生马太效应,愈不关心她,它就离你愈远,故而考研复习需要保持对数学热情,坚持到底!
在考研复习中考生要做到的是掌握核心,即万变不离其宗,抓住其形变而神不变之处才能轻松成功。
考研数学学习心得篇二十
学会思考。
数学就是一种思考的过程,没有思考,一味地看,也只是无用功。有的同学平时遇到不会做的题目,急于看答案,但是过段时间又会忘记。当大家碰到难题时首先应该自己琢磨,不会的话可以询问老师或与大家讨论,然后再比对标准答案,看看自己的思考方向有没有出现偏差。另外,学会思考还有一个方法,那就是要多动笔。数学不同于文科知识,靠背的也能掌握一二,数学必须要靠动笔做题来获得题感,当然也只有多动笔才能让大家见识到更多的题型,让你对于考研数学有一个更全面的把握,并且获得更强的思考能力。
数学不同于政治,大家对于基本的概念、定理及公式不能一味的死记硬背,如果大家肯稍动脑经的再理解和思考的过程中去学数学,你会发现定理和公式反而会记忆的更深。
考研数学学习心得篇二十一
对于考研数学来说,要拿高分其实很简单,考研数学初期复习原则:
一、早准备、早计划、早复习
二、按照大纲复习
三、重视基础
四、灵活运用,另同学们在复习考研数学时重点抓住:
1、两个重要极限,未定式的极限、等价无穷小代换
2、处理连续性,可导性和可微性的关系
3、微分方程:一是一元线性微分方程,第二是二阶常系数齐次/非齐次线性微分方程
4、级数问题,主要针对数一和数三
5、一维随机变量函数的分布
6、随机变量的数字特征
7、参数估计
对待考研数学,在掌握了相关概念和理论之后,首先应该自己试着去解题,即使做不出来,对基本概念和理论的理解也会深入一步。因为数学毕竟是个理解加运用的科目,不练习就永远无法熟练掌握。解不出来,再看书上的解题思路和指导,再想想,如果还是想不出来,最后再看书上的详细解答。在这里温馨提示大家,在做题时不要太轻易的选择放弃,想一会儿没有思路就去看答案,一定要仔细开动脑筋想过之后,实在不行再求助于外力,让别人给你解答你错在哪里,你的哪个逻辑点是应该修正的,然后再去找正确的方法。
加强综合解题能力的训练,熟悉常见考题的类型和解题思路,力求在解题思路上有所突破。考研试题和教科书的习题的不同点在于,前者是在对基本概念,基本定理和基本方法充分理解的基础上的综合应用,有较大的灵活性,往往一个命题覆盖多个内容,涉及到概念,直观背景、推理和计算等多种角度。
经统计考研数学复习中最重要的就是做题。然而是做相同的题目,不同的人收获的却大相径庭。其中一个很重要的原因就是:做题后的总结和分析。事实上,无论是做教材上的习题还是历年真题,都应该从宏观和微观两个层次上去总结分析题目的考点,归纳题目的解题方法,对于独特的处理方法和运算技巧还需要特别的留意。
【本文地址:http://www.xuefen.com.cn/zuowen/14413955.html】