数学教案-不等式的性质二(实用17篇)

格式:DOC 上传日期:2023-11-23 12:03:15
数学教案-不等式的性质二(实用17篇)
时间:2023-11-23 12:03:15     小编:雨中梧

教案有助于促进师生互动、学生思维的激活和主动学习的引导。教案的编写还要考虑学生的学习特点和认知规律,选择适合的教学策略。以下是小编为大家收集的优秀教案范文,希望对大家的教案编写有所启发。

数学教案-不等式的性质二篇一

教法与学法:

1.教学理念:“人人学有用的数学”

2.教学方法:观察法、引导发现法、讨论法.。

3.教学手段:多媒体应用教学。

4.学法指导:尝试,猜想,归纳,总结。

根据《数学课程标准》的要求,教材和学生的特点,我制定了以下四个教学环节。

下面我将具体的教学过程阐述一下:

一、创设情境,导入新课。

上课伊始,我将用一个公园买门票如何才划算的例子导入课题。

(此处学生是很容易得出买30张门票需要4x30=120(元),买27张门票需要5x27=135(元),由于120〈135,所以买30张门票比买27张还要划算。由此建立了一个数与数之间的不等关系式)。

紧接着进一步提问:若人数是x时,又当如何买票划算?

二、探求新知,讲授新课。

引例列出了数与数之间的不等关系和含有未知量1205x的不等关系。那么在不等式概念提出之前,先让学生回顾等式的概念,“类比”等式的概念,尝试着去总结归纳出不等式的概念。使学生从一个低起点,通过获得成功的体验和克服困难的经历,增进应用数学的自信心,为下面的学习调动了积极。

接下来我用一组例题来巩固一下对不等式概念的认知,把表示不等量关系的常用关键词提出。

(1)a是负数;

(2)a是非负数;

(3)a与b的和小于5;

(4)x与2的差大于-1;

(5)x的4倍不大于7;

(6)的一半不小于3。

关键词:非负数,非正数,不大于,不小于,不超过,至少。

难点突破:通过上面三组算式,学生已经尝试着归纳出不等式的三条基本性质了。不等式性质3是本节的难点。在不等式性质3用数探讨出以后,换一个角度让学生想一想,是否能在数轴上任取两个点,用相反数的相关知识挖掘一下,乘以或除以一个负数时,任意两个数比较是否性质3都成立。通过“数形结合”的思想,使数的取值从特殊化到一般化,从对具体数的感知完成到字母代替数的升华。让学生用实例对一些数学猜想作出检验,从而增加猜想的可信程度。同时,让学生尝试从不同角度寻求解决问题的方法并能有效地解决问题。

反馈练习:用一个小练习巩固三条性质。

如果ab,那么。

(1)a-3b-3(2)2a2b(3)-3a-3b。

提出疑问,我们讨论性质2,3是好象遗忘了一个数0。

引出让学生归纳,等式与不等式的区别与联系。

三、拓展训练。

根据不等式基本性质,将下列不等式化为“”或“”的形式。

再次回到开头的门票问题,让学生解出相应的x的取值范围。

四、小结。

1.新知识。

2.与旧知识的联系。

五、作业的布置。

以上是我对这节课的教学的看法,希望各位专家指正。谢谢!

“让学生主动参与数学教学的全过程,真正成为学习的主人”

数学教案-不等式的性质二篇二

《不等式的基本性质》它是北师大版八年级下册第二章第二节的内容。今天我将从教材分析,教学目标,教学重难点,教法学法,教学过程这五个方面谈谈我对这节课处理的一些不成熟的看法:

本节内容不等式的基本性质,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用,所以对不等式的学习有着重要的实际意义。同时,不等式的基本性质也为学生以后顺利学习解一元一次不等式和解一元一次不等式组的有关内容的理论基础,起到重要的奠基作用。

根据《新课程标准》的要求,教材的内容兼顾我班学生的特点,我制定了如下教学目标:

知识与技能:

1.感受生活中存在的不等关系,了解不等式的意义。

过程与方法:经历不等式的基本性质的探索过程,初步体会不等式与等式的异同。

情感态度与价值观:经历由具体实例建立不等式模型的过程,进一步符号感与数学化的能力。

教学重难点:

数学教案-不等式的性质二篇三

《不等式的基本性质》它是北师大版八年级下册第一章第二节的内容。今天我将从教材分析,教学目标,教学重难点,教法学法,教学过程这五个方面谈谈我对这节课处理的一些不成熟的看法:

本节内容不等式,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用,所以对不等式的学习有着重要的实际意义。同时,不等式的基本性质也为学生以后顺利学习解一元一次不等式和解一元一次不等式组的有关内容的理论基础,起到重要的奠基作用。

根据《新课程标准》的要求,教材的`内容兼顾我校八年级学生的特点,我制定了如下教学目标:

知识与技能:

1.感受生活中存在的不等关系,了解不等式的意义。

过程与方法:经历不等式的基本性质的探索过程,初步体会不等式与等式的异同。

情感态度与价值观:经历由具体实例建立不等式模型的过程,进一步符号感与数学化的能力。

教学重难点:

数学教案-不等式的性质二篇四

1、使学生熟练掌握一元一次不等式的解法,初步认识一元一次不等式的应用价值;。

3、让学生在分组活动和班级交流的过程中,积累数学活动的经验并感受成功的喜悦,从而增强学习数学的自信心。

教学难点。

熟练并准确地解一元一次不等式。

知识重点。

熟练并准确地解一元一次不等式。

教学过程。

(师生活动)设计理念。

你会运用已学知识解这个不等式吗?请你说说解这个不等式的过程.以学生身边的事例为背景,突出不等式与现实的联系,这个问题为契机引入新课,可以激发学生的学习兴趣。

探究新知。

1、在学生充分发表意见的基础上,师生共同归纳出这个不等式的解法.教师规范地板书解的过程.

2、例题.

解下列不等式,并在数轴上表示解集:

(1)x50(2)-4x3。

(3)7-3x10(4)2x-33x+1。

分组活动.先独立思考,然后请4名学生上来板演,其余同学组内相互交流,作出记录,最后各组选派代表发言,点评板演情况.教师作总结讲评并示范解题格式.

3、教师提问:从以上的求解过程中,你比较出它与解方程有什么异同?

立解决;还有一些学生虽不能解答,但在老师的引导下也能受到启发,这比单纯的教师讲解更能调动学习的积极性.另外,由学生自己来纠错,可培养他们的批判性思维和语言表达能力.

比较不等式与解方程的异同中渗透着类比思想.

巩固新知。

1、解下列不等式,并在数轴上表示解集:

(1)(2)-8x10。

2、用不等式表示下列语句并写出解集:

(1)x的3倍大于或等于1;(2)y的的差不大于-2.

解决问题。

测量一棵树的树围(树干的周长)可以计算它的树龄一般规定以树干离地面1.5m的地方作为测量部位.某树栽种时的树围为5cm,以后树围每年增加约3cm.这棵树至少生一长多少年,其树围才能超过2.4m?让学生在解决问题的过程中深刻感悟数学来源于实践,又服务于实践,以培养他们的数学应用意识。

总结归纳围绕以下几个问题:

1、这节课的主要内容是什么?

2、通过学习,我取得了哪些收获?

3、还有哪些问题需要注意?

让学生自己归纳,教师仅做必要的补充和点拨.让学生自己归纳小结,给学生创造自我评价和自我表现的机会,以达到激发兴趣、巩固知识的目的。

小结与作业。

布置作业。

1、必做题:教科书第134~135页习题9.1第6题(3)(4)第10题。

2、选做题:教科书第135页习题9、12题.

本课教育评注(课堂设计理念,实际教学效果及改进设想)。

通过创设与学生实际生活密切联系的向题情境,并由学生根据自己掌握的知识与经验列出不等式,探究它的解法,可以激发学生的学习动力,唤起他们的求知欲望,促使学生动脑、动手、动口,积极参与教学的.整个过程,在教师的指导下,主动地、生动活泼地、富有个性地学习.

新课程理念要求教师向学生提供充分的从事数学活动的机会.本课教学过程中贯穿了尝试引导示范归纳练习点评等一系列环节,旨在改变学生的学习方式,将被动的、接受式的学习方式转变为动手实践、自主探索和合作交流等方式.教师的组织者、引导者与合作者的角色在这节课中得到了充分的演绎.教师要尊重学生的个体差异,满足多样化学习的需求.对学习确实有困难的学生,要及时给予关心和帮助,鼓励他们主动参与数学学习活动,尝试着用自己的方式去解决问题,勇于发表自己的观点.除了演好组织者、引导者的角色外,教师还应争当伯乐和雷锋,多给学生以赞许、鼓励、关爱和帮助,让他们在积极愉悦的氛围中努力学习.

数学教案-不等式的性质二篇五

教学重点分析法。

教学难点分析法实质的理解。

教学方法启发引导式。

教学活动。

(一)导入新课。

(教师活动)教师提出问题,待学生回答和思考后点评.。

(学生活动)回答和思考教师提出的问题.。

[问题1]我们已经学习了哪几种不等式的证明方法?什么是比较法?什么是综合法?

[问题2]能否用比较法或综合法证明不等式:

在证明不等式时,若用比较法或综合法难以下手时,可采用另一种证明方法:分析法.(板书课题)。

设计意图:复习已学证明不等式的方法.指出用比较法和综合法证明不等式的不足之处,

激发学生学习新的证明不等式知识的积极性,导入本节课学习内容:用分析法证明不等式.。

(二)新课讲授。

【尝试探索、建立新知】。

[问题2]当我们寻找的充分条件已经是成立的`不等式时,说明了什么呢?

[问题3]说明要证明的不等式成立的理由是什么呢?

分析法证明不等式的概念.(见课本)。

【例题示范、学会应用】。

(学生活动)学生在教师引导下,研究问题,与教师一道完成问题的论证.。

数学教案-不等式的性质二篇六

目的:以不等式的等价命题为依据,揭示不等式的常用证明方法之一——比较法,要求学生能教熟练地运用作差、作商比较法证明不等式。

过程:

一、复习:

2.比较法之一(作差法)步骤:作差——变形——判断——结论。

二、作差法:(p13—14)。

甲乙两人同时同地沿同一路线走到同一地点,甲有一半时间以速度。

m

行走,另一半时间以速度。

n

行走;有一半路程乙以速度。

m

行走,另一半路。

将本文的word文档下载到电脑,方便收藏和打印。

数学教案-不等式的性质二篇七

证明推论2证明例4练习。

探究活动。

能得到什么结论。

题目已知且,你能够推出什么结论?

分析与解:由条件推出结论,我们可以考虑把已知条件的变量范围扩大,对已知变量作运算,运用不等式的性质,或者跳出不等式去考虑一般的数学表达式。

思路一:改变的范围,可得:

1.且;

2.且;

思路二:由已知变量作运算,可得:

3.且;

4.且;

5.且;

6.且;

7.且;

思路三:考虑含有的数学表达式具有的性质,可得:

8.(其中为实常数)是三次方程;

9.(其中为常数)的图象不可能表示直线。

探究关系式是否成立的问题。

题目当成立时,关系式是否成立?若成立,加以证明;若不成立,说明理由。

解:因为,所以,所以,

所以,

所以或。

所以或。

所以或。

所以不可能成立。

说明:像本例这样的探索题,题目的结论是“两可”(即两种可能性)情形,而我们知道,说明结论不成立可像例1那样举一个反例就可以了。不过像本例的执果索因的分析,不仅说明结论不成立,而且得出,必须同时大于1或同时小于1的结论。

探讨增加什么条件使命题成立。

例适当增加条件,使下列命题各命题成立:

(1)若,则;

(2)若,则;

(3)若,,则;

(4)若,则。

思路分析:本例为条件型开放题,需要依据不等式的性质,寻找使结论成立时所缺少的一个条件。

解:(1)。

(2)。当时,

当时,

(3)。

(4)。

引申发散对命题(3),能否增加条件,或,,使其成立?请阐述你的理由。

数学教案-不等式的性质二篇八

填空:

教师追问:第三题()里可以填多少个数?第4题呢?

为什么3、4题()里可以填无数个数?

()里填任何数都行吗?哪个数不行?(板书:零除外)。

这里为什么必须“零除外”?

(板书课题:分数基本性质)。

4.深入理解分数基本性质.。

教师提问:分数的基本性质里哪几个词比较重要?

为什么“都”和“相同”很重要?

为什么“分数大小不变”也很重要?

为什么“零除外”也很重要?

三、课堂练习.。

1.用直线把相等的分数连接起来.。

2.把下列分数按要求分类.。

和相等的分数:

和相等的分数:

3.判断下列各题的对错,并说明理由.。

4.填空并说出理由.。

5.集体练习.。

四、照应课前谈话.。

问:现在谁知道哥哥、姐姐、弟弟三个人,谁吃的西瓜多呢?

板书:

五、课堂小结.。

这节课你有什么收获?

六、布置作业.。

1.指出下面每组中的两个分数是相等的还是不相等的.。

2.在下面的括号里填上适当的数.。

将本文的word文档下载到电脑,方便收藏和打印。

数学教案-不等式的性质二篇九

1、教学内容:

《比例的意义和基本性质》是人教版数学第十二册的内容。比例的知识在工农业生产和日常生活中有广泛的应用。这部分知识是在学习了比的知识和除法、分数等的基础上教学的,是本套教材教学内容的最后一个单元。而本节课内容是这个单元的第一节课,主要属于概念教学,是为以后解比例,讲解正、反比例做准备的。学生学好这部分知识,不仅可以初步接触函数的思想,而且可以用来解决日常生活中一些具体的问题。

2、教学目标:

根据新课标要求和教材的特点,结合六年级学生的实际水平,可以确定以下教学目标:

(2)认识比例的各部分名称。

(3)学会用比例的意义或比例的基本性质,判断两个比能不能组成比例,并写出比例。

3、教学重、难点:

理解比例的意义和基本性质,会用比例的意义和基本性质判断两个比能不能组成比例,并写出比例。

4、教法、学法:

根据本节教材内容和编排特点,为了更好地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的`指导思想,主要让学生在“计算——观察、比较——概括——应用”的学习过程中掌握知识。

二、说程序设计。

课堂教学是学生学习数学知识的获得,能力发展的重要途径。基于此,我设计了如下的教学设计。

(一)复习导入。

让学生根据所给信息写出四个比。目的就是为新授进行铺垫,搭建脚手架,同时也为学生后面区分比例和比打下基础。

(二)教学新课。

第一部分:先出示几个比,让学生计算它们的比值,然后通过观察、比较,给这些比分类。通过学生自己的观察、发现,根据比值是否相等来分类。接着追问:“两个比的比值相等,那他们之间可以用什么符号连接呢?”是让学生深刻地了解到,只要两个比的比值相等,就可以说两个比相等。运用黑板上的几个比例式,告诉学生象这样的式子就叫做比例,给学生直观的印象,然后列举一个反例,让学生对比观察,引导学生发现他们之间的共同特点,抽象概括出比例的意义。教学比例的意义后,及时组织练习。第一个是判断导入部分的四个比能否组成比例,并说明理由。第二个练习是,判断两个比是否能组成比例,在这个过程中,不仅运用了比例的意义,而且对比的性质也有一定的运用,以培养学生从多种角度解决问题的`能力。第三个练习是写出比值是4的两个比,并组成比例。三个练习,每一个都在逐步的延伸,意在达到熟练运用比例的意义解决问题的能力。

第二部分:在认识比例的各部分名称时,我让学生看课件自学,然后让他们自己说说比例里各部分的名称。在揭示比例的基本性质时,我先让学生计算,然后观察发现规律,进一步验证规律,最后概括出比例的基本性质。

(三)巩固练习。

在巩固练习环节中,第1题是三个判断题,是对基本概念的巩固。第2题是根据比例的基本性质写出比例,这里需要从学生逆向思维的角度去解决问题。第3题是用四个数组比例,这题学生在组的过程中没有方法和顺序,那么在交流过程中就需要教师去引导学生发现方法,总结规律,使学生不仅把题做对,而且指导自己更好解决问题。第4题是拓展题,让学生根据当前所学的知识猜数,一方面巩固比例的意义和基本性质的知识,另一方面,为下节课“解比例”做铺垫:根据比例的基本性质,如果知道了比例中的任何三项,就可以求出另外一项,这是下节课要研究的内容“解比例”。

三、说教后反思。

这节课是概念教学,在上课之前自己感觉整节课的设计挺不错的,开始的分类,由放到收,让学生在探索中学习。而且在知识点的获取时,让学生自主观察发现,分析比较,概括出比例的意义和基本性质,体现了教师的主导作用和学生的主体地位。整节课的设计,总体感觉还是比较适合学生的思维发展的,在结构上,我也注重了前后呼应,使整堂课也显得比较紧凑。

新课上完之后,我觉得这节课的内容学生掌握得还比较好,尤其是根据比例的基本性质写出比例,这里需要学生从逆向思维的角度去思考,因此需要加强学生这一方面知识的反复练习,才能使学生熟练掌握比例的基本性质。我觉得通过这一节课我学到了好多,作为一名教师,千万不能完全按照自己的我还要在实践中不断完善自己的教学方法。

数学教案-不等式的性质二篇十

今天我说课的题目是,这节课所选用的教材为北师大版义务教育课程标准八年级教科书。

1、教材的地位和作用。

本节教材是初中数学xx年级册的内容,是初中数学的重要内容之一。一方面,这是在学习了xx的基础上,对xx的进一步深入和拓展;另一方面,又为学习接下来的知识奠定了基础,是进一步研究xx的工具性内容。因此本节课在教材中具有承上启下的作用。

2、学情分析。

学生在此之前已经学习了xx,对xx已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于xx的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。

3、教学重难点。

根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:

难点确定为:

根据新课标的教学理念,培养学生的数学素养和终身学习的能力,我确立了如下的三维目标:

1、知识与技能目标:

2、过程与方法目标:

3、情感态度与价值目标:

本节课我将采用启发式、讨论式结合的教学方法,以问题的提出、问题的解决为主线,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。另外,在教学过程中,采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。

为有序、有效地进行教学,本节课我主要安排以下教学环节:

(1)复习就知,温故知新。

设计意图:建构主义主张教学应从学生已有的知识体系出发,xx是本节课深入研究xx的认知基础,这样设计有利于引导学生顺利地进入学习情境。

(2)创设情境,提出问题。

设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望。

通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环。

(3)发现问题,探求新知。

设计意图:现代数学教学论指出,教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过观察分析、独立思考、小组交流等活动,引导学生归纳。

(4)分析思考,加深理解。

设计意图:数学教学论指出,数学概念(定理等)要明确其内涵和外延(条件、结论、应用范围等),通过对定义的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。

通过前面的学习,学生已基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第xx环节。

(5)强化训练,巩固双基。

设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,其中例1……例2……,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。

(6)小结归纳,拓展深化。

(7)当堂检测对比反馈。

(8)布置作业,提高升华。

以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。

数学教案-不等式的性质二篇十一

(一)、教材内容的地位和作用。

(二)、教学目标。

根据新《课标》要求和上述教材分析,结合学生的情况,我制定了以下教学目标:

知识、能力目标:了解代数式的值的概念,知道代数式求值的书写格式,能区分易混淆语言,清楚代数式求值过程中易出错的地方,会解决简单的问题,并在此基础上应用变式训练进行拔高。

情感目标:使学生明白数学来源于生活,学习数学是为了解决实际问题,培养学生科学的学习态度,同时通过多媒体演示激发学生探究数学问题的兴趣。

(三)、教学重点、难点。

教学重点:代数式求值的书写格式。

教学难点:代数式求值的书写格式,变式训练知识的运用。

本节课涉及的知识点不多,知识的切入点比较低,根据课标的要求,代数式的值的概念属于了解内容,所以本节课较多的时间用在代数式求值知识的运用上。教师以多媒体为教学平台,通过精心设计的问题串和活动系列,采取精讲多练、讲练结合的方法来落实知识点并不断地制造思维兴奋点,让学生脑、嘴、手动起来,充分调动了学生的学习积极性,达到事半功倍的教学效果。而学生在教师的鼓励引导下小结方法,克服思维定势,并通过小组讨论、组际竞赛等多种方式增强学习的成就感及自信心,从而培养浓厚的学习兴趣。

板书设计:

代数式的值。

一、定义四、小试牛刀七、练习。

二、例1五、阶段小结八、总结。

三、例2六、例3九、作业。

新课标要求我们合理选用教学素材,优化教学内容。所以我在教学中,选用具有现实性和趣味性的素材,并注意学科间的联系。忠实于教材,但不迷信教材,在研究的基础上使用教材,对于课堂和课外练习一部分取材于课本,而概念的引入却有别于教材。以激发学生的学习积极性和主动探究数学问题的热情。

教学方法合理化,不拘泥于形式。在教学中,通过问题串与活动系列,实施开放式教学,随处可见学生思维间碰撞的火花,发展了学生的思维能力,培养了学生思考的习惯,增强了学生运用数学知识解决实际问题的能力。

无论是教学环节设计,还是课外作业的安排上,我都重视知识的产生过程,关注人的发展,意到个体间的差异,注意分层教学,让每一个学生在课堂上都有所感悟,都有着各自的数学体验,不同的人在数学上都得到不同的发展。

数学教案-不等式的性质二篇十二

概念:不等式、不等式的解、不等式的解集、解不等式以及能在数轴上表示简单不等式的解集.

(二)内容解析。

现实生活中存在大量的相等关系,也存在大量的不等关系.本节课从生活实际出发导入常见行程问题的不等关系,使学生充分认识到学习不等式的重要性和必然性,激发他们的求知欲望.再通过对实例的进一步深入分析与探索,引出不等式、不等式的解、不等式的解集以及解不等式几个概念.前面学过方程、方程的解、解方程的概念.通过类比教学、不等式、不等式的解、解不等式几个概念不难理解.但是对于初学者而言,不等式的解集的理解就有一定的难度.因此教材又进行数形结合,用数轴来表示不等式的解集,这样直观形象的表示不等式的解集,对理解不等式的解集有很大的帮助.

基于以上分析,可以确定本节课的教学重点是:正确理解不等式、不等式的解与解集的意义,把不等式的解集正确地表示在数轴上.

二、目标和目标解析。

(一)教学目标。

1.理解不等式的概念。

2.理解不等式的解与解集的意义,理解它们的区别与联系。

3.了解解不等式的概念。

4.用数轴来表示简单不等式的解集。

(二)目标解析。

1.达成目标1的标志是:能正确区别不等式、等式以及代数式.

2.达成目标2的标志是:能理解不等式的解是解集中的某一个元素,而解集是所有解组成的一个集合.

3.达成目标3的标志是:理解解不等式是求不等式解集的一个过程.

4、达成目标4的标志是:用数轴表示不等式的解集是数形结合的又一个重要体现,也是学习不等式的一种重要工具.操作时,要掌握好“两定”:一是定界点,一般在数轴上只标出原点和界点即可,边界点含于解集中用实心圆点,或者用空心圆点;二是定方向,小于向左,大于向右.

三、教学问题诊断分析。

本节课实质是一节概念课,对于不等式、不等式的解以及解不等式可通过类比方程、方程的解、解方程类比教学,学生不难理解,但是对不等式的解集的理解就有一定的难度.

因此,本节课的教学难点是:理解不等式解集的意义以及在数轴上正确表示不等式的解集.

四、教学支持条件分析。

利用多媒体直观演示课前引入问题,激发学生的学习兴趣.

五、教学过程设计。

(一)动画演示情景激趣。

设计意图:通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,分析能力,激发他们的学习兴趣.

(二)立足实际引出新知。

小组讨论,合作交流,然后小组反馈交流结果.

最后,老师将小组反馈意见进行整理(学生没有讨论出来的思路老师进行补充)。

数学教案-不等式的性质二篇十三

(3)能够利用基本不等式求简单的最值。

2、过程与方法目标。

(1)经历由几何图形抽象出基本不等式的过程;。

(2)体验数形结合思想。

3、情感、态度和价值观目标。

(1)感悟数学的发展过程,学会用数学的眼光观察、分析事物;。

(2)体会多角度探索、解决问题。

数学教案-不等式的性质二篇十四

试验2:学生试验(发印制好的平行线纸单)。

(1)要求学生任意画一条直线c与直线a、b相交;

(2)选一对同位角来度量,看看这对同位角是否相等。

学生归纳:两条平行线被第三条直线所截,同位角相等。

二、主体探究,引导学生探索平行线的其他性质以及对命题有一个初步的认识。

活动1。

问题讨论:

我们知道两条平行线被第三条直线所截,不但形成有同位角,还有内错角、同旁内角。我们已经知道“两条平行线被第三条直线所截,同位角相等”。那么请同学们想一想:两条平行线被第三条直线所截,内错角、同旁内角有什么关系?(分组讨论,每一小组推荐一位同学回答)。

教师活动设计:引导学生讨论并回答。

学生口答,教师板书,并要求学生学习推理的书写格式。

活动2。

性质2:两条平行线被第三条直线所截,内错角相等。

简单说成:两直线平行,内错角相等。

性质3:两条平行直线被第三条直线所截,同旁内角互补。

简单说成:两直线平行,同旁内角互补。

数学教案-不等式的性质二篇十五

教学内容:

苏教版五年级上册,第37--38页,例4、例5、例6。

教学目标:

1.在现实情境中通过观察、猜想、验证、比较、归纳等活动,理解并掌握小数的性质,会应用小数的性质解决实际问题。

2.经历从现象中发现问题、提出问题并解决问题的过程,通过自主探索、合作交流等方式,积累数学活动的经验,发展数学思考的能力。

3.在经历变与不变的过程中挖掘数学内涵,感悟数学思想,发展学生的数学思维。

教学重点:

理解小数的性质,并能应用性质解决实际问题。

教学难点:

感悟小数性质中不变与变化的数学辩证思想,发展学生思维。

教学流程:

一、情景导入。

创设数学王国中数字“0”去做客的情景,发现数字“0”引起整数的变化。

二、自主探究。

1.以数字“0”前往小数家中做客的情景,引出问题:0.4是不是等于0.40.

2.在独立验证的基础上,小组讨论交流,为什么0.4=0.40?

3.借助:0.4=0.40=0.400,引导学生逐步概括出小数的性质。

(1)从小数末尾添上“0”的情况去推断与思考去掉“0”的情况。

(2)在小数的末尾添上“0”或去掉“0”,小数的大小不变,但是小数的哪些方面发生了变化?让学生先讨论,在交流举例。

5.添上两笔,让4、40、400三个数相等。

6.探讨:从0.4到0.04,小数的大小有没有发生变化?从而让学生更深刻的理解“小数的末尾”这一关键词眼。

三、练习应用。

1.出示超市里某些食品的价格表,上面哪些小数里的“0”可以去掉?为什么?

总结:根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。

质疑:为什么有些小数能化简,但是价格表中仍然写成两位小数?

2.把下面物品的价格写成用“元”作单位的两位小数。

总结:利用小数的性质,可以把小数或者整数改写成指定位数的小数。

3.初步感知小数改写的作用。

四、课堂总结。

通过这节课的学习,你有了哪些新的收获?

数学教案-不等式的性质二篇十六

大家好!

我今天说课的课题是《不等式的基本性质》,它是北师大版八年级下册第一章第二节的内容。今天我将从教材分析,教学目标,教学重难点,教法学法,教学过程这五个方面谈谈我对这节课处理的一些不成熟的看法:

本节内容不等式,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用,所以对不等式的学习有着重要的实际意义。同时,不等式的基本性质也为学生以后顺利学习解一元一次不等式和解一元一次不等式组的有关内容的理论基础,起到重要的奠基作用。

根据《新课程标准》的要求,教材的内容兼顾我校八年级学生的特点,我制定了如下教学目标:

知识与技能:

1.感受生活中存在的不等关系,了解不等式的意义。

过程与方法:经历不等式的基本性质的探索过程,初步体会不等式与等式的异同。

情感态度与价值观:经历由具体实例建立不等式模型的过程,进一步符号感与数学化的能力。

教学重难点:

教法与学法:

1.教学理念:“人人学有用的数学”

2.教学方法:观察法、引导发现法、讨论法.

3.教学手段:多媒体应用教学。

4.学法指导:尝试,猜想,归纳,总结。

根据《数学课程标准》的要求,教材和学生的特点,我制定了以下四个教学环节。

下面我将具体的教学过程阐述一下:

一、创设情境,导入新课。

上课伊始,我将用一个公园买门票如何才划算的`例子导入课题。

(此处学生是很容易得出买30张门票需要4x30=120(元),买27张门票需要5x27=135(元),由于120〈135,所以买30张门票比买27张还要划算。由此建立了一个数与数之间的不等关系式)。

紧接着进一步提问:若人数是x时,又当如何买票划算?

二、探求新知,讲授新课。

引例列出了数与数之间的不等关系和含有未知量1205x的不等关系。那么在不等式概念提出之前,先让学生回顾等式的概念,“类比”等式的概念,尝试着去总结归纳出不等式的概念。使学生从一个低起点,通过获得成功的体验和克服困难的经历,增进应用数学的自信心,为下面的学习调动了积极。

接下来我用一组例题来巩固一下对不等式概念的认知,把表示不等量关系的常用关键词提出。

(1)a是负数;。

(2)a是非负数;。

(3)a与b的和小于5;。

(4)x与2的差大于-1;。

(5)x的4倍不大于7;。

(6)y的一半不小于3。

数学教案-不等式的性质二篇十七

我们刚才复习了除法中商不变规律和分数的基本性质,又知道比和除法、分数有着密切的联系,比的前项相当于被除数,比的后项相当于除数;比的前项也相当于分数的分子,比的后项相当于分母。

问:在比中有什么样的规律?

引导学生得出:比的前项和后项同时乘以或者同时除以相同的数(零除外),比值不变。这就是比的基本性质。

问:为什么这里要同时乘以或除以相同的数不能是0?(因为如果乘以0,比的后项就变成了0,没有意义。且0不能作除数,更不能同时除以0)。

2.教学化简比。

出示例1:把下面各比化成最简单的整数比。

(1)。

问:这道题的前项和后项都是什么数?怎样才能使它化成最简整数比?(引导学生得出:这道题前项、后项都是整数,要把它化成最简整数比,就必须根据比的基本性质把前、后项同时除以它们最大公约数7)。

(2)。

问:这是一道分数比,怎样才能使它转化成整数比?(引。

导学生说出:要根据比的基本性质,把它的前后项同时乘以它们的分母的最小公倍数18,才能转化成整数比。)。

化成整数比以后,如果不是最简的整数比,还要应用(1)题的方法继续化简。

(3)。

问:这道是小数比,怎样化成整数比?(启发学生说出:可根据比的基本性质,把它的'前后项同时乘以相同的数,使它们转化成整数比。如果这时还不是最简整数比,要再除以前后项的最大公约数,使它化为最简整数比。)。

3.小结:

问:这节课我们学习了什么新知识?它的内容是什么?还学会了什么?

三、巩固练习。

1.完成“做一做”的题目。

让学生说一说化简的方法。

2.练习十四第5、7、8题。

3.练习十四第9题。

提示:化简与求比值的得数有什么不同?(化简的结果是一个比。求比值的结果是商,是一个数)。

四、作业。

1.练习十四第6、10题。

2.一列火车15小时行驶1200千米。

(1)写出行驶的路程和时间的比,并化成最简单的整数比。

(2)求出这个比的比值,再说出这个比值的含义是什么?

【本文地址:http://www.xuefen.com.cn/zuowen/14375238.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档