全等三角形的判定教案范文(17篇)

格式:DOC 上传日期:2023-11-23 10:34:11
全等三角形的判定教案范文(17篇)
时间:2023-11-23 10:34:11     小编:书香墨

教案通过合理的设计和安排,能够有效地组织和引导学生的学习活动。在编写教案时,要考虑学生的学习兴趣和学习能力。以下是一些专业教师团队整理的一些教案编写参考资料。

全等三角形的判定教案篇一

1、掌握证明的基本步骤和书写格式。

2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明直角三角形的有关性质定理和等边三角形的判定定理。

能够用综合法证明等边三角形的判定定理和直角三角形的性质定理。

教学后记。

教师活动学生活动。

一、定理:一个角等于60°的等腰三角形是等边三角形。

1、引导学生回忆上节课的内容,让学生思考:等腰三角形满足什么条件时便成为等边三角形?让学生对普遍联系和相互转化有一个感性的认识。

2、肯定学生的回答,并让学生进一步思考:有一个角是60°的`等腰三家形是等边三角形吗?组织学生交流自己的想法。渗透分类讨论的思维方法。

3、关注学生得出证明思路的过程,讲评。讲解定理:有一个角是60°的等腰三角形是等边三角形。

二、一种特殊直角三角形的性质。

1、让学生拼摆事先准备好的三角尺,提问:能拼成一个怎样的三角形?能否拼出一个等边三角形?并说明理由。

3、演示规范的证明步骤,同时引导学生意识到:通过实际操作探索出的结论还需要给予理论证明。

4、让学生准备一张正方形纸片,,按要求动手折叠。

5、讲解例题,应用定理。

6、布置学生做练习。

练习:课本随堂练习1。

三、课堂小结:

通过这节课的学习你学到了什么知识?了解了什么证明方法?

四、作业:同步练习。

1、积极地自主探索、思考等腰三角形成为等边三角形的条件。可能会从边和角两个角度给出答案。

2、积极思考,通过老师的点拨,分类讨论当这个角分别是底角和顶角的情况。

3、认真听讲,体会分类讨论的数学思维方法,理解定理。

1、积极动手操作,并很快得到结果:可以拼出等边三角形。

2、在拼摆的基础上继续探索,得出结论。并在探索的过程中得到证明的思路。

3、认真听讲,体会从探索和尝试中得到结论的过程和证明方法的步骤,掌握定理。

4、很有兴趣地折叠纸片,体会定理的应用。

5、听讲,体会定理的应用。

6、认真做练习。

(学生小结:掌握证明与等边三角形、直角三角形有关的性质定理和判定定理)。

全等三角形的判定教案篇二

1、了解全等形和全等三角形的概念,掌握全等三角形的性质。

2、能正确表示两个全等三角形,能找出全等三角形的对应元素。

二、过程与方法。

通过观察、拼图以及三角形的平移、旋转和翻折等活动,来感知两个三角形全等,以及全等三角形的性质。

三、情感态度与价值观。

通过全等形和全等三角形的学习,认识和熟悉生活中的全等图形,认识生活和数学的关系,激发学生学习数学的兴趣。

2、在通过观察、实际操作来感知全等形和全等三角形的基础上,形成理性认识,理解并掌握全等三角形的对应边相等,对应角相等。教学难点正确寻找全等三角形的对应元素。

通过拼图、对三角形进行平移、旋转、翻折等活动,让学生在动手操作的过程中,感知全等三角形图形变换中的对应元素的变化规律,以寻找全等三角形的对应点、对应边、对应角。

教师——课件、三角板、一对全等三角形硬纸版学生——白纸一张、硬纸三角形一个。

(一)导课:

教师————(演示课件)庐山风景,以诗“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中”指出大自然中庐山的唯一性,但是我们可以通过摄影把庐山的美景拍下来,可以洗出千万张一模一样的庐山相片。

命名:给这样的图形起个名称————全等形。[板书:全等形]。

刚才大家所举的各种各样的形状大小都相同的图形,放在一起也能够完全重合,这样的图形也都是全等形。

动手操作2———制作一个和自己手里的三角形能够完全重合的三角形。定义全等三角形:能够完全重合的两个三角形,叫全等三角形。

(四)出示学习目标。

1、知道什么是全等形,什么是全等三角形。

(一)自学课本:第1节内容(时间5分钟)可以在小组内交流。

(二)检测:

1、动手操作。

以课本p91页的思考的操作步骤,抽三个学生上黑板完成(即把三角形平移、翻折、旋转后得到新的三角形)。

思考:把三角形平移、翻折、旋转后,什么发生了变化,什么没有变?

归纳:旋转前后的两个三角形,位置变化了,但形状大小都没有变,它们依然全等。

(以黑板上的图形为例,图一、图二、三学生独立找,集体交流)。

(1)对应的顶点(三个)———重合的顶点。

(2)对应边(三条)———重合的边。

(3)对应角(三个)———重合的角。

归纳:

方法一:全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;

方法二:全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。另外:有公共边的,公共边一定是对应边;有对顶角的,对顶角一定是对应角。

抽学生表示图一、图二、三的全等三角形。

思考:全等三角形的对应边、对应角有什么关系?为什么?

请写出平移、翻折后两个全等三角形中相等的角,相等的边。

全等三角形的判定教案篇三

3.利用“边边边”判定全等推理的书写格式。

本节课的重点是探索三角形全等的“边边边”的条件;了解三角形的稳定性及其在生活中的应用;运用三角形全等的“边边边”的条件判别两个三角形是否全等,并能解决一些简单的实际问题。

有学生的.预习,难点1的突破还是可以很快进行的,但是反例的列举还不够。难点2是学生分类解决问题能力的检验,学生能够很顺利地分成四类:三条边、两边一角、两角一边、三个角,但是不能更加细致地分类,不能进一步把两边一角分为两边及其它们的夹角、两边及其中一边的对角;不能把两角一边进一步分为两角及其夹边、两角及其中一角的对边。从课上的实施看,四种情况的分类基本做得比较好。课后细想,进一步的分类,本课也可以不再进行,可以到下一课再细化。理由是:学习是一个循序渐进的过程,没有必要每一次的新知引进都要一步到位,况且本课要处理的问题还是挺多的,课堂教学要有所侧重。难点3的引导较好,但是学生全等推理的书写格式还有待于继续训练。证明全等的准备条件在写两个三角形全等之前就要书写说明;直接条件直接写,隐含条件要挖掘。

从本课的教学情况看,学生的预习还需指导,学生对课本上探究2的操作比较粗糙,课堂上需要教者认真示范引领;课堂容量的把握要适度,本课我安排了两个例题,一个开放型填空题和四个解答证明题,学生的思维训练是充分的,四个证明题也是有学生上黑板板演的,多数同学是能够全部完成,但是不可否认,还是有同学没有来得及,作一个角等于已知角的教学还不很充分,全面提高学生的教学质量要真正得到保证。

在课堂上让学生能参与到探索的活动中,通过动手操作、实验、合作交流等过程,学会分析问题的方法。通过三角形稳定性的实例,让学生产生了学数学的兴趣,学会用数学的眼光去观察、分析周围的事物,为下一节内容的学习打下了基础。

全等三角形的判定教案篇四

本章有以下几个主要内容:

一、比例线段。

(1)线段比:用同一长度单位度量两条线段a,b,把他们长度的比叫做这两条线段的比。

(2)比例线段:在四条线段a,b,c,d中,如果线段a,b的比等于线段c,d的比,那么,这四条线段叫做成比例线段。简称比例线段。

(3)比例中项:如果a:b=b:c,那么b叫做a,c的比例中项。

(4)黄金分割:把一条线段分成两条线段,如果较长线段是全线段和较短线段的比例中项,那么][这种分割叫做黄金分割。这个点叫做黄金分割点。

顶角是36度的等腰三角形叫做黄金三角形。

宽和长的比等于黄金数的矩形叫做黄金矩形。

(5)比例的性质。

基本性质:内项积等于外项积。(比例=====等积)。主要作用:计算。

合比性质,主要作用:比例的互相转化。

等比性质,在使用时注意成立的条件。

平行线等分线段------平行线分线段成比例--------平行于三角形一边的直线截其他两边(或两边延长线),所截线段对应成比例------(预备定理)平行于三角形一边的直线和其他两边(或两边延长线)相交,所截三角形与原三角形相似------相似三角形的判定:类比于全等三角形的判定。

1、定义:相似三角形对应角相等。

对应边成比例。

2、相似三角形对应线段(对应角平分线、对应中线、对应高等)的比等于相似比。

4、相似三角形面积的比等于相似比的平方。

四、图形的位似变换。

1、几何变换:平移,旋转,轴对称,相似变换。

----2、相似变换:把一个图形变成另一个图形,并保持形状不变的几何变换叫做相似变换。

----3、位似变换:两个图形不但相似,而且对应点连线过同一点的相似变换叫做位似变换。这两个图形叫做位似图形。

4、 位似变换可把图形放大或者缩小。

5、外位似(同向位似图形)位似中心在对应点连线外的位似叫外位似。这两个图形叫同向位似图形。

内位似(反向位似图形)位似中心在对应点连线上的位似叫内位似。这两个图形叫反向位似图形。

6、以原点为位似中心,相似比为k,原图形上点的坐标(x,y)则同向位似变换后对称点的坐标为(kx,ky)。

以原点为位似中心,相似比为k,原图形上点的坐标(x,y)  反向位似变换后对称点的坐标为(-kx,-ky)。

全等三角形的判定教案篇五

崔志伟

第十二章第二节

1

掌握全等三角形的判定定理边边边,能运用该定理解决实际问题。

探索三角形全等的条件,以及运用边边边定理画一角等于已知角

学生合作探究法、教师讲解结合谈话法等综合教学方法

黑板板书教学

阶段

导入部分

采用复习导入,教师首先提问学生回顾全等三角形的定义,以及全等三角形的性质。

学生在复习以上知识的条件下教师做出解释,上节课我们已经学习了三角形在满足三边对应相等,三角对应相等,则两三角形全等,那么在实际的运用过程中,需要这么多条件运用会很不方便,那么我们很容易想到,能不能简化条件,得出三角形全等呢?由此引出课题全等三角形的判定。

阶段

课堂教学设计

课程新授

教师让学生大胆想象,可以从一组对应关系相等开始探究,逐步上升到两组对应关系相等三组对应关系相等。

但是为了节约时间,可以让学生从两组开始,如若两组都不行,那一组肯定也不行,反之如若两组条件就足够了,再回头看看一组的'情况。

接下来学生在教师的提问下思考二组对应条件的所有可能的情况,预设会有思考不全面的同学,教师即使揭示在一组边与一组角相等的情况下,边与角的关系可以为相邻,也有可能为相对。

学生在教师的提示下,探索发现满足两组对应关系相等的三角形不一定全等,由此可以断定一组对应关系相等也不能作为判定三角形全等的条件。接下来直接考虑三组对应相等关系的情况。

首先引导学生对三组对应关系相等进行分类。

预设学生部分可以全部考虑到,部分学生考虑不周到,这时教师可以请会的同学展示被同学忽略的情况即两组角与一组对边对应相等时,边可以为对边,也可以为邻边。

本节课将引导学生探索三边相等的情形,有了前面两组对应相等的经验,预设学生根据尺规作图可以画出三边等于已知三角形的三角形,接下来通过三角形全等的定义,让学生动手操作进行验证,发现可以完全重合,由此我们得到三组边对应相等的三角形全等。即sss,教师解释s为英文边,side的首字母。

接下来请同学说出已知三角形与所作三角形之间存在的对应相等关系,预设学生可以很轻易说出。

由此教师揭示,实际上我们还学回了一个做角等于一只角的另外一种做法,即运用尺规作图画一角等于已知角。接下来,教师稍作解释,请学生探究讨论作图步骤。看谁的最简便。

学生探索过后,教师请学生回答自己的作图步骤,最后由教师板书最简易的作图步骤。

之后我将用练习的方式,加深同学对边边边判定定理的理解并加强应用能力。

作业为书上的练习第二题,以及课后作业的第四题对应基础性练习即巩固性练习。

采用归纳式的板书设计,主要板书两种即三种对应关系相等的种类,边边边判定定理的内容以及画一角等于已知角的步骤以及重要练习的过程。

本结课内容比较多,主要体现在全等三角形判定的探索过程,为了节约时间,我选择让学生直接从两个条件开始探究,同时也不影响学生理解,教师主要以引导为主,学生自主探索学习。

全等三角形的判定教案篇六

【学习目标】:

1.通过领会“只满足一个或两个条件的两个三角形不一定全等”的探究过程,探究两个三角形具备三个条件的四种可能,即三边对应相等、两边一角对应相等、两角一边对应相等、三角对应相等,渗透分类讨论思想.

2.能初步应用“边边边”条件判定两个三角形全等.

3.会作一个角等于已知角.

全等三角形的判定教案篇七

尊敬的各位领导、教育同仁:

大家好:我来自于北安管理局龙门农场中学。

今天,我就我们团队《三角形全等的判定(二)》就是用sas的方法判定两个三角形全等这一节课的课件制作和使用向大家做一下说明,希望能和大家共勉!

一、课件设计的意图:

现在教学中我们使用的是新教材,新教材向我们提供的是一种教学素材,新教材有些知识点较旧教材难度有所降低,但对知识的手段要求更高了,灵活性更强了,解决问题的方法更多了,这就要求教师备课时要充分挖掘教材,领会课程标准的要求,深入揣摩编者的意图,由于八年级的学生已经具备了抽象思维能力,实践能力和探索能力,这就要求教师把教学内容要重新进行整合。数学《新课程标准》要求数学教学是数学活动的教学,教学过程中从实际出发,关注学生自主学习合作交流的意识,充分体现教师是学生学习活动的组织者,引导者、合作者,本节课是结合具体的数学活动内容采用“问题情境—建立模型—解释—应用拓展”的模式和结构展开,让学生经历知识的形成与应用的过程,从而增强学生学习数学的热情。这就要求数学教师在实际数学教学中充分利用现代化教学手段,创造性地使用教材,积极开发、利用各种教学资源,合理利用现代信息技术,把信息技术更好地应用到数学教学中去。

二、课件的作用:

多媒体辅助教学在现代化数学教学中起着越来越重要的作用,其教学手段具有直观性,内容具有丰富性,特别是在许多无法用实物教学的过程中起着无可替代的作用。它能极大地激发学生的学习兴趣,以形象具体的图、文、声、动等手段活跃课堂气氛,在数学教学中能克服许多常规教学中无法解决的困难,便于在短时间内让不同层次的学生得到相应的知识,同时增大课堂容量,对于提高学生的知识水平,培养学生的创新思维有着传统教学中无法比拟的优势,因此,我们把这一节课以课件的形式展示给学生们,学生们在这些丰富多彩以及动感的学习环境中,对教学内容更容易领会和掌握。

三、课件效果预测:

我们的课件制作采用当今操作比较简单,应用比较广,省时、省力的powerport软件,该软件动感也比较强,是非常易于操作的一个软件平台。

首先,我们用激励性的语言和一只展翅飞翔的鹰做了一个片头,这为学生们学习本节课的知识充满了自信,也很给力,同时使心情得到放松,让学生在轻松愉快中去学习。

接着,我们用一个生活当中的实际问题导入这节课,让学生体会到数学来源于现实生活,同时又反作用于现实生活。由于这个问题在课堂上是无法用实物教学的,所以我们把这一问题制作成幻灯片,让学生通过联想,眼前呈现现实情境,使学生身临其境,同时,提高了学生的学习兴趣,激活了学生学习探究的欲望。

同时,我们把其它的内容也制作成了幻灯片,来实现图形和文字等一些要素的结合,使教师利用多媒体教学实现和学生更好地互动,并节省了一些时间,扩充了知识的范围,增加了课堂的容量,优化了课堂教学,从而高效地完成教学目标的过程。

在课件的制作上,我们把有的图形设计成动画,使学生对知识的理解更直观,更形象了,避免传统式枯燥的说教,使学生在轻松愉悦中掌握了知识,同时,难点得到突破。并在文字的设计上,我们把关键的字和词配上颜色,加深对学生的印象,使重点得到突出,详略得当。

四、课件的制作力求创新:

我们对这节课的课件制作上尽量简洁实用,突出实效性,避免出现一些花哨的画面,干扰学生的学习,分散学生的注意力,达到课件使用与课堂教学的完美结合。同时,我们并没有完全依赖于课件教学,还是以教材为主线,以课件为辅的教学理念充实课堂教学。

谢谢大家!

全等三角形的判定教案篇八

昨天对三角形全等进行复习,教学目的是:使学生能灵活运用“sss”、“sas”、“asa”、“aas”和“hl”来判定三角形全等;体会文字命题转化为数学符号语言的过程,掌握文字命题的证明。

对于本单元的知识内容,学生很容易掌握,但是,与单纯的知识内容相比,更重要的是利用这些知识内容解决问题。因此,本课的复习就是重在证明题的分析方法上。

这一课的教学案设计是这样的,预习导学部分安排复习了定义、性质、判定方法;安排复习三角形全等的条件思路;安排复习找三角形全等的条件时经常见到的隐含条件;三个对应相等的条件不能使三角形全等的情况及其反例。前置学习第二部分的三个选择题,有效地复习了“对应相等”、“两边夹角”、“边边角”和“角角角”不能的注意点。又安排了两次全等的证明题,并由命题的证明归纳文字命题:“等腰三角形底边的中点到两腰的距离相等”,为学习文字命题的证明作好了准备,也训练了学生语言表达能力。

在前置学习的基础上,我让学生上台叙述例题1的证明思路,并由两条题目的分析思路的探究体会怎样分析和总结证题时常有的合理联想,如“由垂直想互余,互余多了自有同角或等角的余角相等”、“由角平分线想折叠”等等。接着学习例2和练习学习文字命题的证明步骤:根据题意画图形,结合图形写“已知”和“求证”,认真分析得“证明”。

这一课复习安排的内容比较多,学生思维训练很充分,证明和分析方法体会得不少,学生动手写证明的全过程偏少,文字命题的训练占全课的比重较小。

利用学生主动的探究,学生对三角形判定和性质掌握比较好,而且由于学生对每一个判定和性质都进行了数学语言和符号语言的书写练习,因此提高了学生的书写能力,在习题课上大部分的学生都能写出比较完整的证明过程。

1、学生识别图形的能力差、如:“asa”与“aas”“hl”判别不清。

2、几何证明题一直是学生的一个弱点。学生存在会分析,但是书写不规范的情况。

全等三角形的判定教案篇九

《全等三角形的判定》这一课,要求学生会通过观察几何图形识别两个三角形全等,并能通过正确的分类动手探索出两个三角形全等的条件。具体说:

(5)能用这四个判定,直接判定两个三角形是否全等或能补充一个条件使两个三角形全等。

基于知识的完整性和分类的数学思想的渗透,我认为这个教学设计体现了知识与技能目标。增强学生的观察、猜想和动手操作能力。

全等三角形的判定教案篇十

根据教学大纲的课时安排,全等三角形这一内容需1课时。在本节课的学习中,为了完成教学任务,突出重点,突破难点,让学生真正达到教学目标,我采用了以下教法:“探究辅导法,类比法,讲练结合法,”具体说明如下:兴趣是学生最直接意识的学习动机。教学必须以学生兴趣为起点,由学生自己动手画图,并把两个三角形剪下叠和在一起,看是否能完全重合。培养学生养成在动手操作过程中仔细观察、勤于思考、善于发现的良好习惯。通过动手操作,使学生体验到两角和它们的夹边对应相等的两个三角形全等。

一个良好的开端就是成功的一半,一种好的引入方法可促使学生产生“欲罢不能”的强烈求知欲望。

三角形全等的条件必须满足三个条件,“边边边”在探索(1)已探索过,在探索(2)中主要是探索“角边角”、“角角边”两个识别三角形全等的条件。

本节的主要内容是全等三角形的另两个识别方法aas,在前面研究“角边角”识别方法的前提下,研究“角角边”对于学生并不困难,让学生通过直观感知、操作确认的方式体验数学结论的发现过程;在这节课的教学中,在探索比较简便的识别三角形全等方法的时候,还利用一个非常重要的数学思想——转化思想,在教学时尽量让学生独自解决,其次在运用这两个方法判定两个三角形全等的时候,要求学生的识图能力和对这两个判定方法的熟练掌握。教科书安排用一个课时完成,经过今天的上课实际操作,从学生反馈的信息,对这节课反思如下:

1、学生在应用的时候,不会使用这两个判定,“角边角”、“角角边”不知怎样用,该用“角边角”就用到“角角边”,该用“角角边”又用到“角边角”。

2、很好用两课时,第一课时探索“角边角”,第二课时探索“角角边”。运用这两个方法判定两个三角形全等的时候,一定要通过具体的图形分析来提高学生的识图能力和通过一定题量的训练对这两个判定方法的熟练掌握。

开放问题的设计,本节课让学生从练习中得到思维的发展,同时找到自己的不足,及时反馈,典型例题一题多问,设计环环相扣。

全等三角形的判定教案篇十一

定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。

判定定理:在同一三角形中,如果两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。

除了以上两种基本方法以外,还有如下判定的方式:。

1.在一个三角形中,如果一个角的平分线与该角对边上的中线重合,那么这个三角形是等腰三角形,且该角为顶角。

2.在一个三角形中,如果一个角的平分线与该角对边上的高重合,那么这个三角形是等腰三角形,且该角为顶角。

3.在一个三角形中,如果一条边上的中线与该边上的高重合,那么这个三角形是等腰三角形,且该边为底边。显然,以上三条定理是“三线合一”的逆定理。

4.有两条角平分线(或中线,或高)相等的三角形是等腰三角形。

全等三角形的判定教案篇十二

目标:

1、知识目标:

(1)熟记角边角公理、角角边推论的内容;

(2)能应用角边角公理及其推论证明两个三角形全等.

2、能力目标:

(1)通过“角边角”公理及其推论的运用,提高学生的逻辑思维能力;

(2)通过观察几何图形,培养学生的识图能力.

3、情感目标:

(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧.

重点:学会运用角边角公理及其推论证明两个三角形全等.

难点:sas公理、asa公理和aas推论的综合运用.

用具:直尺、微机。

方法:探究类比法。

过程:

1、新课引入。

投影显示。

这样几个问题让学生议论后,他们的答案或许只是一种感觉“行或不行”.于是要引导学生,抓住问题的本质:“分别带去了三角形的几个元素?”学生通过观察比较就会容易地得出答案.

2、公理的获得。

问:恢复后的三角形和原三角形全等,那全等的条件是不是就是带去的元素呢?

让学生粗略地概括出角边角的公理.然后和学生一起做实验,根据三角形全等定义对公理进行验证.

公理:有两角和它们的夹边对应相等的两个三角形全等.

应用格式:(略)。

强调:

(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论.

(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边,公共角、对顶角、邻补角、外角、平角等)。

所以找条件归结成两句话:已知中找,图形中看.

(3)、公理与前面公理1的区别与联系.

以上几点可运用类比公理1的模式进行学习.

3、推论的获得。

改变公理2的条件:有两角和其中一角的对边对应相等这样两个三角形是否全等呢?

学生分析讨论,巡视,适当参与讨论.

4、公理的应用。

(1)讲解例1.学生分析完成,注重完成后的总结.

注意区别“对应边和对边”

解:(略)。

(2)讲解例2。

投影例2:

学生思考、分析,适当点拨,找学生代表口述证明思路。

证明格式:用大括号写出公理的三个条件,最后写出。

结论.

第12页 。

全等三角形的判定教案篇十三

通过学生全过程的`画图、观察、比较、交流等,逐步探索出最后的结论------边边边,在这个过程中,学生不仅得到了两个三角形全等的条件,同时增强了数学体验。

[讲授效果反思]。

证明中的每一步推理都要有依据,不能“想当然”,这些根据可以是已知条件,也可以是定义、基本事实、定力等。

[师生互动反思]。

例题教学时要注意:先让学生独立思考,再合作交流,更要注意师生互动。

全等三角形的判定教案篇十四

本节课的教学重点是角角边定理的的推导以及利用角角边定理去解决问题。

教学内容的反思:

1、此学案的自学部分先让学生回顾上节课(asa)的知识,及在两个三角形中已知两个角对应相等,证明第三个角相等,为新课的学习打下基础。

2、角角边的推导是一个难点,因此在学案处理上先分散难点,先证明第三个角相等,然后在新课学习时点评此题,然后过渡到探究6,顺利完成定理的证明,再引导学生规纳方法。接下来再应用知识解决问题,这样的'教学安排较好地处理了这一部分的知识,并且练习有一定的梯度。

3、由于学生的实际情况,没有完成第4题的应用提高。留作学生课后完成。

教学方法的反思:

1、让学生主动探索、发现、(在课前的自学部分)感受数学活动中充满探索与发现的机会,并体验探索成功的乐趣,增强创新意识,感受观察、猜想在发现创新中的作用,培养注意观察的习惯,学会观察猜想归纳,培养创新能力。

2、在定理的应用中,先让学生做两个基础练习,然后学习例题,因为学生已有一定的证明思路,只是根据题目的条件选择不同的证明方法。所以在例题讲解上,重点分析方法。余下时间让学生自主完成练习。

全等三角形的判定教案篇十五

通过本节课的学习,学生重温了sss,sas,asa,aas的综合运用,具体体现在“寻找挖掘证明全等的条件”“证明两次全等甚至三次全等”“利用全等证明线段相等,线段平行,角相等”“利用全等求线段的长,角度的大小”,从而提高了学生知识的运用能力,逻辑思维能力,有条理地几何书写及表达能力。

1、与生活问题联系,激发学生的兴趣,重视数学的生活化。引新中的“配玻璃”问题,“课前小测”中的“测量内槽宽”问题,“巩固提高”中的第8题为此而设计。

2、重视对学生书写习惯的培养。全等三角形是初中几何重要的一块,例1,例2,例4,课堂演练与提高,还有课后练习的5,6,7,8都要求学生在学案上完整地书写过程,能有效地培养学生有条理的书写习惯。

3、课堂以学生为主体。老师尽量少讲,用最恰当最简洁的语言点拨启发学生;老师尽量留更多的思考时间给学生,借学生的口点评问题的答案,尽量避免学生还没有想到怎么回事老师就把答案说出来的毛病。

4、重视学生之间的思维培养,合作交流。例3能很好地培养学生有条理地思考及一题多解思维发散;课堂演练的两题老师组织学生组内讨论合作交流。

5、教育学生一定要主动学习,独立思考。课后练习一定提醒学生要独立解决的基础上可以相互交流,高质量完成。

1、本设计存在题型过于繁杂,显得专题性不强。可以考虑将“添加三角形全等条件”“全等三角形的证明”“利用全等求角的度数及线段的长”分别作为专题讲解复习。

2、本节课还可以考虑设置一些小组竞赛的内容去调动学生积极性和课堂气氛。

总之,成功的课堂一方面取决于立足学生实际,教学设计的好;另一方面还取决于课堂上每一位学生都能够积极地参与,主动地思考。所以我们老师有一个重要任务就是要能让学生在课堂上活跃起来、动起来想有效的办法!

全等三角形的判定教案篇十六

这一节课的讲学稿是经过了反复推敲,经过反复修改过了的学案。为了能够提高课堂效率,我在自学提要中安排了一组作图题,让他们通过自己动脑、动手按要求作图,在作图的同时判断分别只给一组条件对应相等,两组条件对应相等,三组条件对应相等时能否画出全等的三角形?也为上课提高课堂效率作铺垫,使学生们能较快,较好的探讨出全等三角形判定的条件。通过这样的设计很好的突破本节课的重点。

在教学过程中使用课件的动画演示,使学生能够较快得出全等三角形判定的条件,并且较容易的理解和掌握全等三角形判定的条件。

课堂练习的设计上:第三题目的是训练学生掌握两个三角形全等的书写格式。接着在掌握了书写格式的基础上,第四,五两题就是训练学生会通过题目给的条件,找出三条对应相等得边,进而证明三角形全等。第6题对掌握得比较快的同学可以去做一做。通过这样的编排学生对三角形全等的判定的格式掌握得比较好。练习设计由易到难这样学生做起题来也比较感兴趣。

全等三角形的判定教案篇十七

本节课教学,主要是让学生在回顾全等三角形判定的基础上,进一步研究特殊的三角形全等的判定的方法,让学生充分认识特殊与一般的关系,加深他们对公理的多层次的理解,数学课文-直角三角形全等判定教学反思与自评。在教学过程中,让学生充分体验到实验、观察、比较、猜想、归纳、验证的数学方法,一步步培养他们的逻辑推理能力。新课程标准强调“从具体的情景或前提出发进行合情推理,从单纯的几何推理价值转向更全面的几何的教育价值”,为了体现这一理念,我设计了几个不同的情景,让学生在不同的情景中探求新知,用直接感受去理解和把握空间关系。这一设计,极大的激发了他们的学习欲望,加深了师生互动的力度,课堂效益比较明显。不同的情景又以不同的层次逐步提升既有以知识为背景的情景,又有以探索、验证为主的情景,从不同的方面,让不同层次的学生都有所收获,体现了“大众数学”的主旋律,也是“不同的人学习不同的数学”的新课程理念的体现。《标准》明确提出“通过对基本图形的基本性质必要的证明,使学生体会证明的必要性,理解证明的基本过程,掌握用综合法证明的格式,初步感受公理化的思想”,为体现这一目标,在“情景二”探索“hl公理”中,要求学生用文字语言、图形语言、符号语言来表达自己的所思所想,强调从情景中获得数学感悟,注重让学生经历观察、操作、推理的过程,教学反思《数学课文-直角三角形全等判定教学反思与自评》。

数学教学应努力体现“从问题情景出发,建立模型、寻求结论、解决问题”,在“情景三”中,我通过三角板的拼图,让学生从这一过程抽象出几何图形,建立模型,研究具体问题,起到了较好的作用,学生也体会到数学与现实的联系,以及学习处理此类问题的方法。作为九年级的学生,他们的抽象思维已有一定程度的发展,具有初步的推理能力,因此,教学中,我除了注重情景的运用外,更多的运用符号语言,在比较抽象的水平上,提出数学问题,加深和扩展了学生对数学的理解。纵观整个教学,不足主要体现在提出的一些问题,启发性、激趣性不足,导致学生的学习兴趣不易集中,课堂气氛不能很快达到高潮,延误了学生学习的最佳时机;在学生的自主探究与合作交流中,时机控制不好,导致部分学生不能有所收获;在评价学生表现时,不够及时,没有让他们获得成功的体验,丧失激起学生继续学习的很多机会。

总之,我们在教学中一定要考虑我们的对象,要为他们服务,为他们设想,这样才能够获得最佳教学效果。

【本文地址:http://www.xuefen.com.cn/zuowen/14351456.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档