总结是对工作和学习的一种自我监督和评估,可以帮助我们发现不足,进行及时的调整和改进。在写总结的过程中,我们应该尽量避免重复和冗长的叙述。这些总结范文是对一些重要事件的回顾和总结,很值得一读。
人教版数学图形面积教学设计篇一
教学目标:
1、使学生理解组合图形的含义,初步了解组合图形面积的计算方法。
2、使学生能正确分析图形,并能求组合图形的面积,提高运用几何知识初步解决实际问题的能力,提高观察分析的能力和解题的灵活性。
3、培养学生积极参与数学学习活动的热情,体会数学与自然及人类社会的密切联系。
教学重点:初步掌握组合图形面积的计算方法,会计算简单的组合图形的面积。
教学难点:能正确地把组合图形分解成几个已学过的图形。
教学形式:多媒体教学。
教学过程:
一、课前复习:
1、多媒体出示长方形、正方形、平行四边形、三角形、梯形,让学生说一说它们的面积计算公式各是什么?并出示其对应的字母公式。
2、引课:
多媒体展示几组组合图形,并提问这些还是简单的图形吗?它们都是由什么组合而成的?引出组合图形的概念。
讲授新课:
1、多媒体出示例题:。
右图表示的是一间房子的侧墙的形状,
它的面积是多少平方米?
2、学生独立分析解决问题,集体订正。
方法一:墙面积=长方形面积+三角形面积。
=8×5+8×3÷2。
=40+12。
=52(平方米)。
方法二:墙面积=梯形面积×2。
=【5+(3+5)】×(8÷2)÷2×2。
=26×2。
=52(平方米)。
3、练一练。
多媒体出示中队旗,想求中队旗的面积是多少,有几种分析方法:小组合作。
方法一:方法二:
方法三:方法四:
4、小结:多媒体出示:
想一想:通过刚才的学习,你认为应怎样计算组合图形的面积?
计算组合图形的面积主要可以采用“分割”与“添补”的方法进行计算。
二、课堂练习:多媒体出示练习题。
1、求下列图形的面积。(单位:cm)。
2、学校要油漆60扇教室的门的正面,(门的形状如右图,单位:米)。
(1)需要油漆的面积一共是多少?
(2)如果油漆每平方米需要花费5元,
那么学校共要花费多少元?
3、考考你:求下面图形中阴影图形的面积是多少?
四、课堂总结:
通过计算这些题,说一说求组合图像的方法都有哪些方法?
“分割法”、“添补”和“等积转换法”
人教版数学图形面积教学设计篇二
【教材分析】:组合图形面积的计算在义务教育教材中是选学内容。现在放在多边形面积计算最后学习,有利于综合运用平面图形面积计算的知识,进一步发展学生的空间观念。组合图形的面积是指由几个简单图形组合成的图形的面积,在生活中有着广泛的应用。在学生已经初步掌握几个简单的图形面积计算公式的基础上,本节课进一步学习多边形的面积,理解计算组合图形的多种方法,能根据各种组合图形的条件,选择简单有效的计算方法并进行正确的解答。在熟悉所学图形面积计算公式的基础上,根据已知条件,通过分割法或添补法,并结合生活实际,会把组合图形分解成学过的简单图形,找准分解后图形的底、高、长和宽等量,计算出面积。
【学情分析】:本课的授课对象是五年级的学生,学生通过之前的学习对于平面图形直观感知和认识上已有了一定的基础,也掌握一些解决简单图形问题的方法。学生应进一步提高知识的综合运用能力,在学习中去探索掌握解决问题的思考策略。因此,设计了主要是让学生自主探索,在具体的情境中领会转化的数学思想,体会并掌握计算组合图形的多种方法,并能够在比较的基础上选择最有效的方法解决实际问题。
【教学目标】:
1、在自主探索的活动中,理解计算组合图形面积的多种方法。
2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
3、能运用所学的知识,解决生活中组合图形的实际问题。
4、让学生在自主探索的基础上进行合作交流,从而归纳组合图形面积的计算方法。
5、渗透转化的数学思想和方法。
【教学难点】:理解计算组合图形面积的多种方法。
【教学关键】:学会运用分割与添补的方法计算组合图形的面积。
【教学过程】:
一、复习铺垫:
师:同学们,目前为止,我们已经学习了哪些平面图形?(点名说)。
师:有些平面图形我们已经学会了计算它的面积,下面老师要考考你们,说一说下面图形的面积计算公式。
(设计意图:让学生在说一说,拼一拼,看一看的过程中充分调动多种感官参与到学习中来,在浓厚的学习氛围中感受到知识来源于生活,而又服务于生活,明确生活中的很多问题都和组合图形的面积有关。)。
二、创设情境,激趣导入。
1、欣赏图案:
大家的表现真棒。为了奖励你们,老师请你们去欣赏一些漂亮的图案。(大屏幕出示图案)。
请你找一找这些图案是由哪些我们学过的简单的图形组成的?(最后出示中队旗图案,介绍辅导线及其作用)。
2、认识组合图形:
同学们,这些漂亮的图案都是由我们已学过的正方形、长方形、平行四边形、三角形或梯形组合而成的,我们把这些图形叫做组合图形。(板书组合图形的定义一齐读)。
3、看生活中的组合图形:
在我们的生活中很多物体的表面都有组合图形,我们一起去看一看。(课件出示)。
4、揭题:
生活中像这样的组合图形还有很多,今天,我们就一起来研究组合图形面积的计算方法,(板书课题:组合图形的面积)(齐读)。
(设计意图:根据学生已有的知识经验和生活经验,让学生观察了解生活上的组合图形,目的是想通过这样的活动使学生明白组合图形是由多种平面图形组成的,可以有多种不同的组合方法等。这样做不但使学生热情高涨,兴趣浓厚,而且增加了神秘感,也具有挑战性,同时,使学生在头脑中对组合图形产生感性认识,更为下一步探究组合图形面积做好铺垫。)。
三、自主学习,探究新知。
1、出示计算房子侧面墙的面积的问题:(课件出示)。
小明家新买了房子,正在装修,装修时需要计算房子侧面墙的面积,我们一起去帮帮他。
师:齐读题目(生读题目)。
师:房子侧面墙的形状是一个什么图形?(是一个组合图形)。
2、计算组合图形的面积:
师:如何求这个组合图形的面积呢?请同学们结合思考要点认真思考。(独立思考)。
思考提纲:(课件演示)。
(1)、这个图形是由哪些简单图形组合而成的?
(2)、求这个组合图形的面积就是求哪几个图形的面积?
(3)、有几种方法?怎样求?
师:把你的想法到小组里去说一说。(小组讨论,老师巡视并指导。)。
全班交流计算方法。(老师适时课件演示两种分法)。
师:现在你能动笔算一算?(请两位学生上黑板算)。
(设计意图:通过解决实际问题初步感知组合图形面积的计算方法。)。
3、全班交流:
师:你能说说你是怎么算的吗?
生1:把组合图形分成一个三角形和一个正方形,先分别算出三角形的面积和正方形的面积,再相加。
生2:把这个组合图形分成两个完全一样的梯形,先算一个梯形的面积,再乘以2。
(板书如下)s组=s梯2。
法3:(如果学生没想出这种方法老师就直接出示)。
师:我们的好朋友聪聪还有一种计算的方法,想学吗?
把这个图形补上两个三角形就成了一个大长方形,先分别算出大长方形的面积和三角形的面积,再用大长方形的面积减去两个三角形的面积。
4、小结:
师:同学们的算法非常好,现在我们再一起来看看这几种算法。(大屏幕演示)。
师:观察这三种算法,你有什么发现?(前面的两种都是把它分成已经学过的图形来计算,后面一种是把它补成已学过的图形来计算)。
师:对。说得真好,像前面的两种方法我们称为分割法(大屏幕出示,生齐读)。
师:后面的这种方法称为添补法。(大屏幕出示,生齐读)。
师:分割法和添补法是我们计算组合图形的两种基本方法,在具体的题目里要根据所给条件选择恰当的方法,做到既准确又简便。
(设计意图:在学生解决组合图形面积时,重视把学生的思维过程充分暴露出来,让学生认真观察、独立思考、自主探索、培养了能力。这时,为每个学生提供活动的时间和空间,鼓励学生用不同的方法进行计算,开拓学生的思维,并引导学生找最简单的方法,实现方法的比较,同时也是反映自己的方法和学习别人方法的一个很好时机,通过学生的探索、交流、讨论、优化、使学生进一步理解和掌握组合图形面积的计算方法,进一步发展学生的空间观念。这里体现了多种学习方式并存,首先,学生通过自己独立思考,得出解决问题的方法;然后通过小组和全班交流,使学生学会了别人的方法;最后,从这些方法中,比较、反思、知道最简便的方法。充分体现了数学知识从行为到灵魂的内化过程。)。
三、巩固提高,拓展延伸。
1、完成课本做一做。
(设计意图:注重对学生自信心的培养,让不同的学生都有不同层次的提高,让他们充分体验到成功的快乐,从而信心百倍,同时注重对学生学习兴趣的培养和思维能力的培养。)。
2、课本94页的第二题。
(设计意图:设计意图设计意图设计意图:通过前面学过的知识,同学们已经有了知识的储备量,再回头做这样的题,兴趣高涨,分割和添补法有一定的综合运用,但是当老师给定数据的时候,同学就又会重新审视自己的方法,看哪一种更适合这道题的解题方法,发现解题的方法,又是一个比较的过程。)。
四、课堂小结:
通过今天的学习,你学到了什么?
师:今天我们学会了用分割法和添补法来计算组合图形的面积。希望你们能运用今天所学的知识去解决更多生活中的问题。
(设计意图:学生可以说知识上的收获,也可以说情感上的收获,既发挥了学生的主动性,又将本堂课的内容进行了总结.也可以评价他人的学习表现,生生互动评价,学生既认识自我,建立信心,又共同体验了成功,促进了发展。)。
人教版数学图形面积教学设计篇三
1、结合具体实例和画图活动,认识图形面积的含义。
2、经历比较两个图形的面积大小的过程,体验比较策略的多样性。。
教学重点。
认识图形面积的大小。
教学难点。
教具准备。
两个正方形纸,一大一小。
教学过程。
一、激发兴趣,认识物体表面。
1.摸一摸。
同学们,拿出你们的双手,摸一下你们的课本和桌子的表面。
2.比一比。
你们说,课本和桌子这两个面,哪一个面大,哪一个面小?(桌子)。
再来找一找,你们身边有没有比课本的面小的物体?(练习本,铅笔盒......注意要说清楚立体图形的哪个面比哪个面小)。
老师拿了两个正方形,我们来比一比,哪个正方形的面大?这些都是我们靠观察就可以看出来的对不对?(板书:观察比较)。
3.引入。
物体或者是图形的表面可真有意思,他们有大有小。在我们日常生活中,用来说明物体长短的叫什么?(长度),那么你们知道用来说明物体的表面或图形大小的是什么吗?今天我们就来学习一个新知识--面积(板书)。
二、认识面积的含义。
1.定义。
物体的表面或图形的大小就是他们的面积。说一说什么是面积?(个别说,集体说,读定义)。
说一说,你身边的物体,哪里是它们的面积?
2.比一比。
3.小组汇报。
上台汇报,上来的小组说得出的结果,还有是用什么方法比较出来的(取名称,有割补法,折叠法,数格法......)。
(数格法中,得出在格子相同的情况下,格子多的面积就大)。
三、图案设计比赛。
师:我们来做个比赛好吗?这个比赛叫做“图案设计比赛”,比赛的要求是:设计3个你喜欢的图案,画在书上的方格里,要求它们的面积都要等于7个方格。(教师观察学生的设计情况,把好的设计展示出来并给予表扬)。
四、练一练。
1.习题1:下面方格中哪个图形面积大?为什么?(虽然形状不一样,但是格子数相同,所以一样大)。
2.说一说哪个图形在面积大,哪个图形在面积小。(用直观的方法可以看出图形面积在大小)。
第二个图形同桌间互相交流,说一说是怎么知道的。
4.这两个图案哪个面积大?
小组讨论,互相说说是怎么知道的,把小组同学中认为说得最好的请上来,告诉大家他的方法。(不规则图形面积的大小,注意不满一格的情况)。
作业设计。
1.你能用小方格摆出更多更新颖,更有趣的图形吗?回去设计给爸爸妈妈看。
2.五星级对应的练习和“口算”对应的练习。
人教版数学图形面积教学设计篇四
西北大学附属小学马红娟。
【教学目标】。
1、让学生在自主探索的活动中,掌握将组合图形通过分割和添补的方法探讨组合图形面积的计算方法,使学生学会计算组合图形的面积。
2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
3、能运用所学的知识,解决生活中组合图形的实际问题。
【教学重点】。
经历自主探索的过程,掌握将组合图形通过分割和添补的方法计算组合图形面积的方法。
【教学难点】。
【学具准备】七巧板、答题纸、每小组一张例题一的平面图。
【教具准备】课件。
【教学过程】。
一、活动激趣,认识图形。
1、课件激趣:猜一猜,这个盒子里到底藏了哪些平面图形?(课件演示图形从盒子里跑出来)复习基本图形的面积计算公式。
2、学生动手拼一拼:拿出准备好的七巧板,一分钟竞赛,在一分钟内拼出有趣图形。
3、展示学生作品:这些图形和基本图形有什么联系和区别?这些图形有什么共同点?
揭示组合图形的概念:基本图形拼成的图形叫组合图形。
4、生活中哪里还有组合图形?(学生说;课件展示。)。
5、练眼力:看看这个组合图形是由哪些基本图形组成的?
(学生试着分一分,老师总结:可见,几个基本图形组合在一起就是组合图形,同样的,一个组合图形也可以分成几个基本图形。运用这样的思想,可以解决实际生活中的很多问题。)。
二、情景出示,体验探索。
3、面积如何求?小组一起研究,在老师发的平面图纸上试一试,寻找计算办法,并计算出得数。(小组内研究、计算)。
4、在黑板上展示不同的计算办法,让小组代表讲解本组解决思路和办法。
前三种方法有什么共同点?(板书:分割法)。
第四种方法有什么特点?(板书:添补法)。
三、解决问题,强化应用。
1、请大家运用学到的知识,帮助大队辅导员解决一个问题:中队旗到底有多大?
学生在答题纸上独立完成,然后全班交流,展示不同的解决方法和计算结果。
4、还有两幅组合图形,你能用你喜欢的方法计算面积吗?学生独立完成,组内交流。
四、小结。
谁来说一说,这节课你都学习了那些知识?有什么收获?
计算组合图形的面积时,要根据图形本身的特点,灵活地选择计算方法(分割法或添补法)。
五、趣味思考题。
【板书设计】。
分割法添补法。
【教学反思】。
本课的教学遵循了学生自主学习的原则,通过学生合作探究,寻找解决问题的办法,突出了转化思想,能够结合实际,让学生体验生活中的数学,加强了数学的乐趣。
一、通过学生动手摆一摆,辨一辨,认识组合图形的特点。
学生用七巧板动手摆出一个自己喜欢的图形,本事这个类似游戏的活动就充满了挑战和趣味,学生非常积极地参与其中。学生把不同的基本图形拼在一起,就是经历了组合图形形成的过程,对于组合图形的特点有了充分的感性认识,为下一步把组合图形分割成不同的基本图形打好了基础。在认识了组合图形后,又以游戏的形式做“练眼力”一题,让学生把七巧板拼好的作品分成不同的基本图形,这是为新课情境的解决办法做提示,也是为抽象的数学图形的分割做好基础。
二、学生经历探索过程,在同伴的合作中寻找解决问题的办法,突破本节课的重难点教学。
教师设置情境,请学生四人一小组帮助小华计算客厅的.面积。7m4m6m3m每个小组都可以在平面图上画一画、写一写、算一算。然后选出不同的做法展示全班展示,让小组代表解释本组的思路和方法。当时黑板上展出的学生的做法共有六种,经过学生的讲解分析和判断,大家一致拿掉了非常复杂的两种分割方法,并阐明了理由。这个过程很好地把“分割法”和“添补法”进行了展示,并且在不好的展示范例中发现了分割越简单越好计算为上策,以及不论采取什么方法,只要能找到相关数据才是对的办法的结论。这些教学中的重难点都不是老师传授的,而是通过学生自己的探究、计算、体验和对比得到的,是学生自己经历了学习的过程,效果较好。
三、课堂练习紧扣生活实际,并注重教学难点的进一步实践。
随后出现的课堂练习,均从实际生活情境中来。首先队旗的面积计算,这是学生比较感兴趣的话题,能够引起他们的计算热情。同时中队旗这个组合图形可以用分割法或者添补法转化成不同的基本图形,使学生进一步体验组合图形计算的多样性。接着计算的零件的面积,则是学生体会根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。练习的第三题则设置了哪个公司的报价划算的情境,增强学生解决实际问题的能力,体验数学的实用性。其后跟着的两道练习,都是不断加强本节课的学习要点,注重学生的实际问题的解答能力。
本节课没有得到很好突破的,正是在教学难点部分。老师没有吃透教材,对于学生真正的难点心中并不明确。学生用分割法或者添补法转化成基本图形并不存在困难,而是选择了某种分割法或者添补法后能够找到相关的数据来进行计算,这才是突破的重点。首先老师在思想上认识不够,所以在课堂上强调不够;同时教学环节的而设计上就没有注意突出这一点。如果在练习中加入错题分析,以学生的错来引出难点突破,或者加入一道:看分割好的组合图形你需要找到哪些数据的练习,效果应该会更好一些,这样显得重难点突破,集中力量突破,数学课堂的效率才能够得到更好的提高。
人教版数学图形面积教学设计篇五
图形的组合学习有利于培养孩子的想象,在数学学习中我们会较多的学习图形,下面小编给大家提供了小学数学人教版五年级上册第五单元《组合图形面积》教学设计,大家可以参考阅读,更多详情请关注应届毕业生考试网。
1、让学生在自主探索的基础上进行合作交流,从而归纳组合图形面积的计算方法。能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
2、感受计算组合图形面积的必要性,产生积极的数学学习情感。渗透转化的数学思想和方法。
1、重点:掌握组合图形面积的计算方法。
2、难点:理解计算组合图形面积的多种方法。
3、关键:学会运用“分割”与“添补”的方法计算组合图形的面积。
1、同学们,我们学过哪些平面图形?它们的面积计算公式是怎么样的?
2、出示两幅由七巧板拼成的图形,你们能看出它们分别是由哪些图形拼成的吗?像这样由几种简单图形组合而成的图形,我们就把它们叫做组合图形。
3、组合图形在我们生活中的'应用很广泛,今天,我们就结合一个生活中的例子来学习组合图形的面积计算。(板书:组合图形的面积计算)
1、出示计算客厅面积问题:
小华家新买了住房,计划在客厅铺地板,请你算一算他家客厅的面积是多少平方米?
2、请学生们观察这个图形,然后自己先想一想该怎么计算?
3、小组合作交流,讨论解决组合图形面积计算问题。
学生可能出现“分割法”和“添补法”
“分割法”即将上述图形分割成几个基本图形。
4、讨论“分割法”
1)对于“分割法”需要与学生讨论其合理性,要让学生明确:分割的图形越简洁,其解题的方法也将越简单。
2)要考虑分割的图形与所给条件的关系。有些图形分割后找不到相关的条件就是失败的。
5、讨论“添补法”
1)为什么要补上一块?
2)补上一块后计算的方法是怎样的?
(让学生都理解这一算法)
6、先归纳出两大类的方法“合并求和”、“去空求差”。
小结:谁来总结一下,组合图形的面积应该怎么计算?
计算组合图形的面积,我们一般是先把它们分割成基本图形,如长方形、正方形、三角形、梯形等,然后再用“合并求和或去空求差”的方法来计算它们的面积。
看来同学们学得都很不错,现在老师还有几道题想考考大家。
1、先来一题热身题,出示书本试一试。
2、一展身手,挑战开始。
右图表示的是一间房子侧面墙的形状,它的面积是多少平方米?
可以采取学生独立解决与合作交流的形式
如果你不会做,可以和你的同桌讨论交流一下。
3、挑战本领
可以采取学生独立解决与合作交流的形式
4、求图形阴影部分的面积。
5、有两个边长是8cm的正方形放在桌面上,求被盖住的桌面的面积。(机动)
可以先四人小组讨论,然后在进行计算。
在日常生产和生活中,有些多边形的面积不能直接用公式计算,可以把它划分成几个已经学过的图形,先分别计算它们的面积,再求出这个多边形的面积。老师把方法归纳成十二个字“一分图形、二找条件、三算面积”
人教版数学图形面积教学设计篇六
北师大版五年级上册数学教科书第75页。
主要设计理念是:一是以学生为课堂学习的主体,关注学生已有的学习基础和学习经验,选择适合学生的学习素材、设计适合学生的教学活动,让学生自主的投入学习,教师是学生课堂学习的引导者、合作者。二是以活动为课堂教学的载体,注重学习情境创设,引导学生主动进行观察、实验、猜测、验证、推理与交流等数学活动,去探究数学知识,亲历数学知识探索过程,感受成功的快乐。三是以问题为思维训练的源泉,教学中注重引导学生发现问题、提出问题和解决问题,在解决问题中激活思维。四是以生活为学习数学的基础,数学生活化,让学生在生活中感知数学知识,从生活中发现数学问题,在生活经验的基础上解决数学问题,并用所学知识解决生活中实际问题。
学生在三年级时学习了长方形与正方形的面积,在本册的第二单元,学生又学习了平行四边形、三角形与梯形的面积计算。在此基础上学习组合图形,学习此部分知识,一方面可以巩固已学的基本图形,另一方面将所学的知识进行综合运用,提高学生综合解决问题的能力。在学生探索问题,解决问题的过程中渗透数学转化的思想,在学生灵活运用多种方法解决问题的过程中培养学生优化的意识,从而培养学生思维的灵活性。
五年级的学生正在经历自主高效的实验,学生无论从自学能力,还是课堂的积极探索都有了喜人的变化,学生学习方式的变化更加促使老师要以学定教,学生在学习的过程中可能会有这样或那样的问题,特别是本节课要探究多种方法解决问题,虽然学生已经在三年级时学习了长方形与正方形的面积,在本册的第二单元,学生又学习了平行四边形、三角形与梯形的面积计算。但对于组合图形面积的计算学生可能在解决此问题的策略——即数学的转化的思想上没有充分地认识,另外学生在理解用多种方法解决问题时没有优化方法的意识,需要教师的引导与点拨,但我相信学生在老师的引导下会完成本节课的任务。
1.在自主探索的活动中,理解计算组合图形面积的多种方法。
2.能根据各种组合图形的条件,有效地选择计算方法并进行正确地解答。
3.能运用所学的知识,解决生活中组合图形的实际问题。
选择有效的方法解决实际问题。
【】。
多媒体课件。
【】。
课前谈话:
老师很高兴能和大家一起来上这节课。我相信:我们五x班全班同学都能把最精彩的一面展示出来。你们喜欢数学吗?想不想把数学学得verygood非常棒!老师告诉你学好数学的小诀窍:认真听,用心想,积极说。能不能做到这三点?让我们带着自信走进课堂!
【设计意图】简单的几句话,拉近了学生与老师的距离,关注学生的情感体验,同时渗透良好的学习习惯的培养。九个字书写在黑板上以提示学生。
一、课题导入。
1.老师今天给大家带来了一些漂亮的图片,来欣赏一下。
(多媒体出示小鱼图、火箭、房屋平面设计图、中队队旗等生活中的组合图形。)。
2.教师小结:上面的每个图形都是由我们学过的图形组成的,像这样由几个简单的图形组成的图形叫组合图形。这节课,我们就来研究组合图形的面积。(板书课题)。
【设计意图】:课开始,充分发挥多媒体的优势,呈现学生熟悉的、生活中的组合图形,给学生视觉上的刺激。唤醒学生的已有认知,激发学生的求知欲。
二、展示目标,师生共同解读目标。(关键词:理解方法,解决问题)板书关键词。
【设计意图】:使学生明确本节课所学内容,确立所要达成的目标。
三、自主探究,获取新知。
1.联系生活,提出问题。
(1)小华家新买了住房,计划在客厅铺地板。请你估计他家至少买多少平方米地板,再实际算一算。(出示课件)客厅平面图。
【设计意图】:在实际问题情境中激发学生探索问题的兴趣,从而产生自主学习的动机。
2.自主探究,解决问题。
教师课件出示导学提纲:阅读教材第75页,思考下列问题。
(1)我们已经学过哪些图形的面积?怎样求它们的面积?
(2)请你估一估小华家至少买多少平米的地板?试说出你的理由?
(3)计算地板面积,你还有哪些办法?尝试用画图的方法说明~。
3.学生先自学然后组内交流。
(教师预设):
a.学生可能转化的图形有:
b.学生可能会运用多种方法求出客厅的面积,但是不清楚解决此问题的策略——即转化的数学思想。
4.教师深入到小组与学生共同研究问题,了解学生的自学情况。
5.学生在学习单的正面尝试解答,老师巡视,让学生把不同的转化方法展示到黑板上。
四、展示汇报:
1.各组按展示到黑板上的转化方法做汇报,学生讲解自己的思路。
【设计意图】计算组合图形的面积最重要的一步是运用转化思想把图形分割或添补成几个基本图形。把转化的过程和计算的过程分解开来进行,有效地突破了难点,在学生在转化的过程中思维真正的动起来。上黑板贴出学生的探究结果,让学生讲解自己的思考过程,也许学生表达的不完整,但毕竟是学生自己思考的结果,所以应该给予肯定,以激发学生的学习积极性,渗透一题多解的方法,培养学生思维的灵活性。
2.计算面积。
学生分组用一种方法计算图形的面积,最后全班订正。(在学习单背面完成)。
教师预设点拨:观察上面的几种方法,你认为哪些方法更简单一些?你是怎样想的?
教师预设点拨:
推导平行四边形和三角形的面积公式,计算异分母分数相加减时我们都用到转化思想。今天我们学习组合图形的面积时又运用了转化的策略,看来数学的转化的思想很重要。
【设计意图】在经历了分割图形或添补图形的思考过程,并对几种方法进行比较优化以后,再动手计算,给学生提供了再一次选择解决方法的机会,比较出几种方法的特点,培养学生的质疑能力,提高学生的思维灵活性。
五、达标检测:
1.(基本题)下面的各个图形可以转化成哪些已学过的图形?(教材76页练一练第一题)。
2.(必做题)试试:你知道这个图形的面积吗?
(每小格长度是1厘米)。
【设计意图】让学生在认真观察的基础上,用割补的方法把图形转化成一个长方形,对转化的思想有更深刻的认识。
4.(必做题)如图,有一面墙,粉刷这面墙每平方米需要0.15千克涂料,一共要用多少千克涂料?(教材76页练一练第二题)。
六、拓展延伸。
1.下图是由两个正方形组成,求阴影部分的面积。(单位:米)。
2.用组合图形面积的计算方法,可以解决生活中的很多问题……如中队队旗,有兴趣的同学课下可以量一量、算一算中队队旗的面积。
七、学教反思。
1.学习本课你有哪些收获?
2.你觉得这节课你表现怎么样?给自己评价一下!
人教版数学图形面积教学设计篇七
《课程标准》对于图形计算的要求是注重使学生探索现实世界中有关空间与图形的问题;注重使学生通过观察、操作、推理等手段,逐步认识简单几何体和平面图形的形状、位置、大小关系及变化,发展学生的空间观念。计算组合图形面积的基础是已学的各种平面图形的特征和它们的面积计算公式。在组合图形中,有的已知条件是隐蔽的,需要学生运用已学的知识,根据图形特点,先把它找出来或推算出来,再计算面积。使学生通过观察、操作、推理等手段,感受生活中空间与图形的问题。本节课并不是要教会学生求几个组合图形的面积,而是让学生体会到割补、转化的方法是求未知平面图形面积的重要策略。当学生真正获得了策略的知识、方法的知识的时候,就能举一反三、触类旁通。
通过这一堂课的教学,我感受最深的是:课堂教学是由学生、教师和教材组成的整体,只有发挥这个整体中各个部分及其相互关系的功能,才能取得最佳课堂教学效果。在教学中不能以教师为中心来死搬硬套教材,而应把学生推到学习活动的中心。本堂课创造性地对教材实施了“由静态的信息变为动态的过程”的再加工重组,较合理地利用了教材资源。在教学中,通过让学生观察几个组合图形,再说说分别是由哪几个基本图形组成的,从而理解什么叫组合图形。在此基础上,给出小明家的客厅,然后让学生想一想、画一画,动一动,把这个组合图形割补成我们学过的几个基本的图形。在这个教学环节中,我给学生留下充足的想象空间,使学生更宽泛地理解什么是组合图形,更大限度地激活每个学生寻求组合图形面积计算的思维动力。然后再紧紧围绕“最佳求面积的方法”这个思维策略思想,逐步展开有层次的思维训练。尽管还是课本的内容,但却演绎出别样的精彩,学生也在其中品尝了学习的欢悦和成功。教材在这儿已经完全成为学生驾驭学习的'工具和成长的阶梯了,真正是为学生的学习服务,这也许就是教材重组的意义所在吧!
人教版数学图形面积教学设计篇八
通观整节课,学生在原有的平行四边形,三角形,梯形的面积计算的学习的基础上,本节课学生能够自主学习,从数树叶的方格上导入,到转化成相似的学过的平面图形求树叶的面积,不仅实现了对本节课学习目标的引入,还培养了学生的`动手能力。
在我们的日常生活中,会经常接触到各种不规则的图形,还要求学生有较强的估算能力,并能灵活应用所学的知识点尝试解决问题。但学生在应用估算解决实际问题的意识不强。
人教版数学图形面积教学设计篇九
布置巩固练习:
选一种你最喜欢的方法进行计算,并将题目的解题过程写下来。
巩固、练习:
(学生独立完成)。
进一步巩固组合图形面积的计算方法以及书写时的注意点。
通过学生的独立练习,让学生明确在书写时的注意点以及熟悉解题的步骤。
教师活动。
学生活动。
设计意图。
1、出示课堂练习:
求下面涂色部分的面积(单位:厘米)。
10。
10。
5
20。
2、个别指导。
课堂练习。
培养学生综合运用有关知识的能力。
结束语:
即发挥了学生的主动性,又将本堂课的内容进行了总结。
1、布置课堂作业。
2、个别指导。
课堂练习。
巩固本节课所学的内容。
人教版数学图形面积教学设计篇十
教学目标:
知识与技能:结合生活实际认识组合图形,并掌握用分解法或添补法求组合图形的面积。
过程与方法:根据各种组合图形的自身条件,选择有效的计算方法进行面积计算。
情感、态度与价值观:能运用组合图形的知识,解决生活中组合图形的实际问题。
教学重点:
理解组合图形的多种面积计算方法,会找出计算每个简单图形所需的条件。
教学难点:
根据组合图形的.条件,有效地选择汁算组合图形面积的方法。
教学方法:
动手实践、自主探索、合作交流。
教学准备:
多媒体、
师:准备各种平面图形。
生:七巧板、简单图形学具、少先队中队旗实物。
教学过程:
一、情境导入。
1.创设情境导入:同学们都玩过七巧板吧,在七巧板里都有哪些图形呢?(长方形、三角形、平行四边形……)。
2.你能用七巧板拼出什么图形来?指几名学生用七巧板拼出图形,并展示。
通过学生拼出的图形引出组合图形的定义:由两个或两个以上的简单图形组成的大的不规则图形叫组合图形。
3.这节课我们就一起来学习求组合图形的面积。(板题:组合图形的面积)。
二、互动新授。
l.谈话:在实际生活中,有许多图形都是由几个简单的图形组合而成的。出示教材第99页的各种图形。
这些组合图形里有哪些是学过的图形?同学们试着找一找。
小组合作,尝试找出情境图中的组合图形是哪些图形组成的,并交流汇报。
汇报时学生可能对相同的图形有不同的组合方法,特别是对队旗的组成,在此要鼓励学生发表不同的看法。
学生可能会想到:队旗是由两个梯形组成,或是由一个长方形和两个三角形组成,还可以看成由一个梯形和一个三角形组成。小房子的表面是由一个三角形和一个正方形组成的。
风筝的面是由四个小三角形组成的。
2.说一说:在生活中还有哪些地方有组合图形?请同学们说一说。
学生可能会想到:厨房里的三角架、房子的分布图、桌子等。
3.引导思考:关于组合图形,你还想研究它的什么知识?
学生可能想到研究它的周长,也可能想到研究它的面积。
适时点拨:它们的周长就是围成图形的所有线段的长度。这节课我们重点研究组合图形的面积。
4.出示教材第99页例4:一间房子侧面墙的形状图。
引导学生观察图并思考:怎样计算出这个组合图形的面积?
组织学生小组合作学习,说一说是怎样分的,然后再算一算。
集体汇报,学生可能会想到两种方法:
(1)把组合图形分成一个三角形和一个正方形,先分别算出。
三角形和正方形的面积,再相加。
教师可将学生的分法用多媒体展示:
并根据学生回答板书:
5×5+5x2÷2。
=25+5。
=30(m2)。
(2)把这个组合图形分成两个完全一样的梯形。先算出一个梯形的面积,再乘2就可以了。
教师可将学生的分法用多媒体展示:
并根据学生回答板书:
(5+5+2)×(5÷2)÷2×2。
=12×2.5÷2×2。
=30(m2)。
教师鼓励学生算法的多样化,并选择自己喜欢的方法计算。
三、巩固拓展。
1.完成教材第101页“练习二十二”第1题。
先让学生对组合图形分一分,说一说是如何分割的,再计算。
学生可能会把组合图形分成一个平行四边形和一个三角形,也有的可能分成两个三角形和一个梯形。这时要让学生对这两种方法进行比较,从而选择较简便的方法解决问题。
2.完成教材第101页“练习二十二”第2题。
本题图形是队旗,在例题里已经对其进行了简单的分析,这里可以让学生思考“能用几种方法计算”,拓展学生的思维。
学生可能会想到:把队旗分成两个梯形,求两个梯形面积的和;或者把队旗分成一个长方形和两个三角形,求它们的面积之和;或者用一个长方形的面积减去一个三角形的面积求队旗的面积。
3.完成教材第101页“练习二十二”第3题。
先独立思考如何计算,再自主算一算。通过这两道题的练习,让学生知道计算组合图形的面积时,不只是能用加法计算,有时也可以用一个图形面积减去另一个图形的面积。
四、课堂小结。
师:这节课你学会了什么?有哪些收获?
引导总结:
1.由两个或两个以上的简单图形组成的大的不规则图形叫组合图形。
2.求组合图形的面积时,可以把它分割成我们学过的简单图形,计算出简单图形的面积后再相加。
3.计算组合图形的面积时,不只是能用加法计算,有时也可以用一个图形面积减去另一个图形的面积。
板书设计:
人教版数学图形面积教学设计篇十一
教学内容:
人教版义务教育课程标准实验教科书《数学》五年级上册p84~p85的内容,三角形的面积。
教学目标:
1、探索并掌握三角形的计算面积公式,能应用公式正确计算三角形的面积;
3、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
教学重、难点:
重点是探索并掌握三角形的面积公式,能正确计算三角形的面积。难点是理解三角形面积公式的推导过程和公式的含义。
教、学具准备:
cai课件、红领巾、每个小组准备相同的直角三角形、锐角三角形、钝角三角形各两个。
教学过程:
一、创设情境、导入新课。
1、提出问题。
2、揭示课题。
师:那我们今天就一起来研究怎样计算“三角形的面积”?(板书课题:三角形的面积)。
二、操作“转化”,推导公式。
1、寻找思路。
师:大家想想,怎样“转化”呢?可不可以用“割补”的方法呢?
2、动手“转化”。
师:看来用“割补”方法很难“转化”。那我们可不可以用拼一拼的方法来“转化”呢?老师为每个小组的同学都准备了两个完全一样的三角形,请大家拼一拼,看看能不能把三角形“转化”成一个我们已经学过的图形。开始吧。
小组合作拼组图形,教师巡视指导。
图1图2图3。
[评析:引导学生观察三角形的不同类别,弄清拼成不同形状的原因。]。
3、尝试计算。
师:同学们真棒,大家都发现,用两个完全相同的三角形可以拼成一个平行四边形或一个长方形。现在请同学们看图1。(教师在图1中标示数据,如下图)。
师:知道了平行四边形的底和高,你们能求出所拼成的平行四边形的面积吗?算一算吧。
师:算完了吗?它的面积是多大?
师:我们知道,这个平行四边形是用两个完全一样的三角形拼成的,平行四边形的面积是20平方厘米,那这个绿色三角形的面积是多大呢?想一想,小组同学商量商量吧。
师:同学们太了不起了,开动脑筋,已经算出了这个绿色三角形的面积。
师:现在请同学们看屏幕,(课件出示,如下图)你们会计算屏幕上这个蓝色三角形的面积吗?算一算。
3cm。
4、推导公式。
师:同学们,刚才大家已经尝试着求出了三个三角形的面积,大家都算得很好。那么现在你们能把三角形的面积计算公式写下来吗?先写一写,同桌同学再商量商量吧。
5、理解公式。
6、用字母表示三角形的面积公式。
师:同学们,如果用a表示三角形的底,h表示三角形的高,s表示三角形的面积,你们会不会用字母表示三角形的面积公式呢?请写一写吧。
师:同学们,你们知道吗?今天我们一动手起推导出的三角形的面积计算公式,很早以前,我们的祖先就已经发现了,请看大屏幕。(课件出示如下图,课本p85页的数学常识。)。
[评析:这样表面是介绍数学常识,但实际渗透了爱国思想教育。]。
三、应用公式,解决问题。
师:那就请大家动手量一量它的底和高吧。
师:量完了吗?请大家算一算,看看做这样一条红领巾到底需要多少红布?
四、联系生活,适当拓展。
师:同学们,你们还能算出这三个三角形的面积吗?(课件出示如下图)看谁算得又对又快!
四、全课总结,反思体验。
教师:这节课你们学习了什么?有哪些收获?
人教版数学图形面积教学设计篇十二
教学内容:人教版义务教育课程标准实验教科书五年级上册第84—86页。
教学目标:
1.知识与技能:
(1)探索并掌握三角形面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。
(2)培养学生应用已有知识解决新问题的能力。
2.过程与方法:使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。
3.情感、态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
教学重点:探索并掌握三角形面积计算公式,能正确计算三角形的面积。
教学难点:三角形面积公式的探索过程。
教学关键:让学生经历操作、合作交流、归纳发现和抽象公式的过程。
教具准备:课件、平行四边形纸片、两个完全一样的三角形各三组、剪刀等。
学具准备:每个小组至少准备完全一样的直角三角形、锐角三角形、钝角三角形各两个,一个平行四边形,剪刀。
教学过程:
一、创设情境,揭示课题。
(屏幕出示红领巾图)。
师:同学们,红领巾是什么形状的?(三角形)你会算三角形的面积吗?这节课我们一起研究、探索这个问题。(板书:三角形面积的计算)。
二、探索交流、归纳新知。
1.寻找思路:(出示一个平行四边形)。
师:(1)平行四边形面积怎样计算?(板书:平行四边形面积=底×高)。
(2)观察:沿平行四边形对角线剪开成两个三角形。
师:两个三角形的形状,大小有什么关系?(完全一样)。
三角形面积与原平行四边形的面积有什么关系?
师:你想用什么办法探索三角形面积的计算方法?
(指名回答,学生可能提供许多思路,只要说的合理,教师都应给予肯定、评价鼓励。)。
人教版数学图形面积教学设计篇十三
人教版义务教育课程标准实验教科书,数学五年级上册第五单元92~94页。
组合图形面积的计算放在多边形面积计算最后学习,有利于综合运用平面图形面积计算的知识,进一步发展学生的空间观念。
1、认识组合图形。
由于实际生活中,我们见到的物体表面,许多是由我们已学过的正方形、长方形、平行四边形、三角形和梯形组合成的图形,所以教材紧密结合生活实际认识组合图形。
教学中,可以使用教材中的实例,也可以应用学生身边的实例;观察实物注意从易到难;找生活中的组合图形时,要强调从物体的表面上找,不要与立体组合图形混淆。
2、学习组合图形面积的计算,因为限于简单的组合图形,教材主要安排2~3个简单图的形组合。由于一个图形可以有不同的分解方法,教材展示了两种计算方法。
教学时,可让学生合作探究,通过试做、交流、讨论、展示,使学生明确计算组合图形面积的基本思路,即可以把组合图形分割成我们已经会计算面积的简单图形,分别计算出他们的面积,再求和,或者把原图添补成我们已经会计算面积的简单图形,再减去所添补图形的面积,也就是添补求差法,同时也要让学生认识到要根据已知条件对图形进行分解,不是任意分解都能计算的。鼓励学生用不同的方法去计算,然后交流各自的算法,尽量考虑用简便的方法计算。
1、认识简单的组合图形,会把组合图形分割成学过的平面图形并计算出面积,渗透转化思想。
2、综合运用平面图形面积计算的知识,感受解决问题策略多样性,培养学生尝试选用简便方法解决问题的意识。
3、培养学生的认真观察、合作学习、独立思考的能力,进一步发展学生的。空间观念,激发学生探索数学问题的积极性。
教学重点:能根据组合图形的特点,有效地选择计算方法。教学难点:算面积时,能结合生活实际,把组合图形有效地转化成已学过的图形。
教具准备:课件、卡纸。教学过程:
1、玩摸一摸的游戏,看摸出的是什么图形,说出它的名称和面积的计算方法?让学生回答后把它贴在黑板上。
3、找出它们的共同点:都是由简单的图形组合成的,像这样的图形叫做组合图形。随即板书:组合图形。
(一)组合图形的分割。
1、课件展示组合图形,你能一眼就看出它是由哪些图形组成的吗?
让学生回答后总结:为了能够更清楚地看出是由哪些图形组合而成的,可以在原图上画上辅助线(用虚线)。
2、让学生独立分割几个简单的组合图形并交流展示。
1、小组合作学习。要求:先说一说可以怎么画辅助线,再试着分别用不同的方法来算一算它的面积,算完后互相检查检查。
2、交流展示。
3、总结提升。
方法:分割法(求和),添补法(求差),渗透转化的思想。图形分割要合理,分得越简洁,解决问题的方法就越简便,还要考虑到已知条件,如果分后已知条件都找不到了,就肯定算不出组合图形的面积。
(三)练习巩固。
2、交流展示。
(四)拓展提升。
2、分析要注意的问题:门上的玻璃不刷漆,要算出刷漆的面积得先算出整个长方形的面积再减去中间小正方形的面积,还要考虑到门的两面都要刷漆。
全课解析:
本节课是在学生学习了基本平面图形面积的基础上进行教学的。在教学过程中,体现以学生为主体、教师为主导的教学理念。以充分发挥学生主体地位为主线,以培养学生能力为宗旨展开教学,具体体现以下三点:
通过学生自己摆一摆,明白什么样的图形是组合图形。通过课件展示,和学生动手分割,使学生感知生活中许多实物的表面都是由几个简单图形组成的,使学生进一步加深对组合图形概念的理解,体现数学知识与现实的联系。
以计算简单组合图形的面积为载体,以小组合作学习为方法,引导学生通过观察图形、动脑思考、说一说、分一分、算一算、汇报交流、总结提升等过程,探究出组合图形面积的计算方法,体现重视学生的思维过程;体现算法多样性,为学生提供充分的参与空间;体现对学生思维能力的培养,发展学生的空间观念,提高学生解决问题的能力。
紧密联系生活实际,通过算墙面面积和给门刷漆这两个不同层次的问题,提高学生结合生活实际灵活解决问题能力,发展学生的空间观念和多角度思考问题的能力。
人教版数学图形面积教学设计篇十四
1.在用七巧板拼三角形的过程中,进一步加深学生对三角形、长方形、正方形、平行四边形这些平面图形特征的认识。
2.在解决实际问题的过程中,有目的、有计划地培养学生的审题能力,初步获得分析问题、思考问题、解决问题的基本方法。
3.培养学生的创新意识,感受所拼图形的数学美。
教学重点:引导学生利用七巧板拼出不同形状的图案。
教学难点:培养学生协作精神与合作意识,激发学生创新意识。
教学过程。
一、看图激趣,认七巧板。
二、操作讨论,积累经验。
1.观察想象,初步操作。
在动手操作之前,请你先想一想怎么拼,然后再按照你的想法动手拼一拼,看谁拼的三角形最多。
2.交流方法,对比启思。
你使用了几块板?怎样拼的.?
反馈典型情况:(1)只用2个三角形拼摆;(2)用3块图形拼摆。
这两种方法有什么不同?
小结:我们在拼的时候,既可以全部使用三角形的板去拼,还可以加入其他形状的板去拼。拼的时候,从用2块板拼开始,拼出了所有2块板的,再增加板的数量,就能拼出更多的三角形了。
3.操作交流,拓展创新。
现在,老师请大家再次用一套七巧板拼摆三角形,然后和小组同学说一说你是怎样拼摆的。
教师组织全班学生交流,根据学生使用七巧板的块数分类汇报。
三、回顾过程,总结方法。
我们在解决问题的时候,一般都是先理解问题,然后通过观察、思考,找到解决问题的方法,最后在动手操作的过程中不断地验证、完善我们的想法,找到用一套七巧板拼三角形的方法。以后我们还会继续利用七巧板做一些探索。
四、布置作业、拓展延伸。
课后请大家试着用今天学到的方法完成教科书第4页“做一做”的内容,看看用一套七巧板能拼出几个长方形。
反思。
《七巧板》一课是一节数学活动课,课一开始,我并没有给学生规定内容,而是让学生充分的解放天性,自己动手拼一拼、摆一摆,创造出美丽的图案,在同学们真的活跃起来,兴趣高涨时,我再出示拼摆任务,学生自然会积极主动的去想办法解决问题,这是一节快乐的数学课。
将本文的word文档下载到电脑,方便收藏和打印。
人教版数学图形面积教学设计篇十五
二、教学准备。
教具:多媒体课件,两张面积不同但方格数相同的长方形图片,1平方厘米、1平方分米、1平方米大小的正方形各一个。
学具:三个面积大小不同的长方形,1平方厘米及1平方分米的正方形若干,设计图纸。
三、三维教学目标、策略选择。
知识与技能:1、使学生理解面积的含义,知道怎样简单地测量面积。
2、认识面积单位:平方厘米、平方分米、平方米,并能灵活地选用合适的面积单位。
过程与方法:动手操作,并且采用自主探索与合作式的方法学习。
情感态度和价值观:培养学生观察、分析、比较、概括等能力,在实际操作中,增强学生合作交流意识,提高操作技能,发展实践能力。体验数学与生活实际的联系,培养学生热爱生活的情感。
这是一堂概念课,必须把枯燥的概念变得直观、生动,易于让学生接受。因此在此教学设计中尽量让学生多动手、多动脑、多动口,让学生多感官地感知面积的含义及面积单位产生的意义和如何准确地使用。同时通过合作学习,让每个学生都有参与的机会,表现的机会,同时培养合作能力。总之,整堂课的教学策略选择始终以学生的发展为本,处处体现学生的主体性。
四、教学过程。
教学流程设计意图。
一、创设情境,导入新课。
2、师:两块玻璃有大有小(板书:大小),我们就说这两块玻璃的面积一块大一块小。(板书:面积)。
二、感知体验,建立概念。
1、认识物体表面的大小。
(1)师:在我们身边的每个物体都有面,有的面大一些,有的面小一些。
(3)看一看师:看一看黑板的面,课桌的面相比,怎样?
(4)想一想师:生活中的物体,你还能比一比哪些面的大小?
(5)归纳:刚才我们通过摸一摸、看一看知道了物体的表面有大有小,物体表面的大小叫做它们的面积。(板书:物体的表面)我们把书表面的大小叫做书面的面积,把黑板面的大小叫做黑板面的面积。
2、认识封闭图形的大小。
(1)出示:
(2)归纳:看来只有象a、b、c这样封闭的图形才能判断它的大小。封闭图形的大小,也就是它们的面积。(板书:封闭的图形)。
3、归纳面积的意义。
师:谁能说一说什么叫做面积?
三、操作探究,认识单位。
1、比较面积的大小。
师:请学生从信封里取出三个图形,这三个图形的面积谁大谁小呢?下面请同桌合作,一起来想办法比较一下。
(1)用重叠法可区分出a与c,b与c的大小。
(2)a和c无法用重叠法判断大小,怎么办呢?
a、请同桌合作,可利用手头的工具,尽量想办法比较出a和c的大小。
方法之一:在信封里有一些小正方形,利用这些正方形来判断。
共可以摆10个正方形。这样就可以比出b的面积大。(鼓励学生选择方便易行的方法来摆)。
假如把小正方形换成小圆片来量,你觉得用哪个合适?
b、如果手头没有小正方形怎么办呢?看,米老鼠想了个好办法。出示:
你知道他是怎么比的吗?
原来也可以用数方格的方法来比较面积的大小。
2、用统一的面积单位。
师:我们用数方格的方法来做一个游戏,老师这儿有两张图片,请两个同学上来看数里面有几个方格,再把所看到的方格数告诉大家,请大家猜猜谁看到的图形大。
(1)师:你们为什么会猜错呢?
(2)归纳:看来数方格时必须统一方格的大小,没有统一的标准就不能正确地比较和测量出面积,因此国际上就规定了一些统一的面积单位。(板书:面积单位)。
3、认识平方厘米、平方分米、平方米。
(1)介绍平方厘米。
a、师:请大家拿出所剪的边长是1厘米的正方形,这么大一个正方形我们就说它的面积是1平方厘米。(板书:平方厘米)谁来说一说什么样的正方形面积是1平方厘米?(出示1平方厘米的意义)。
b、师:比一比,哪个手指甲的面积最接近1平方厘米?
c、用1平方厘米的正方形量一量书中74页第1题的长方形面积有多大?
d、用1平方厘米的正方形量一量课桌面的大小,你有什么感觉?
(2)认识平方分米。
a、我们用一个大一些的面积单位就可测量课桌面的大小,这就是平方分米。(板书:平方分米)。
b、拿出所剪的边长是1分米的正方形,这个正方形的面积就是1平方分米。说一说什么样的正方形面积是1平方分米?(出示1平方分米的意义)。
c、用手势比画1平方分米的大小。
d、同桌合作用1平方分米的正方形量一量课桌面的大小。
e、若用1平方分米的正方形去量教室地面的大小,你有什么感觉?
(3)认识平方米。
a、我们就得用一个比平方分米更大的单位来测量教室的地面,那就是平方米。(板书:平方米)。
b、想想多大的正方形面积应是1平方米?(出示1平方米的意义)。
c、出示面积为1平方米的正方形。
d、估计一下1平方米的正方形内能站下几名同学。实际测试。
4、小结:刚才我们学习了三个常用的面积单位,它们是:平方厘米、平方分米、平方米。
5、巩固运用。
填上适当的面积单位。
一枚邮票的面积是4________。
一块手帕的面积是4________。
一块黑板的面积是4________。
四、思维拓展。
学了今天的知识,米老鼠设计了几幅漂亮的图案,我们一起来看看。
1、数一数这两个图案的面积分别是多少平方厘米?
2、请你当小小设计家,来设计图案,并说说你设计的图案面积是多少平方厘米。
五、课堂总结。
师:今天我们学习了面积和面积单位,你有些什么收获呢?
情景引入,激发学生学习的欲望。同时,让学生初步感知面积的意义,了解面积是有大有小的。
通过摸一摸、看一看、想一想,使学生充份感觉“面”的存在,又通过物体表面大小的比较,使学生理解面积的第一层含义。
通过这一环节的对比,让学生直观地明白只有封闭的图形才能比较面积的大小,使学生理解面积的第二层含义。
在上面两个层面理解的基础上,以出示板书为线索,鼓励学生概括出面积的含义。
让学生知道:要想精确地比较两个图形的大小,应选择小正方形来摆合适。
此环节设计富有童趣,学生因为思维的定式想当然地认为方格数多的图形面积就大。通过猜错的经历,学生会更深刻地理解为什么需要有统一的面积单位。
五、教学片断实录。
片断一:认识封闭图形的大小。
(1)出示:
师:这里有各种各样的图形,这些图形有大小吗?你能分辨他们谁大谁小吗?
生1、我觉得按面积从大到小的顺序是c、a、d、b。因为把d还没连接的两个端点连起来就可以看出d比b的面积大。
(根据学生回答课件显示连法1。)。
(请其余学生对生1的方法发表意见,许多学生都赞成生1的说法。)。
师:按照你的思路,除了这样连线外还可以这样连(出示连法2),这样看来d的面积就比b小了。(生1觉得连法2有道理,发现自己的想法不成立,服气地坐下了)。
(“一石激起千层浪”,学生纷纷说出各种连法。)。
生2:连接的曲线还可以再往里凹,这样d的面积就更小了。
生3:其实连接的曲线也可以向外凸,可以使d的面积比c还大。(根据学生回答课件显示连法3。)。
(请学生小组讨论,到底怎么比较d的面积,d能不能比较面积的大小。)。
生4:其实刚才的连线都是把d变成封闭图形,d实际上不是封闭图形,它不能比较大小。
生5:只有封闭的图形才能比较大小。
(2)归纳:看来只有象a、b、c这样封闭的图形才能判断它的大小。封闭图形的大小,也就是它们的面积。(板书:封闭的图形)。
片断二:1、比较面积的大小。
师:请学生从信封里取出三个图形,这三个图形的面积谁大谁小呢?下面请同桌合作,一起来想办法比较一下。
(1)学生通过动手操作得出,用重叠法可区分出a与c,b与c的大小。请学生演示重叠法的比较方法。
(2)师:为什么不用重叠法比较a和c的大小呢?(学生充分说明其理由)。
请同桌合作,可利用手头的工具,尽量想办法比较出a和c的大小。
生1:先将a与c重叠,再将多余的部分用剪刀剪下进行比较就能比出大小。
生2:可以利用袋子里的小正方形,把它们分别摆在a和c上面,看哪个摆的小正方形多,哪个图形的面积就大。
师:生2能利用手头的这些小正方形来摆,这个方法不错,我们请他来演示一下。(请生2在实物投影仪上摆放,在生2摆放过程中师指出手头只有10个小正方形,要在a、c上都放满不够,怎么办?生2表示先摆完a,再重新摆b。)。
生3:老师,我认为可以同时将a、c摆起来,而且很清楚。(请生3上来摆)a一行摆3个,可以摆3行,共9个小正方形。b一行摆4个,可以摆2行,共3个小正方形。可以看出a比c的面积大。
生4:……。
师:刚才几个同学都想到了了不起的方法,你认为谁的方法最巧妙?请说说你的理由。
六、教学反思。
“面积和面积单位”这部分内容是学生从直线到平面、从长度到面积,由一维空间向二维空间转化的开始;又是学生学习面积计算的基础,具有承上启下的作用。整个教学活动,注重多种感官参与、多种手段并用,密切联系学生生活实际,从特殊到一般,从感性到理性,逐步抽象,在学生脑海里形成面积和面积单位的表象,最后建立起明确的概念。通过探索活动,学生经理数学致使“再创造”、“再加工”的过程,使学生获得丰富的知识,找到科学的方法,不时地享受着观察、思维、想象带来的快乐,感受着数学的独特魅力。整堂课,学生在“做”中学数学得到了充分的体现,他们体验着数学的趣味性、实用性,体验着成功的喜悦。数学教学说到底是数学思维活动的教学,从这节课我深刻体会到,我们不应该追求表面上的热闹,而应力争把外显的感知内容转化为内在的思维对象,在学生的思维深处不断激起创造的火花。
执教:温州市广场路小学杨速。
设计:温州市广场路小学杨速。
人教版数学图形面积教学设计篇十六
大家好,我说课的内容是北师大版小学数学五年级上册第二单元《图形的面积(一)》第6课时《梯形的面积》,梯形面积的计算是几何图形面积计算中的重要内容,同时也是学习组合图形面积的基础,在生活实际中有广泛的应用。
说教学目标和重难点。
基于学生对梯形特征的认知,又刚刚获得平行四边形、三角形面积公式探索的成功体验,相信此时学生已经建立了良好的空间观念、能够熟稔地完成旋转、平移等操作活动,形成了初步的转化思想。所以教师不必让学生去数方格,直接运用转化思路求梯形的面积即可。
我制定教学目标如下:
1.(知识技能)通过动手操作活动,引导学生推导梯形面积公式,使学生能够正确地运用公式计算梯形面积。
2.(过程方法)利用图形的平移和旋转等操作演示,通过合作探索,推导并归纳出公式。
3.(情感态度)培养学生动手操作和逻辑思维能力,同时获得探索问题成功的体验。培养学生的空间观念。
教学重难点的确定依据为:一本课的教学目标。二学生的实际能力。教学重点为通过操作探索活动,掌握梯形的面积公式。巩固“转化”这一重要思想,并逐步形成习惯。正确地思路和良好的操作探索习惯在这里显得特别有价值,将成为漫漫数学长路中宝贵的财富。教学难点是经历梯形面积公式的推导过程。在高段数学教学中往往会阶段性的出现一些困难学生,所以我以预设的情境a为全班同学必须经历的过程,重复强调,多种感官刺激,去体验推导过程。
说教法学法。
“纸上得来终究浅,绝知此事必躬行。”陆游道出了实践操作的意义所在。同时也依据教学内容特点、学生特点,我确定教法为:以学生为主体,引导他们在活动中相互合作,主动探索,操作验证。
学法和教法相结合,主要通过旧知迁移——操作探索——抽象概括——巩固提高过程,将新知旧知有机地结合在一起。
说教学过程。
课前师生准备平行四边形、三角形、梯形卡片若干,剪刀、学生尺。小黑板出示两道拓展题。
本课教学分为五部分。
一、复习导入。
1.生说平行四边形、三角形面积计算公式。
2.生口述并演示推导过程。
3.生小结推导思路。
4.复习梯形各部分名称。
(设计意图:复习旧知、联系新知;强化转化的思想,为下面的探索活动做铺垫;复习梯形各部分名称,预防学困生在剪和拼等操作活动中,以及后面的运用公式计算时分不清底和腰。)。
二、探索活动。
1.示情境图,怎样计算堤坝横截面的面积?能否将它转化成我们所学过的图形?
2.巡视,教师针对教材所列三种提示进行重难点指导。
a.转化后的图形和原梯形有什么关系?b.怎样计算转化后图形的面积,又如何得知梯形的面积。c.帮助学困生操作。
3.交流汇报。
个别学生汇报并演示,师将学生用两个完全一样的梯形拼成的平行四边形贴在黑板上。板书拼成平行四边形和梯形的关系,面积计算方法。
同桌之间互相演示过程,并口述拼成平行四边形和梯形的关系及面积计算方法。
教师指导有困难学生。
预设情境b同上供全班了解,但无需人人会做。
预设情境c做拓展项目。
(动手操作的实践活动,能够有效地组织全体学生参与到学习过程中去。这一环节同是应用“转化”的教学思想,又分为三个层次。三种预设逐步深入,针对不同层次的学生提出不同的要求,扩大了课堂教学容量,使教学内容有了深度。引导学生从多维的角度去观察、思考,用不同的方法进行转化,训练了学生分析推理等逻辑思维能力,进一步发展其空间想象力。交流汇报时教师对转化关键点的提问,强调了重点。对于预设情境a中的转化方法让不同能力的学生都来口述,同桌之间口述。这样教师能够快速了解学生对新知的掌握情况,快速发现问题、针对性的解决问题。同学之间的合作互助,也培养了他们的团队意识,不让一位同学掉队。边演示边口述,显性的语言表达引导隐性的有序思考。我是这样突破重点和难点的。)。
三、总结归纳梯形面积公式。
教师引导学生通过观察、思考、比较、讨论,发现上述三种计算面积方法的共性,并归纳出公式、用字母表示公式,使学生舔尝到成功的乐趣。这时教师的注意力应该不漏声色地转移到中等生、困难生身上,鼓励他们说公式,上黑板板书公式,树立其自信心。
四、练习应用公式。
课堂练习是数学教学的主要环节之一,是学生形成技能、技巧,发展智力的有效方法,本节课设计了有梯度的几个练习。
1、2题属于基本练习,旨在巩固梯形面积公式。3题是综合练习,体现了等积变形,引导学生体会决定梯形面积的因素不是形状而是它的底和高。
五、小结提高。
引导学生回忆刚才的面积计算过程,让他们感知到公式计算的方便性,为下面的发展性练习做铺垫。通过有一定难度的拓展题,培养学生思维的敏捷性和创造性。
最后开放式总结,培养了学生的发散思维及团队协作精神。学生通过回顾本堂课的收获,自我感悟、自我评价,培养其反思意识。使学生感受到通过努力而获得成功的喜悦,体验到数学的在生活中的实用性。从而使学生的情感、态度和价值观得到了提高。
人教版数学图形面积教学设计篇十七
教学目标:
教学重点:理解并掌握梯形面积的计算公式。
教学过程:一、揭示课题,明确主题1. 生活中我们能找到许多平面图形,这个教室里有吗?2. 请大家看看这组图片,看看你发现了谁?找到了就立刻喊出它名字!出现次数最多的是……?(梯形)板书2.梯形,四年级的时候我们已经认识它了,谁来介绍一下它。 3.今天,我们来更深入地了解这位朋友,研究梯形的面积。(板书)。
二、回忆旧知,建立联系1.面积,我们现在已经会计算哪些图形的面积了?他们计算方法你们还记得吗?(课件)2. 回忆一下,平行四边形和三角形的面积计算方法我们是怎样推导出来的?还记得吗?3. 同学们,我们在研究它们面积的计算时候,都用到了一种非常重要的数学思想——转化。(板书)把要研究的图形转化成已经学过的图形来发现他们之间的联系,进而推导出面积计算的公式.这种思想,这节课我们也要用到。三、转化梯形,推导公式(一)应用的需要引出猜想1.同学们喜欢什么体育运动?喜欢篮球吗?(课件出示篮球场地)你们知道这一处是什么区域吗?这是3秒钟限制区,是限制对方队员在这个区域内停留不能超过3秒钟。2.但是梯形面积的计算方法我们还没有学过,你猜想梯形的面积可能与什么有关?你想怎样推导出梯形面积的计算方法呢?3.同学们都很有想法,那到底是不是像同学们想的那样呢?让我们来动手验证一下。在动手操作之前,老师提出三点建议:(1)想想能把梯形转化成学过的什么图形。(2)根据转化图形与梯形的关系,推导出梯形面积计算的方法。(3)填写好汇报单,比一比,哪个小组的动作快。明白了吗?开始吧!(二)小组活动十分钟(三)汇报1.刚刚同学们把梯形转化成了多种图形!现在让我们请这几个小组的同学说说他们的想法。大家注意听,你们的意见相同吗?你还有补充吗?汇报:平行四边形:两个怎样的梯形可以拼成一个平行四边形?还有的同学拼成的是长方形,让我们来看看他们是怎么拼的。正方形是特殊的长方形,那你们的推导的结果应当是一样的。是吗?2.师:同学们,观察这些图形,无论长方形还是正方形,都是……。再看,(移动图形)你发现什么了?过渡:看来,只要是两个完全相同的梯形,就能拼成一个…….(板书)平行四边形的面积我们学过:……(板书)然后我们就可以根据两种图形间的联系来推导梯形的面积了。谁来帮老师梳理一下。平行四边形的底就是梯形的……….,平形四边形的高就是……,所以梯形的面积……为什么除以2?3.刚才展示的都是拼组的方法,还有些同学只用一个梯形就完成了任务,他们用了分割的方法。你们都看懂了吗?请这个小组的同学来简单说说你们是怎么推导的。你们小组的方法真独特!方法不同,那你们推导的结论呢?4.总结:同学们真爱动脑筋,想出了这么多不同的方法。但这些方法都有共同点。谁来说说?5.是不是这样啊?那大家就一起把我们用“转化”的方法推导出的梯形面积公式读一读吧!(课件)如果用字母表示你会吗?6.在这个公式中,哪里应该引起我们注意呢?在计算的时候一定不要忘记。四、加深理解,巩固新知。1.总结:好了,同学们,刚刚大家用学过的知识,通过拼合,分割,旋转,平移等方法,把梯形转化成了学过的图形,根据图形间的联系就推导出了梯形面积的计算方法。2.这个方法你们记住了吗?那老师可要考考你了!(判断题)3.通过刚刚的研究和辨析,相信大家对梯形面积的计算方法一定有了深刻的理解吧!这个三秒限制区到底多大呢?你会求吗?需要什么条件?(课件出示)动笔试试吧。4.梯形面积的计算方法在生活中经常用到,你们想用新知识来解决一些生活中的问题吗?5.梯形面积的计算方法在生活中还有更广泛的应用,小到…..大到…..都会用到它。五、结语 转化在数学当中是一种非常重要而又常用的思想。在图形的学习中,同学们多次用到了转化的策略,(课件)其实在学习计算时我们也用到了。那我们转化的目就是化未知为已知。以后你再遇到一个未知的新问题,你会怎样想呢?是不是任何未知的问题都可以转化呢?这个问题留给同学们去思考。
人教版数学图形面积教学设计篇十八
教材简析:
长方形、正方形、平行四边形、三角形和梯形,都是由三条或三条以上的线段,首尾顺序相接而组成的封闭图形。它们相互之间不仅在特征上有着密切的联系,而且在推导面积计算公式的过程中也有着密切的联系。三角形面积的计算是学生在充分认识了三角形的特征及掌握了长方形、正方形、平行四边形面积计算的基础上学习的,其公式推导的方法与平行四边形面积计算公式的推导方法有相似之处,都是将图形转化成已学过的图形,探索研究未知图形与已学图形之间的联系,从而找出面积的计算方法。几何初步知识的教学是培养学生抽象概括能力、思维能力和建立空间观念的重要途径,学生掌握了三角形面积的计算方法和获取这些知识的能力后,又为进一步学习梯形面积、圆的面积打下了良好的基础。
教学目标:
1、认知目标。
经历三角形面积计算公式的探索过程,理解三角形的面积计算公式,掌握求三角形面积的计算方法。
2、能力目标。
通过学生动手拼摆,渗透旋转、平移的数学思想,引导学生用多种方法推导公式,发散学生的思维,培养学生求异思维的能力。同时学生通过自主探索学习活动,提高实际操作、自主探索能力及运用三角形的面积公式解决实际问题的能力。
3、情感目标。
在探索学习活动中,培养实践能力,培养学生主动参与学习活动的意识、合作意识和创新意识,体会数学问题的探索性,并获得积极的情感体验和成功体验。
教学重难点:三角形面积公式推导过程。
教学媒体:多媒体课件。
教学准备:完全相同的两个直角三角形、两个锐角三角形、两个钝角三角形。
教学过程:
一、创设情景,引入探索。
师:在讲课之前,首先,谁愿意给大家说一说,你有什么爱好?
那么如果遇到花坛形状是这样普通的三角形,面积怎么计算呢?我们今天一起来研究,大家有兴趣吗?(教师板书课题:三角形面积的计算)。
二、自主探索,合作交流。
1、引导学生看大屏幕(出示不同类型的三角形),提出思考:谁来说说你看到了什么?
3、谈话启思。
请大。
4、操作探索。
(1)小组合作探索、操作。
(2)小组交流。
5、开始现场发布会,展示学生的拼摆情况。
三、尝试练习。
四、实践运用,拓展创新。
下图中哪个三角形的面积与画阴影三角形的面积相等?为什么?
你能在图中再画一个与画阴影的三角形面积相等的三角形吗?试试看?
五、质疑调节,总结延伸。
师:通过这节课的探索学习,你有什么收获?
六、布置作业,课后探索。
人教版数学图形面积教学设计篇十九
课题名称组合图形的面积。
科目数学年级5年级上册。
教学时间11月25号。
学习者分析我所带的班级,已经有了一定的学习自觉性和学习习惯,有了一定的小组合作探究能力,他们善于争论,有较强的表现欲望。但他们也是有许多问题,马虎毛病多,眼高手低,经常练习不充足。将要学习的内容是学习完平行四边形、三角形、梯形的面积后的一节较难的课,可能要出现看不出复杂图形分解的关键,不会下手,知难而退,操作起来还会遇到许多善于变化的图形,更关键的是在多训练中发展思维培养创造力,作业过程中要多注意、多检查。
教学目标一、情感态度与价值观。
1.注重培养思维的多样性和开放性。
2.在作业过程中注重养成多思考的习惯,思考方法的合理性、思考转换的依据。组合图形的面积适时渗透“事物之间相互联系”的辩证唯物观点。
3.形成自己判断自己对错的能力。
4.尊重学生和学生的个性差异,可以挑自己最喜欢的一种方法。
二、过程与方法。
1.通过仔细观察、小组合作、分析综合、动手拼拼、摆摆、发展学生的解决实际问题的能力。
三、知识与技能。
1.明确组合图形的意义。
2.在合作探究组合图形的面积中,发展“转化”的思维方法。明白组合图形的面积关键是把“不规则图形”转化成“规则图形”,或是求两个图形的和,或是求两个图形的差。
教学重点、
难点1.明确组合图形的意义。
2.在合作探究组合图形的面积中,发展“转化”的思维方法。明白组合图形的面积关键是把“不规则图形”转化成“规则图形”,或是求两个图形的和,或是求两个图形的差。
1.在作业过程中注重养成多思考的习惯,思考方法的合理性、思考转换的依据,。组合图形的面积适时渗透“事物之间相互联系”的辩证唯物观点。
2.形成自己判断自己对错的能力。
3.注重培养思维的多样性和开放性。
教学资源ppt课件、小黑板、红旗、风筝、房子、七巧板。
教学过程。
教学活动11.从生活导入,激发学生兴趣,认识组合图形。
1)师展示自己收集的美丽图形:有红旗、风筝、房子、七巧板等等。提出问题:
2)师:谈谈自己欣赏后的感受。
2.体会组合图形:
3.学生合作完成。班级交流。注意组织课堂,交流时教师的追问和点拨。
教学活动2。
1.自我展示:
2)班级交流。
2.师选择有代表的图形展示,共同分析是有哪些基本图形构成的。
教学活动3。
1、总结方法,升华练习,探究技巧。
1)通过大家争论后,师小结:把“组合图形的面积”转化成大图形与小图形的差。或者转化成几个简单图形的和。在作业过程中注重养成思考方法的合理性、思考转换的依据,形成自己判断自己对错的能力。
2.找准数据:明白每条线段的数据是多少?然后求面积。
1)师用多媒体课件出示一些典型的组合图形。
师:先说说下面图形的有关数据是多少?组合图形可以转化成什么?再计算它们的面积。你认为选择哪种方法最好?要善于选择自己喜欢的方法。最简单的、最不善于出错的。
教学活动4。
练习巩固。
出示书上93页图。下图表示的是一间房子的侧面图:
1.求它的面积是多少平方米?
2.如果每平方米用190快砖,需要多少块?说说为什么这样做?
3..某工人师傅粉刷这面墙共收300元,他每平方米收多少钱?
教学活动5。
课堂小结:
人教版数学图形面积教学设计篇二十
组合图形面积是在长方形、正方形、平行四边形、三角形和梯形这五个基本图形的面积公式学习之后,进行的一种由形象到抽象的学习。解题的基本理念是将组合图形转化为基本图形进行计算,需要发散学生的思维,会分析图形的.构成,能够正确分析图形的隐含数据条件,鼓励学生一题多解。
学情分析。
根据学生已有的生活经验,通过直观操作,对组合图形的认识不会很难。学生已经系统学习了平行四边形、三角形与梯形的面积的计算方法。但是对于方法的交流、借鉴、反思及优化上需要教师的引导,所以,要重视让每个学生都积极地参与到活动中来,让活动有实效,真正让学生在数学方法、数学思想方面有所发展。
教学目标。
(1)在自主探索的活动中,了解平面组合图形的特点,理解计算组合图形的多种方法。
(2)能根据各种图形的特征和条件,有效的选择计算方法,实现算法多样化和合理化。
(3)结合具体题例,感受计算组合图形面积的必要性,产生积极的数学学习情感。
教学重难点。
教学重点:在探索活动中,理解组合图形面积计算的多样化。
关键:学会运用“分割”与“添补”的方法计算组合图形的面积。
人教版数学图形面积教学设计篇二十一
知识与技能:
明确组合图形的意义,掌握用分解法或添补法求组合图形的面积。
过程与方法:
能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
情感态度与价值观:
渗透转化的教学思想,提高学生运用新知识解决实际问题的能力,在自主探索活动中培养他们的创新精神。
教学重难点。
教学重点:
在探索活动中,理解组合图形面积计算的多种方法,会利用正方形、长方形、平行四边形、三角形、梯形这些平面图形面积来求组合图形的面积。
教学难点:
根据图形特征采用什么方法来分解组合图形,达到分解的图形既明确而又准确求出它的面积。
教学工具。
多媒体设备。
教学过程。
教学过程设计。
1创设情境,引导探索。
图一。
图二。
图三。
图四。
课件逐一出示图一、图二、图三,图四让学生发表意见。
生1:小房子的表面是由一个三角形和一个正方形组成的。
生2:风筝的面是由四个小三角形组成的。
生3:队旗的面是由一个梯形和一个三角形组成的。
生4:七巧板是由三角形,长方形,正方形和平行四边形组成的。
师:这几个都是组合图形,通过大家的介绍,你觉得什么样的图形是组合图形?
生1:由两个或两个以上的图形组成的是组合图形。
生2:有几个平面图形组成的图形是组合图形。
师小结:组合图形是由几个简单的图形组合而成的。
图一:是由三角形、长方形、加上长方形中间的正方形组成的,
面积=三角形面积+长方形面积-正方形面积。
图二:作辅助线使它分成一个大梯形和一个三角形。
方法一:分割法:将整体分成几个基本图形,求出它们的面积和。
是由两个梯形组成的。
师:为什么要分成两个梯形?怎样分成两个梯形?
引导学生说出将它转化成以学过的简单图形以及在图中作辅助线。
师:是的,可以用作辅助线的方法将它转化成以前学过的简单图形来计算。
(板书:转化)。
大家想想,用辅助线的方法还有不同的作法吗?
作辅助线补成一个长方形,使它变成一个大长方形减去一个三角形。
图三:是由四个三角形组成的。
面积=三角形面积+三角形面积+三角形面积+三角形面积。
2新知探究。
(一)右图表示的是一间房子侧面墙的形状,它的面积是多少平方米?
(三角形+正方形)。
右图表示的是一间房子侧面墙的形状,它的面积是多少平方米?
(两个完全一样的梯形)。
(二)计算组合图形的面积,一般是把它们分割成基本图形,如长方形、正方形、三角形、梯形等,再计算它们的面积。
3巩固提升。
(一)这是学校教学楼占地的面积平面图,你能用几种方法求出它的面积?
(三)下面各个图形可以分成哪些已学过的图形?
(四)学校要油漆60扇教室的门的正面。(单位:米)需要油漆的面积一共是多少?
(六)求下列图形中阴影部分的面积。
(七)如图,有两个边长是200px的正方形放在桌面上,求被盖住的桌面的面积。
课后小结。
(一)学生总结。
这节课你学习了什么?有什么收获?还有什么不明白的地方?(小组说--组内总结--组间交流)。
(二)教师总结。
今天我们认识了组合图形,并能将组合图形分割成已经学习过的图形,计算出它的面积。
板书。
组合图形是由几个简单的图形组合而成的。
【本文地址:http://www.xuefen.com.cn/zuowen/14348938.html】