编写教案可以帮助教师在备课过程中及时发现教学中存在的问题并加以改进。教案的编写需要不断更新和改进,适应教育改革和教学发展的需求。教案的编写需要结合教材和教学情境进行个性化设计。
小数的意义教案篇一
【教学内容】 五年级上册第28页至30页例1和例2及相应的“试一试”和“练一练”,练习五1-5题。
1.在现实情境中,能初步理解小数的意义,学会读写小数,体会小数与分数的联系。
2.在用小数进行表达的过程中,感受小数与生活的联系,增强数学学习的兴趣。
3.培养良好的学习习惯,提高学生的探究、归纳比较、抽象概括的能力。
【教学重、难点】理解小数的意义。
一、交流信息,引入课题
课前我们收集了一些关于小数的资料,老师选择了一些,谁愿意给大家介绍一下?
(1)一块橡皮0.3元;一张信封0.05元;一本练习本0.48元。
(2)一枚1分硬币的厚度大约是0.001米。
(3)老师用的签字笔笔芯是0.38毫米的。
(4)艾兰德 “维生素c含片”净含量:0.65克×120片。
(5)钱嘉容的家到学校大约有3.9千米,她的爸爸身高1.82米。
像0.3这样的一位小数三年级时我们已经认识,这些小数和它们有什么不一样?会读吗?只读小数,谁来读一读。
你们觉得读小数时需要提醒大家注意什么?(小数点前面的数和我们学过的整数一样读,小数点后面的数只要依次一个一个地读。)
这节课我们将继续学习小数的意义。(板书课题:小数的意义)
二、教学例1,初步感知
1、出示例1。我们先来看第一条信息。
这些小数表示物品的单价。
如果你到商店去买这些物品,该怎样付钱呢?(课件出示: 3角 5分 48分)
谈话: 这里的0.3元用分数可以怎么表示?你是怎么想的?(板书:0.3元)
小结:1元=10角,3角是1元的3/10,可以写成0.3元。(板书:3/10元 0.3元)
2、初步认识两位小数。
你能仿照(0.3元)这样的思路说说0.05元和0.48元的意思吗?先独立想想,再同桌交流。(如果学生感到困难,提示:1元是多少分;1分是1元的几分之几;那5分呢?48分呢?可以怎样想?)
0.05元,谁来说说你是怎么想的?(同桌互相说说)
1元=100分,5分是1元的5100 ,可以写成0.05元;
0.48元谁来说?
1元=100分,48分是1元的48100 ,可以写成0.48元;
板书:5100 元 0.05元 48100 元 0.48元
三、教学例2,概括意义
(一)进一步理解两位小数的意义。
投影:1米=100厘米,1厘米是1米的1/100,可以写成0.01米。
谁能这样完整的说说。(板书:1厘米 1/100米 0.01米)
(二)自主探究三位小数的意义。
2、老师将米尺再截短再放大,现在你能在米尺上指出0.001米吗,并告诉大家你是怎样想。(能仿照刚才的思路说说想法)
谁再来说说0.001米的意思?板书:11000 米 0.001米
你能说一个毫米数,让大家像这样来说说吗?板书两个
3、练习纸上找到材料2完成填空。(课件出示,直接校对)
这些用米作单位的三位小数都表示1米的——千分之几。
(三)观察发现,概括意义
竖着看,这3个数量都是——相等的!下面两个数量的单位都是——相同的!这说明分数、小数之间有着密切的联系!(根据学生交流情况可适当擦去写板书,只留下分数、小数,便于观察、比较、抽象概括意义。)
从分数往小数看,什么样的分数可以直接写成小数呢?
看看下面的小数,可以分成几类?
指出:这就是小数的意义,引导学生完整的看一看 。
(四)回到第一屏学生收集的信息,解释3、4条信息中小数的意义。
小数的意义教案篇二
教学目标:
1.经历小数的认识过程,初步了解小数的含义,会读,写一位小数,知道小数各部分的名称。知道自然数和整数。
2.进一步认识数的发展,感受数学与现实生活的联系,增强学习数学的兴趣。
教学资源:
投影。
教学过程:
一.创设情境,唤起经验。
谈话:星期天,小兰跟着妈妈去逛超市。超市里东西可真多啊,请大家注意这几种商品的标价:
圆珠笔笔记本橡皮小刀。
1.2元3.5元0.5元0.8元。
这些数你们见过吗?谁来试着读一读。
让会读的学生试读。
谈话:这就是我们要认识的小数。(板书课题)。
二.联系实际,探究发现。
1.认识米做单位的一位小数。
观察情境图,桌面长5分米,宽4分米。
谈话:(出示米尺图)5分米,如果用米做单位是几分之几米?4分米呢?
学生回答。
讲解:5/10米还可以写成0.5米。0.5读作零点五。
提问:4/10米可以怎样写?怎样读?(学生回答)。
1分米.2分米.3分米******是几分之几米?用小数表示呢?
同桌互说,全班交流。
:十分之几米可以写成零点几米。
2.做“想想做做”第1题。
学生各自在书上填写。投影出示答案,共同校对,指导做错的学生纠正错误。
3.认识元作单位的一位小数。
(1)电脑出示:小兰在超市买了一些文具。
铅笔学生尺圆珠笔笔记本。
3角7角1元2角3元5角。
:十分之几元可以写成零点几元。
(2)谈话:那么1元2角怎样改写成小数呢?2角写成小数是多少?1元和0.2元合起来就写成1.2元,1.2读作一点二。
提问:3元5角用小数表示怎样写?怎样读?
:几元几角写成小数就是几点几元。
(3)做“想想做做”第2题。
在书上填写,把答案读给同桌听。
(4)完成“想想做做”第3题。
看图先写出分数,在写出小数,在小组里互相校正。
:十分之几可以写成零点几。
4.认识整数和小数。
(1)讲述:我们以前学过的表示物体个数的1.2.3.*******是自然数,0也是自然数,它都是整数。像上面`的0.5,0.4,1.2和3.5都是小数。小数中间的点叫做小数点,小数点的左边是整数部分,右边是小数部分。
(2)让学生自己阅读课本第100页最后一段。
(3)练习。
a、说一说下列各数中哪些是整数,哪些是小数?
70..84.2391。
指名口答。
b、用----画出下面小数的整数部分,用~~~~画出小数的小数部分。
0.745.2。
学生齐做,指名扮演。
三.巩固练习。
1.做”想想做做“第4题。
说给同桌听。
2.做”想想做做“第5题。
提问:为什么0右边第一个点上填0.1?1右边第2个点上填1.2?
各自完成填空,在小组里互相检查。
小数的意义教案篇三
1、使学生知道小数的产生过程,理解分数与小数的联系。
2、使学生明确小数的计数单位,认识小数并理解小数的意义。
3、培养学生的观察能力、分析能力、抽象概括和迁移能力。
使学生通过分数与小数的联系从而理解小数的意义。
多媒体课件、米尺。
教师出示钢笔,写出价格13.50元。
师:这是个什么数?(学生:小数)。
师:小数和我们学过的整数有什么不同?
生:有圆点……。
师:小数是仿照整数写成的,用小数点隔开,左面是小数的整数部分,右面是小数部分。在日常生活中,有很多地方要用到小数。(教师和学生比身高并引出姚明的身高。)。
第一组数:1米7分米3厘米2米2分米6厘米。
第二组数:1.73米2.26米。
师:那一组数更简明?(学生:第二组数)。
师:对。小数是人们根据生活的需要而产生的。小数里有很多的奥秘,今天,我们就一起来研究小数的意义。
1、认识一位小数。
教师出示媒体。
师:把1米平均分成10份,每份是多少?生:1分米1米=10分米。
师:那么反过来,1分米等于多少米呢?(生:米)师:
师:还可以把米写成小数是0.1米。
师:0.1米是由哪个分数得来的?(生:是由米得来的。)。
师:3分米是多少米?写成小数有是多少呢?(学生:米0.3米。)。
师:请同学们观察这一组数,你发现什么?
学生:一位小数、分母是10的分数可以写成一位小数、计数单位是十分之一。
师:0.7表示()个。
2、认识两位小数。
分数小数分数小数。
出示课件:1厘米=()米=()米15厘米=()米=()米。
学生自主研究,教师参与到学生的研究中。
学生汇报研究的成果:
首先填好空。
师:你发现了什么?
学生:这是二位小数、计数单位是百分之一、分母是100的分数可以写成二位小数……。
教师对学生没发现的给予引导启发。
师:0.75表示()个。
3、认识三位小数。
师;你能继续研究出其他的小数吗?
教师出示媒体:
把1米平均分成1000份,每份是1毫米。
分数小数分数小数。
1毫米=()米=()米63毫米=()米=()米。
学生自主研究后汇报交流:
分母是1000的分数可以写成三位小数,计数单位是千分之一………。
教师对学生每发现的给予引导启发。
师:0.63表示()个。
讨论:
2、一位小数可以用来表示什么?二位小数、三位小数呢?
3、什么叫小数?
学生先自己说,教师再指明学生说。
教师通过讨论第1、2两个问题引导学生归纳出:分母是10、100、1000……的分数可以仿照整数是写法,写在小数点的右面,用来表示十分之一、百分之一、千分之一……的数,叫做小数。
教学例1:
课件出示。学生独立完成后汇报交流。
师:这个题你是怎样想的?
课件分别出示。
1、0.5里有()个0.1,0.09里有()个0.01,0.013里有()个0.001。
2、教师出示图,学生在书上完成后集体交流。
3、连线,教师出示连线图,学生在书上独立完成后集体交流。
0.425里有()个0.001。
0.20里有()个0.01。
用0、2、5、8这四个数和小数点你能组成什么样的小数?
小数的意义教案篇四
1、使学生结合生活经验和实际测量活动了解小数的产生,体会小数产生的必要性。
2、利用直观的图片,建构小数和分数的联系,经历小数意义的归纳过程,学会小数之间的转换。
3、培养学生的迁移、类推能力,以及良好的数学学习品质。
理解小数的意义,知道小数的计数单位及每相邻的两个计数单位之间的进率是10。
理解一位、两位、三位小数的意义。
一、情境导入:
1、(展示一根绳子)猜猜它有多长?
生猜:1米……
师:要想知道准确的结果,怎么办?
生:量一量。
师:谁愿意来测量一下它的长度?
两名学生合作测量。
师:把你们测量的结果汇报一下。
生:一米。
生猜并测量验证。
生:不能。
师:为什么不能用整数了?
生汇报
师:也就是说,在进行测量时,如果不能得到整数的结果,我们就要用其他的数来表示,也就是我们今天要学习的小数。(板书:小数)
师:那你们说说在哪些地方还见过小数。
生汇报
师:看来小数在生活中的用处真是不小,今天我们就来研究“小数的意义”。(补充板书)
二、探索交流,建构新识:
(一)理解一位小数的意义。
1.师:请同学们任意说一个小数。
生汇报师板书
师:那老师也来写几个。
0.1 0.01
师:猜一猜老师接下来会写什么?
生:0.001
师:同学们真的是很会推理。
生汇报
师:对于0.1同学们都有不同的认识。老师带来了一个正方形,如果我们用一张正方形表示1的话,请你估计一下,0.1该有多大,用手比划一下。
师:请同学们在这张纸上分一分并用阴影涂色表示出0.1。老师看哪些同学的速度最快。
3.生展示、汇报
展示若干组学生的画法。
(编号,让学生说出自己的想法。)
师:你认为哪位同学表示出了0.1那么大小。
生:1号;3号;2号;4号。
师:到底哪位同学的表示出了0.1呢?我们一起来看一下。(出示课件)这个纸杯的售价为0.1元,如果你是顾客,你应该付给售货员多少钱?(1角)。明明是0.1元,为什么你要付1角钱呢?(生汇报:0.1元就是1角)师出示课件。那一角钱还可以用()/()元(生汇报)
师:1角=元,1角=0.1元,那元和0.1元是什么关系?看来,0.1=。
师:现在我们再来回头看刚才几位同学的作品,哪位同学的涂色部分表示出了0.1?(生汇报:3号和4号。)
师:现在我们再一起来理顺一下。(出示课件)一个正方形用1表示,要想表示0.1我们先把这个正方形平均分成10份,其中的一份涂出来就是0.1。
师:那现在谁来说说0.1到底表示什么?
生汇报师小结:说简单点0.1就表示。(板书)
师:涂色部分为0.1那空白部分用哪个小数表示呢?
生汇报:0.9。
师:怎么看出0.9的?
生汇报
生:1
师:现在我们明白了1里面有(10)个0.1。(板书)
4.再涂1块能看到哪两个小数?
生:0.2、0.8。
师:他们的分数朋友分别是谁?(生汇报师板书),把它们合在一起是多少?(1)
生:分母都是10、都是十分之几……
师:那我们就可以说一位小数表示的就是十分之几。(板书)
(出示课件)其中的一份,就是一位小数的计数单位。也就是说一位小数的计数单位是(十分之一),写作(0.1)。这就是我们认识的一位小数。
(二)理解两位小数的意义。
同桌交流讨论。
生汇报:把它平均分成100份,取其中的一份。
预设:如果学生有分歧,可用一元和一分的关系来验证帮助学生理解。
师:同学们的想法非常正确,我们要想在正方形中找到0.01,就要先把这个正方形(出示平均分成100份的正方形)
师:0.01就表示。还看到了哪个小数?
生:0.99。
师:0.99里面有几个0.01。
生:99个。
师:把他们合起来是多少?那1里面有多少个0.01?(100个)师板书
2.如何表示0.25呢?
生汇报
师:还能想到哪个小数?他们的分数朋友分别是谁?
生:0.75,分数朋友:
4.师提问:
(1)你涂了哪个小数?
生汇报。
师:猜一猜他涂了几格,还能找到另外一个小数吗?
(2)你涂了几格?谁能知道他写的是哪个小数?
5.师:(指板书)刚才我们研究的小数都有什么特点?他们都表示什么?
生汇报师小结板书:两位小数表示的就是百分之几。(出示课件)其中的一份,就是一位小数的计数单位。也就是说两位小数的计数单位是(百分之一),写作(0.01)。
(三)理解三位小数的意义。
1.师:我们已经知道了一位小数表示十分之几,两位小数表示百分之几,那0.001是几位小数?(三位小数)。那三位小数又表示什么呢?生:它表示千分之几。(师板书)
师:那它的分数朋友是多少?()
师:那0.237表示什么?它的分数朋友是谁?
生:
师:小数是多少?
生汇报
2.师:谁能找一个大一点的三位小数?
生:0.999 =
师:要在正方形纸上涂上0.999会有什么感觉?
生汇报
如果再涂多少就涂满了?(0.001)
师:那也就是说(1000)个0.001是1。
师小结:三位小数表示的就是千分之几。(出示课件)其中的一份,就是三位小数的计数单位。也就是说三位小数的计数单位是(千分之一),写作(0.001)。
3.延伸:师:那如果把1平均分成10000份,这样的一份或几份用几位小数表示?(四位小数)。把1平均分成100000份,这样的一份或几份用几位小数表示?(五位小数)
……
师:看来同学们的类推能力都很强,能够根据前面所学的知识来回答老师的问题了。
(四)提炼小数意义
1.请同学们回想刚才的学习过程,说一说小数的意义到底是什么?
生汇报
小结:分母是10、100、1000……的分数都可以用小数表示(课件出示)。其实这就是小数的意义。
0.1里面有多少个0.01?0.01里面有多少个0.001?也就是说小数每相邻两个计数单位之间的进率是(10)。
3.师:大家回答的都不错,其实今天我们学习的小数在产生的过程中经历了一段较长的历史。同学们,请看(出示课件)
三、巩固内化:
出示课件练习题。
1、填一填。
2、填上合适的数。
四、回顾反思:
1.师:一节课就快要结束了,下面我们一起来回顾一下我们刚才的学习过程。(出示课件)
3.最后老师想送给同学们一段话--小知识:人类对自己大脑的利用水平却极低,普通人只利用了大脑的百分之二(0.02)到百分之五(0.05)左右,就连世界上最伟大的科学家爱因斯坦也只利用了大脑的十分之一(0.1)。
师:老师希望同学们能够尽可能的发挥自己的潜能,去畅游我们的数学王国。
小数的意义教案篇五
2、知道每个数位上的计数单位和相邻两个计数单位间的进率是十,初步认识一个小数的小数部分各数位上有几个这样的单位。
3、通过了解小数的产生和发展过程,提高数学学习的兴趣,增强热爱数学的情感。
难点:会用小数表示计量单位换算的结果。
多媒体课件、米尺。
(一)导入新授。
师:生活中你在哪些地方见到过小数?你能说说吗?(出示课件)学生回答。
师:生活中这么多的地方用到小数,说明小数的`应用十分广泛,无处不在。请同学们把各自测量周围物体的长、宽(或高)的数据说一说。(教师将各个数据分别按“整米数”和“非整米数”两类板书)。
师:这些不够整米数的部分,如果仍然要用“米”作单位写出来,除了用分数表示外,还可以用怎样的数表示出来呢?请同学们阅读教材第32页的内容。
师生共同归纳:在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。但是,小数的意义又是什么呢?这节课,我们继续深入学习小数的知识。
(二)探索发现。
1、认识一位小数。
(1)课件出示教材第32页例1米尺图。
把1m平均分成10份,每份长多少分米?1分米是1米的几分之几?
教师介绍出示:“十分之一”米还可以写成米。
那2分米、3分米呢?学生试着完成填空。
学生在小组内交流后再全班交流,交流时说说每个分数表示的意义。
教师根据学生的回答板书:
(2)观察上面的等式你能发现分数和小数之间的联系吗?
学生观察并在小组内讨论。
师生交流后小结:分母是10的分数,可以写成一位小数。一位小数表示十分之几。
2、认识两位、三位小数。
我们知道了一位小数表示的是十分之几的数,那么两位、三位小数应该表示什么呢?下面请同学们以这些两位小数为材料,继续研究。
(1)教师继续出示米尺的放大图。
学生思考、小组交流后进行反馈:
把1米平均分成100份,这样的一份或者是几份表示百分之几米,可以用像0.04、这种两位小数来表示。
1米有1000毫米,就是把1米平均分成1000份,1毫米就是新人教版数学四年下第四单元小数的意义和性质教案(一)米,用小数表示就是米。
(2)小结。
分母是100的分数,可以写成两位小数。两位小数表示百分之几。
分母是1000的分数,可以写成三位小数。三位小数表示千分之几。
学生交流说说对小数的理解。
师生共同归纳得出结论:一位小数表示十分之几,十分之几的计数单位是十分之一,那么一位小数的计数单位就是。同理两位小数、三位小数的计数单位就是0.01、。每相邻两个计数单位间的进率是10。
4、阅读“你知道吗?”。
师:同学们已经知道小数是怎么产生的及小数的意义,那你们知道小数的历史吗?
学生自学教材第33页“你知道吗?”。
师生交流时,让学生说说小数的发展史。
(三)巩固发散。
1、指导学生完成教材第33页“做一做”。
让学生独立填写,集体订正时,让学生说说是如何用分数和小数来表示的。
2、在括号内填上合适的小数。
()元()千克()厘米。
(四)评价反馈。
通过今天这节课的学习,你有哪些收获?
师生交流后总结:认识了小数,知道了小数就是用来表示十分之几、百分之几、千分之几……的数。还认识了小数的计数单位,知道了相邻的计数单位之间的进率是10。
(五)板书设计。
分母是10、100、1000……的分数可以用小数表示。
小数的计数单位是十分之一、百分之一、千分之一……分别写作、、……。
每相邻两个计数单位间的进率是10。
小数的意义教案篇六
1、理解小数的意义,知道一位小数、两位小数、三位小数分别表示十分之几、百分之几、千分之几。
2、知道每个数位上的计数单位和相邻两个计数单位间的进率是十,初步认识一个小数的小数部分各数位上有几个这样的单位。
3、通过了解小数的产生和发展过程,提高数学学习的兴趣,增强热爱数学的情感。
会用小数表示计量单位换算的结果。
多媒体课件、米尺。
一、导入新授。
师:生活中你在哪些地方见到过小数?你能说说吗?(出示课件)学生回答。
师:生活中这么多的地方用到小数,说明小数的应用十分广泛,无处不在。请同学们把各自测量周围物体的长、宽(或高)的数据说一说。(教师将各个数据分别按整米数和非整米数两类板书)。
师:这些不够整米数的部分,如果仍然要用米作单位写出来,除了用分数表示外,还可以用怎样的数表示出来呢?请同学们阅读教材第32页的内容。
师生共同归纳:在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。但是,小数的.意义又是什么呢?这节课,我们继续深入学习小数的知识。
二、探索发现。
1、认识一位小数。
(1)课件出示教材第32页例1米尺图。
把1m平均分成10份,每份长多少分米?1分米是1米的几分之几?
教师介绍出示:十分之一米还可以写成0.1米。
那2分米、3分米呢?学生试着完成填空。
学生在小组内交流后再全班交流,交流时说说每个分数表示的意义。
教师根据学生的回答板书。
(2)观察上面的等式你能发现分数和小数之间的联系吗?
小数的意义教案篇七
教科书第111—112页的例1和例2,第111页、113页上面“做一做”中的 题目和练习二十六的第1—2题。
1.使学生理解小数加、减法的意义,初步掌握计算法则,能够比较熟练地笔算小数加、减法。
2.培养学生的迁移类推的能力。
1.少先队采集中草药。第一小队采集了1250克,第二小队采集了986克。两个小队一共采集了多少克?让学生先解答,再说一说整数加法的意义和计算法则。
2.笔算。
4.67十2.5= 6.03十8.47= 8.41—0.75=
让学生列竖式计算,指名说一说自己是怎样算的,并注意检查学生竖式的书写格式是否正确。
1.教学例l。
(1)通过旧知识引出新课。
教师再出示一次复习的第l题,把已知条件和问题稍作改动,变成例l。让学生读题, 理解题意。
(2)引导学生比较整数加法和小数加法的意义。
教师:“例1与复习中的第1题有什么相同的地方?例1应该用什么方法计算?为什 么要用加法算?”
引导学生通过比较说出:从复习的第1题可以看出整数加法的意义是把两个数合并成一个数的运算;从例1可以看出小数加法的意义和整数加法的意义相同.也是把两个数合并成一个数的运算。因为要把两个小队采集中草药的千克数合起来,所以要用加法计算。
(3)引导学生理解小数点对齐的道理。
教师板书横式以后,让学生说一说怎样写竖式,并提问:“为什么要把小数点对齐?”然 后把以千克作单位的小数改写成以克作单位的整数,列出竖式,并提问:“整数加法应该怎样算?”引导学生说出计算时要把相同数位上的数对齐,再从个位加起。
教师接着再提问:“为什么要把相同数位上的数对齐?”引导学生说出相同计数单位上 的数才能相加。教师告诉学生:小数加法也是相同计数单位上的数才能相加,所以列竖式 时只要把小数点对齐就能使相同数位上的数对齐。
然后让学生计算,算完后教师提问:“得数7.810末尾的‘0’怎样处理?能不能去掉?为什么能去掉?”引导学生说出根据小数的性质可以把末尾的“0”去掉。并告诉学生以后在计 算小数加法遇到小数末尾有“0”时,通常要把“0”去掉。
2.让学生做第111页“做一做”中的题目。
让学生独立做,教师巡视,检查学生是否把小数点对齐了,最后集体订正。
3.引导学生比较小数加法和整数加法的计算法则。
教师:“小数加法与整数加法在计算上有什么相同的地方?”启发学生说出小数加法和 整数加法都要把相同数位上的数对齐,小数加法只要把小数点对齐就能使相同数位对齐:
4.教学例2。
(1)引导学生通过比较得出小数减法的意义。
教师:“例2的条件和问题与例l比有什么变化?例2的数量关系是什么?”启发学生说出例2是已知两个小队采集中药材的总数和第一小队采集的千克数.求第二小队采集 的千克数;可以看出小数减法也是已知两个加数的和与其中的一个加数。求另一个加数的运算,所以它的意义与整数减法的意义是相同的。
(2)利用知识迁移使学生理解小数点对齐的算理。
让学生联系小数加法小数点对齐的算理,说一说小数减法小数点为什么要对齐: 然后教师把千克数改写成克数并列出竖式,提问:“个位上是几减几?”接着让学生看小数减法竖式,提问:“被减数干分位上没有数计算时怎么办?”利用小数的性质使学生理解被减数干分位上没有数可以添“0”再减,也可以不写“0”,把这一位看作“0”再计算,以后 在计算时遇到这种情况也可以这样处理。接着让学生计算,教师巡视,检查学生小数点是 否对齐,被减数千分位的处理是否正确,得数的小数点点得是否正确。
5.比较小数减法与整数减法的计算法则。
让学生讨论小数减法与整数减法在计算上有什么相同的地方。使学生明确这和小数 加法与整数加法在计算上的关系是一样的。
6.小结。
教师:“通过学习上面的知识,小数加法和小数减法的计算法则有什么共同的地方?”
启发学生说出小数加减法计算时都要把小数点对齐(也就是相同数位上的数对齐),都要从最低位算起。然后教师把小数加减法的计算法则完整地说一说。并让学生看书上的法 则,齐读一遍。
7.做第113页最上面“做一做”中的题目。
学生做题之前,教师先提问:“整数加减法各部分间的关系是怎样的?整数加减法是怎样验算的?”从而说明小数加减法各部分间的关系及验算方法与整数加减法的一样。再让学生做题.检查竖式的书写及计算有没有错误,得数的小数点点得是否正确,验算的格式 对不对。订正时,让学生说一说是怎样计算并验算的。
做练习二十六的第1—2题。
2.做第2题,让学生独立做,可以要求学生验算。教师巡视,进行个别辅导。订正时, 针对学生易出错的地方重点说一说。
小数的意义教案篇八
课本第49页例3课堂活动第2题及练习十三。
1、进一步认识小数及小数的计数单位,让学生会读小数。
2、进一步体会小数在日常生活中的作用。
3、通过对现实生活中一些自然、人文景观的数据的读写,受到爱国主义的熏陶。
进一步认识小数及小数的.计数单位;会读、写小数。
一、复习引入。
教师:上节课我们认识了小数,什么叫小数呢?一位小数表示几分之几?两位小数呢?三位小数呢?学生回忆整数读法并在全班交流。
揭示课题:同学们你们会读小数吗?今天我们就来探讨小数的读法。
二、自由讨论、学习新知。
1、教师用卡片出示例。
0.7,0.19。
2、学生先自由读一读,再抽读。
3、议一议:读小数时要注意什么?
4、教师根据学生的回答再归纳小结小数的读法,强调整数部分与小数部分读法的不同。
三、巩固新知。
1、同桌相互读数。(课堂活动第2题)。
2、练习十三第4题。
让学生独立看题后,再把自己从题中获得的信息告诉同桌或全班同学。
3、练习十三第5题。
教师先引导学生认识表格,并向学生简介表中一些名称的含义。
再让学生看表分组接龙游戏。
4、练习十三第6题学生自己看图写数,三人板演,集体订正。
5、指导练习。
(1)第9题。
教师:5.6与5.7之间相差多少?让学生数一数,5.6与5.7之间平均分成了多少份?从而认识到把0.1平均分成10份,即比0.1更小的计数单位是0.01。因此,第1小题应该填两位小数。
同理,比0.01更小的计数单位是0.001,第2小题应该填三位小数。
填完后,让学生说一说是怎样想的?
(2)第10题。
学生自己独立完成。明白每个小数位上的数代表着什么。
四、拓展提高。
1、练习十三第1、2、3、7、8题。
让学生独立完成,集体订正。
2、思考题:第12题用2,5和3个0写小数。
(1)1个0都不读出来的一位小数。
(2)3个0都读出来的小数。
让学生独立思考,完成后读一读。
3、课后作业:第11题和第13题。
回家请父母帮忙,与父母共同完成。
五、课后小结。
今天学习了什么?你有哪些收获?
小数的意义教案篇九
1、结合具体情境,体会生活中存在着大量的小数。
2、通过实际操作,体会小数与十进制分数的关系,了解小数的意义,知道小数部分各数位名称的意义,会正确读写小数。
3、结合具体情境,体会生活中存在着大量的小数。
一、生活中的小数
谈话引入:新的学期开始了。同学们又长大一岁了。今年是——20xx年。你们多大了?板书出数据。总结出“整数”。生活中除了碰到这些整数,我们还会碰到——小数。你在哪里遇到过小数?说一说。
二、小数的意义
1、阅读书上p2的生活中的小数。(了解学生对小数读法掌握情况)
2、学生试着解释这些小数的意义。(初步感知小数的意义。)
3、一同探究小数意义。从长度单位“米”来研究小数产生的必要性。用1米的尺子来测量物体的长度有诸多不便。有时不足1米,因此我们可以把1米怎么样?——平均分成10份,每一份也就是1分米。如果测量更小的物体,1分米的单位长度还是大了,我们还可以继续将1分米平均分成10份……这时小数就产生了。
5、观察这些小数和分数,你有什么发现?
6、我们在写整数时都可以按照数位顺序表来写,小数可不可以呢?看p4的计数器。了解数位顺序。明确十分位、百分位、千分位上的各数表示什么。边想边填。
三、运用拓展
2、完成试一试。注意学生的读、写小数。
3、完成练一练。
1、整数和整十数、整百数学生不明确。因此,虽然教材上没有整数这个概念出现,但要提一提,对理解小数意义有帮助。
2、对于17/1000,3/1000,409/1000学生容易出错。因此,在理解小数意义时,可以进一步引导学生观察、总结:1/10可以写成0.1,一位小数。小数点后面有一位数。1/100写成0.01,是两位小数……。
小数的意义教案篇十
2.在合作探索中,掌握小数各部分的名称和小数的数位顺序、小数的计数单位。
3.培养学生的观察能力、分析能力、抽象概括能力和迁移能力,使学生在合作与交流过程中,获得积极的情感体验。
第1课时
一、创设情境,复习引入
(学生举例回答,师订正。)
(根据学生的回答,教师板书一组一位小数:0.1 1/10;0.4 4/10……)
教师引导学生观察这组数据,这些小数有哪些共同特征?(小组内交流)
学生小组交流后,再集体交流。教师引导归纳:一位小数表示十分之几。
2.谈话:看来同学们前面的知识掌握的不错,作为奖励,老师带来一组美丽的图片,请同学们看大屏幕。(伴随音乐,出示情境图。)
[设计意图]本课是在学习了一位小数和初步认识分数的基础上进行的,所以,先带领学生回顾一下前面所学的有关知识,为学习新知做铺垫。再带领学生欣赏信息窗1,引入新知,培养情感,激发兴趣。
二、结合情境,探究新知
1.学习小数的读写。
谈话:从图中你都看到了什么?了解到哪些数学信息?(学生交流。)
(1)根据以前的知识,请你从中任选两种蛋的数据试着把它们读或写在练习本上。
(2)全班交流订正。
(3)教师根据学生的读、写情况引导学生概括小数读、写的基本方法。
谈话:对于这些小数,你还想了解它们哪些知识?(学生自由提问。)
下面我们先来研究一下0.25千克中的0.25表示什么意思?
2.学习两位小数的意义。
谈话:0.25千克中的0.25表示什么,首先要弄清0.01表示什么。(板书:0.25 0.01)
(1)出示一张正方形纸片。
谈话:如果正方形纸片用“1”表示,那么把它平均分成10份,每份可以怎样表示?如果把它平均分成100份。每份可以怎样表示?(学生发言。)
(师板书:0.1——1/10 0.01——1/100)
(2)在正方形纸片上表示出0.25。
(小组合作完成,全班交流,师引导学生明确0.25就是25/100,也就是25个1/100。)
板书:0.25 25/100
(3)教师多媒体出示0.05、0.10的方格图,阴影部分表示什么?
板书:0.05 5/100
0.10 10/100
(4)小组讨论:这些小数有什么共同特点?
(全班交流。教师引导学生概括出两位小数表示的意义)
3.学习三位小数的意义。
(1)谈话:我们已经知道了两位小数表示的意义,猜想:那么0.001表示什么?0.365表示什么?(学生口答。学生在两位小数的启发下,可以自然迁移)
(2)教师多媒体出示大正方体塑料块动态平均分产生0.365的过程(教材51的图),引导学生理解0.365就是365个1/1000,也就是365/1000。)
(3)多媒体出示0.305、0.360的阴影方块图,阴影部分表示什么?
(4)引导学生概括出三位小数表示的意义
4.总结小数的意义和计数单位。
(学生寻找生活中的小数,并结合实际说出它们的意义。)
(2)小组讨论:你认为小数是用来表示什么的数?它的计数单位是什么?
(集体交流,师引导学生总结出小数的意义。)
[设计意图]通过对正方形纸片和正方体塑料块的观察、涂色、操作等活动,以及学生对日常生活中存在的小数的寻找和理解,使学生积累了丰富的感性认识,为学生顺利抽象概括小数的意义奠定了坚实的基础,同时感受小数应用于生活的广泛性。
三、情境练习,巩固提高
1.出示自主练习第一题。
学生分别用分数和小数表示图中的阴影部分。
2.自主练习第3题。
学生独立读题,再说一说小数和分数之间的联系。
[设计意图]练习重点是小数和分数的联系,注重培养学生系统归纳知识的能力,也让学生在练习中进一步理解小数的意义。
四、课堂总结
谈话:今天我们进一步认识了小数,你有什么收获,能和大家分享吗?
[设计意图]让学生分享学习成功的喜悦,激发学生的积极性和求知欲,同时也为学生的后续学习总结了经验和方法。
兴趣是儿童最活跃的心理成分,当学生对某种事物产生兴趣时,他们就会主动、执着地探索。因此本课开始,就利用出示情景窗一,吸引了学生的兴趣,激发了学生探究的欲望,为小数意义地学习做了准备。
同时,本节课以学生的生活经验和知识背景为切入点,引导学生进行积极的操作和体验。在这个过程中,教师引导学生感知、感受、感悟知识,围绕着学生这个主体,利用现代化教学手段与常规教学手段互相结合的方式,直观展现了知识的形成过程,启迪学生思维,提高了课堂效率。
数学思想方法是数学知识的灵魂,是最有价值的数学知识。因此,数学课堂既要注重学生知识的获取和能力的培养,更应注重数学思想方法的渗透。在本课中,鼓励学生从一位小数迁移类推得到两位小数;在概括出两位小数的意义的基础,再对三位小数的意义进行猜测和验证,从而有效地渗透数学抽象化方法,进一步促进学生的数学思维能力。
小数的意义教案篇十一
1.通过本节课学习,让学生理解和掌握分数转化成小数以及小数转化成分数的方法,会用转化的方法来比较分数和小数的大小。
2.让学会经历数学知识的探究过程,学会善于分析、合理推理,培养合作交流的能力。
掌握分数与小数互化的方法,并能准确地进行分数与小数的互化。
分数与小数的'大小比较。
探究学习法、交流合作法等。
一、复习旧知,导入新课。
比较两位小数的大小。
0.46()0.3。
60.23()0.4。
学生独立完成然后说说是怎样比较的。
二、自主探究,掌握新知。
1.教学例9。
(1)出示情境图,谈话:从图上能了解哪些信息?
(2)谈话:要求我们回答谁用的彩带长,就是要我们解决什么数学问题?
(3)谈话:进行比较的这两个数,跟我们复习中的数相比有什么不同?
要比较0.5和的大小,你准备采用什么样的方法?
学生独立思考后在小组内交流。
(4)教师指导学生交流反馈。
2.教学“试一试”把、化成小数。(除不尽的保留三位小数)。
学生独立完成后,各自说说是怎么想的。
3.教学例10。
把0.3、0.13、0.213化成分数。
(1)教师出示题目,说说题目要求。
(2)说说你是怎么想的,然后在小组内交流。
4.教学“练一练”。
仔细观察每组数,说说你准备怎样比较这几组数的大小?
注意引导学生根据实际情况灵活运用转化的方法。
教师指导学生交流:你是怎么比较的,为什么这样做?
三、练习巩固,逐步提升。
1.基本知识联系,做练习九第11、14、15题。
2.运用所学知识解决实际问题的练习。
四、总结回顾,建构知识。
五、作业:做练习九第12、13、16题。
小数的意义教案篇十二
1.结合具体的生活情境,使学生体会到生活中存在着大量的小数。
2.通过直观模型和实际操作,体会十进制分数与小数的关系,并能进行互化。
3.通过练习,使学生进一步体会数学与生活的密切联系,提高学习数学的兴趣。
体会十进制分数与小数的关系,初步理解小数的意义。
能够正确进行十进制分数与小数的互化。
课件、米尺、正方形纸。
1.课件播放进入超市购物的情景。
铅笔:0.1元/个
圆珠笔:1.11元/个
西红柿:4.5元/千克
红豆:5.7元/千克
教师:上面这些物品的价钱有什么特点?
学生1:都不是整元数。
学生2:都是小数。
教师:还记得小数的读法吗?谁能读出上面的小数?读小数的时候要注意什么呢?
学生1:0.1读作零点一。
学生2:1.11读作一点一一。
学生3:4.5读作四点五。
学生4:5.7读作五点七。
学生5:小数点前面的部分按照整数的读法来读,小数点后面的部分要依次读出每一个数。
2.教师:上面的物品,你喜欢哪个,又该怎样付钱呢?
学生1:喜欢铅笔, 0.1元是1角。
学生2:喜欢圆珠笔,1.11元是1元1角1分。
学生3:喜欢西红柿,4.5元是4元5角。
学生4:喜欢红豆, 5.7元是5元7角。
3.教师:1.11元为什么是1元1角1分呢?以小组形式讨论,把你的想法先在小组内分享。
4.多种方法尝试解决。
(小组活动:学生有的是用元、角、分知识解决,有的是用小数的组成解决,有的完毕,汇报小组结果)
教师:你们知道原因了吗?哪个小组的同学把你们的方法和全班同学交流一下。
小数的意义教案篇十三
课本第49页例3课堂活动第2题及练习十三。
1、进一步认识小数及小数的计数单位,让学生会读小数。
2、进一步体会小数在日常生活中的作用。
3、通过对现实生活中一些自然、人文景观的数据的读写,受到爱国主义的熏陶。
进一步认识小数及小数的`计数单位;会读、写小数。
一、复习引入。
教师:上节课我们认识了小数,什么叫小数呢?一位小数表示几分之几?两位小数呢?三位小数呢?学生回忆整数读法并在全班交流。
揭示课题:同学们你们会读小数吗?今天我们就来探讨小数的读法。
二、自由讨论、学习新知。
1、教师用卡片出示例。
0.7,0.19。
2、学生先自由读一读,再抽读。
3、议一议:读小数时要注意什么?
4、教师根据学生的回答再归纳小结小数的读法,强调整数部分与小数部分读法的不同。
三、巩固新知。
1、同桌相互读数。(课堂活动第2题)。
2、练习十三第4题。
让学生独立看题后,再把自己从题中获得的信息告诉同桌或全班同学。
3、练习十三第5题。
教师先引导学生认识表格,并向学生简介表中一些名称的含义。
再让学生看表分组接龙游戏。
4、练习十三第6题学生自己看图写数,三人板演,集体订正。
5、指导练习。
(1)第9题。
教师:5.6与5.7之间相差多少?让学生数一数,5.6与5.7之间平均分成了多少份?从而认识到把0.1平均分成10份,即比0.1更小的计数单位是0.01。因此,第1小题应该填两位小数。
同理,比0.01更小的计数单位是0.001,第2小题应该填三位小数。
填完后,让学生说一说是怎样想的?
(2)第10题。
学生自己独立完成。明白每个小数位上的数代表着什么。
四、拓展提高。
1、练习十三第1、2、3、7、8题。
让学生独立完成,集体订正。
2、思考题:第12题用2,5和3个0写小数。
(1)1个0都不读出来的一位小数。
(2)3个0都读出来的小数。
让学生独立思考,完成后读一读。
3、课后作业:第11题和第13题。
回家请父母帮忙,与父母共同完成。
五、课后小结。
今天学习了什么?你有哪些收获?
板书设计:
0.7读作:零点七。
0.19读作:零点一九。
3.08读作:三点零八。
103.503读作:一百零三点五零三。
读整数部分时按整数读法来读,读小数部分时顺次读出每一个数位上的数字。
小数的意义教案篇十四
1.结合具体情境,掌握用“四舍五入法”求小数的近似数,会把较大的数改写成用“万”或“亿”作单位的数。
2.在学习小数意义和性质的过程中,培养探求知识的兴趣。
3.提高合作探索知识的能力。
用“四舍五入法”求小数的近似数。
启发引导、自主探究。
一、复习导入新课。
教师出示复习题,让学生板演。
372800、19000、725000000、844000000。
师生共同订正,点拨“四舍五入法”求近似数。
教师引导学生观察信息窗。
二、讲授新课。
1、教师提出问题:“测量同一个蛋的长度,为什么两个人的读数不一样呢?”给学生二分钟时间考虑。
一些学生可能看不出来,教师引导。
教师引导学生按照整数求近似数的方法——四舍五入,解决求小数近似数的问题。
2、教师出示数值“3.9423”让学生解决。
学生有的可能写出“3.94”。
有的可能写出“3.9”。
有的'可能写出“4”。
3、教师引导学生比较探究结果的不同,分组讨论,然后让学生回答。
4、教师和学生共同归纳总结:用“四舍五入”法求小数的近似数。
保留一位小数时,只看它的百分位上的数是大于5,还是小于5。如果大于或等于5,就向前一位进一,同时将百分位及百分位后面的数舍去;如果是小于5,就直接将百分位及百分位后面的数全部舍去。
5、教师引导学生分析总结:用“四舍五入法”求小数近似数应注意什么?
有的学生可能回答注意小数点;
有的学生可能回答注意别忘进位;
有的学生可能回答注意四舍五入……。
教师引导学生一起总结。
三、巩固运用。
教师让学生做自主练习第1—3题,用多种形式巩固求小数近似数的基本练习。(学生独立完成)。
四、点拨归纳。
教师归纳本课的所学的数学知识,点拨疑难点。(学生小组中充分交流)。
五、布置作业。
自主练习题4、5、题。
小数的意义教案篇十五
教材32页内容。
1、让学生通过动手操作理解小数的意义。
2、使学生理解和掌握小数的计数单位及相邻两个单位间的进率、
3、培养学生的观察、分析、推理能力、
每个学生空白正方形、平均分成了十份的正方形和平均分成了一百份的正方形纸各一张。
引导操作、观察分析、推理归纳。
1、三年级的时候我们认识了小数,同学们都记得吧?小数与我的生活息息相关,随处可见,请同学们说说生活中的小数。(课件出示)。
师:像这样的小数,还有很多,观察可以分类吗?
小数点后面有一个数字叫一位小数,小数点后面有两个数字叫两位小数,小数点后面有三个数字叫三位小数。
同学们,你们说了这么多,老师说几个,你们愿意吗?
师:板书:0.10.010.001。
1、如果我们用一张正方形表示1的话,请你估计一下,0.1该有多大,用手比划一下。请将你心目中的0.1在这张纸上用颜色涂出来。(电脑演示正方形纸、1)。
3、取出一张平均分成了十份的正方形,准确地表示出0.1。
4、请涂出其中的3份,涂色部分用小数怎样表示?用分数表示是(),0.3里面有多少个0.1,空白部分呢?(用小数表示,用分数表示)。
5、投影:阴影部分用小数怎样表示?有多少个0.1,空白部分呢?
观察得出:一位小数就表示十分之几(板书)。
6、想一想,1里面有()个0.1。
1、回顾一下,刚才我们是怎样得到0.1的?
2、你能在纸上表示出0.01吗?请你在格字图上表示出来(生取出平均分成一百份的正方形纸片)。说说你是怎么表示的?空白的部分呢?(电脑演示过程)。
3、请看老师这张图片,你想到了什么小数?
4、看到0.23,你还想到了什么小数。
6、观察得出:两位小数就表示百分之几(板书)。
通过0.1,0.01的教学,推理得出0.001的意义。
请你观察前两组的数,你有什么新的发现?(一位小数、十分之几,两位小数、百分之几,得出:三位小数、千分之几等等)。
1、小结:像这些用来表示十分之几、百分之几、千分之几……的数,我们把它叫做小数。
2、师:其中的一份,如十分之一、百分之一、千分之一,我们把它叫做计数单位,也可以写作0.1、0.01、0.001等等。如0.3的计数单位是0.1,它有3个0.1。0.25的计数单位有(),它有()个0.01。
3、电脑出示练习题。
小数的意义教案篇十六
师生交流后总结:认识了小数,知道了小数就是用来表示十分之几、百分之几、千分之几……的数。还认识了小数的计数单位,知道了相邻的'计数单位之间的进率是10。
(五)板书设计
小数的意义
分母是10、100、1000……的分数可以用小数表示。
每相邻两个计数单位间的进率是10。
小数的意义教案篇十七
1.知识与技能:结合具体情境,通过观察、操作等活动掌握小数的读写法,理解小数的意义。
2.过程与方法:经历探索小数意义的过程,了解小数在生活中的广泛应用。
3.情感目标:在探索交流的学习过程中,体验数学学习的乐趣。
理解小数的意义。
长方形、正方形的图片,多媒体课件等。
根据课程标准和教材内容,我将采用启发式教学法引导学生主动地进行观察、实验、猜测、验证、推理与交流。
动手实践、自主探索与合作交流成为学生学习的主要方式,促进学生的个性发展和能力提升。
为达成以上目标,突出重点,突破难点,我设计以下五个教学环节。
这一环节分两步,第一步观察情境,读写小数。
课件出示信息窗,引导学生观察,并提问:从图中你了解了哪些数学信息?学生观察图片,说出各种鸟蛋的质量,接着追问:你是怎样读写这些小数的?学生试着读写小数。教师随时订正学生读写小数的方法。因为学生已经学习过一位小数的读写方法,在此不必做过多讲解,放手让学生在读写的过程中总结出小数的读写方法,完成知识的迁移。
第二步根据信息,提出问题。
提问:根据这些信息,你能提出什么问题?学生可能提出:0.25千克中的0.25表示什么意思?0.365千克中的0.365表示什么意思?本环节的设计意图是创设问题情境,激发学生提出问题的兴趣。
。
这一环节分 两步,第一步认识两位小数的意义。
这一步分四个小环节,第1个小环节,首先引导学生选择需要解决的问题;要解决0.25表示什么意思,首先要弄清0.01表示什么?(板书0.25 0.01)
先请同学回答,学生应该知道0.1与1/10的关系,再让学生慢慢过渡到0.01与1/100的关系。
(师板书:0.1——1/10 0.01——1/100)
在正方形纸片上表示出0.25。
先让学生小组讨论,然后小组合作完成,全班交流。
教师引导学生明确0.25就是25/100,也就是25个1/100。
板书:0.25 25/100
第4个小环节,小组讨论:这些小数有什么共同特点?
让学生先小组交流,请不同的同学说出自己想法,再进行全班交流。
引导学生概括出两位小数表示的意义。
【设计意图】学生已经知道一个小数的意义,我们通过对一位小数意义的复习,过渡到对两位小数意义的学习,让学生在探索新知识的时候将数学知识串联起来。 第二步,认识三位小数的意义。
直接让学生口答,学生在两位小数的启发下,可以自然迁移到三位小数。
第二小步,教师多媒体出示大正方体塑料块动态平均分产生0.365的过程,引导学生理解0.365就是365个1/1000,也就是365/1000。
第三小步,多媒体出示0.305、0.360的阴影方块图,阴影部分表示什么? 请同学们看着多媒体的方块图数一数。
第四小步,引导学生概括出三位小数表示的意义。
【设计意图】学生在复习一位小数意义,学习二位小数意义之后,可以通过自学,自己探索发现三位小数的意义,这利于学生归纳,探究能力的发展。
学生寻找生活中的小数,并结合实际说出它们的意义。集体交流,师引导学生总结出小数的意义。从而知道:像0.1 、0.25 0.365这样表示十分之几、百分之几、千分之几的数,叫做小数。(并出示课题:小数的意义。)
我设计两个层次的练习,第一个“自主练习1”,这是练习十进分数与小数的关系,进一步理解小数的意义,通过完成练习,了解学生对小数意义的理解情况。
第二个是“自主练习2”,借助学具巩固小数的意义,学生用不同的方法表示出每个小数的意义,关注学生对小数意义的掌握情况。
【设计意图】自主练习题的设计,是为了让学生巩固今天所学的内容,将新学习的知识点都适当的安排习题,可以检测学生当堂学习的效果。
谈话:今天我们进一步认识了小数,你有什么收获,能和大家分享吗?
[设计意图]让学生分享学习成功的'喜悦,激发学生的积极性和求知欲,同时也为学生的后续学习总结了经验和方法。
为直观,简单,适合全班同学完成。
自主练习12题
这是思考题,对今天学习知识的实际应用,可以让感兴趣的同学进行练习。
小数的意义教案篇十八
1、借助计数器,掌握小数的数位。
2、根据小数的数位顺序表,能理解数位顺序表上的计数单位,以及进率关系。
3、结合具体情境,能抽象出小数的基本性质的具体内容,并能牢固掌握和灵活运用。
课件、计数器。
一、复习旧知,导入新课。
(课件出示)。
1、填空。
3写成小数是()。
660.56表示(),写成小数是()。
6780.625表示(),写成小数是()。
10000.4表示()。
2、读一读下面一段话中的小数。
北京地铁10号线列车的最高运行速度是80千米/时,约为22.222米/秒。
师揭题:今天这节课,我们首先要来研究小数“22.222”中每个数字的含义。(板书课题:小数的意义(三))。
二、动手操作,探究新知。
1、认识数位。
出示计数器,师问:这个计数器有什么特点?
学生观察后汇报。
师小结并引导学生拨数:同学们的观察都非常仔细,。百位、十位、个位、十分位、百分位、千分位。都是小数的数位。小数点的左边依次是个位、十位、百位。右边依次是十分位、百分位、千分位。那你们能在这个计数器上拨出“22.222”吗?学生尝试在计数器上拨数,师指名上台演示。
课件出示拨数情况,引导学生认识:
“22.222”中有5个“2”,这5个“2”所表示的意义是不同的'。小数点右边第一1个“2”在十分位上,它表示2个0.1.
师提问:小数点右边第2个“2”在百分位上,它表示2个。
师追问:说得很有道理,那最后一个“2”在什么位置,表示多少呢?
师引导学生再次思考:小数点左边两个2分别表示多少?
学生先独立思考,再小组内交流,最后集体汇报。
2、认识计数单位及计数单位之间的进率。
师引导思考:整数的数位顺序表是个位、十位、百位。,那么小数的数位顺序是怎样的呢?
课件出示小数的数位顺序表,介绍数位名称及对应的计数单位:
小数点右边第一位是十分位,计数单位是十分之一(0.1);
小数点右边第二位是百分位,计数单位是百分之一(0.01);
小数点右边第三位是千分位,计数单位是千分之一(0.001);
小数点右边第四位是万分位,计数单位是万分之一(0.0001);
学生讨论后汇报交流,师生共同总结:
相同点:相邻计数单位间的进率都是10。
不同点:整数部分在小数点的左边,数位顺序是从右往左依次排列,计数单位由小到大,只有最小的计算单位——1,没有最大的计算单位;而小数部分在小数点的右边,从左往右依次排列,计数单位由大到小,没有最小的计数单位,只有最大的计数单位——0.1。
师强调:小数的半数单位也是“满十进1”,引导学生观察教材第6页“看一看,说一说”的图片,进而发现:10个0.1元是1元;10个0.01元是0.1元,再次明确小数的计数单位是“满十进1”。
三、巩固运用,拓展提升。
引导学生讨论后交流汇报。
2、出示教材第7页“试一试”情境二:涂一涂,你发现了什么?
让学生自主涂色,并汇报:0.6和0.60一样大。
师提问:哪位同学能够运用我们学过的数位和计数单位的相关知识来解释一下为什么0.6和0.60一样大?师归纳小结小数的基本性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
3、即时练习。
课件出示题目:下面的数中哪些“0”可以去掉?哪些“0”不能去掉?
3.20、3.09、6.06、50.44、5.700、200.04。
四、课堂小结。
通过这节课的学习,我们学会了哪些知识?
【本文地址:http://www.xuefen.com.cn/zuowen/14267223.html】