教案的编写是教师教学的重要环节,它能够帮助教师更好地组织教学过程,提高教学效果。那么我们该如何撰写一个高质量的教案呢?首先,我们要明确教学目标和要求,合理设置教学步骤和时间分配;其次,我们要精心设计教学活动和方法,注重培养学生的主动参与和自主学习能力;最后,我们要合理选用教具和教材,做好课前准备工作。这些教案范文是经过教师实际教学实践检验过的,可信度较高。
高中数学二次函数有哪些教案篇一
老师讲课认真听讲,不会的问题及时标记。在课堂上,做一个好学生,认真听讲,对于老师讲的问题及时记录,进行相应的标记,在下课的时候,及时询问老师,早日解决问题。
一定要课前预习一下知识点。在上课前或平时闲暇时间,一定要注意课下多多预习,预习比复习更加重要,真的很重要,关乎到课堂的思维能力的转变,多多看看,对自己的理解有帮助。
课上要学会学习,记笔记,也要记住老师讲的知识点。课堂上,自己要活跃一点,带给老师感觉,让老师对你有印象,便于日后学习高中数学,与老师探讨学习方法,记笔记,记住讲的重点。
多做一些比较普通而又常出的问题,来熟悉自己学的知识。在课下的时候,自己找出适合自己做的题,在做题中找出适合自己的题目,来进行做和学,总有一份题目适合自己做,便会更熟悉自己学的知识。
学会总结本节课的知识点,重点,做一个学会学习的人。及时总结所学的知识点,做一个学好习的人,让自己的心中有着大致的思路,能够解答出老师的,这便是可以了。
建立一个记错本,错误的题记录到本子上。将自己以前做过的错题,及时的整理出来,并且能够及时的回顾,便于日后在本子上学习到知识,能够复习到自己以前错过的题。
与老师经常交流学习方法,总有一个适合你。多多的与老师交流,给老师留下一个好印象,便于自己和老师更深入的交流学习,及时的询问一下高中数学的学习方法,总有一个适合自己。
高中数学二次函数有哪些教案篇二
《考试说明》和《考纲》是每位考生必须熟悉的最权威最准确的高考信息,通过研究应明确“考什么”、“考多难”、“怎样考”这三个问题。
命题通常注意试题背景,强调数学思想,注重数学应用;试题强调问题性、启发性,突出基础性;重视通性通法,淡化特殊技巧,凸显数学的问题思考;强化主干知识;关注知识点的衔接,考察创新意识。
《考纲》明确指出“创新意识是理性思维的高层次表现”。因此试题都比较新颖活泼。所以复习中你就要加强对新题型的练习,揭示问题的本质,创造性地解决问题。
2.多维审视知识结构。
高考数学试题一直注重对思维方法的考查,数学思维和方法是数学知识在更高层次上的抽象和概括。知识是思维能力的载体,因此通过对知识的考察达到考察数学思维的目的。你需要建立各部分内容的知识网络;全面、准确地把握概念,在理解的基础上加强记忆;加强对易错、易混知识的梳理;要多角度、多方位地去理解问题的实质;体会数学思想和解题的方法。
3.把答案盖住看例题。
参考书上例题不能看一下就过去了,因为看时往往觉得什么都懂,其实自己并没有理解透彻。所以,在看例题时,把解答盖住,自己去做,做完或做不出时再去看,这时要想一想,自己做的与解答哪里不同,哪里没想到,该注意什么,哪一种方法更好,还有没有另外的解法。经过上面的`训练,自己的思维空间扩展了,看问题也全面了。如果把题目的来源搞清了,在题后加上几个批注,说明此题的“题眼”及巧妙之处,收益将更大。
4.研究每题都考什么。
数学能力的提高离不开做题,“熟能生巧”这个简单的道理大家都懂。但做题不是搞题海战术,要通过一题联想到多题。你需要着重研究解题的思维过程,弄清基本数学知识和基本数学思想在解题中的意义和作用,研究运用不同的思维方法解决同一数学问题的多条途径,在分析解决问题的过程中既构建知识的横向联系又养成多角度思考问题的习惯。
与其一节课抓紧时间大汗淋淋地做二、三十道考查思路重复的题,不如深入透彻地掌握一道典型题。例如深入理解一个概念的多种内涵,对一个典型题,尽力做到从多条思路用多种方法处理,即一题多解;对具有共性的问题要努力摸索规律,即多题一解;不断改变题目的条件,从各个侧面去检验自己的知识,即一题多变。习题的价值不在于做对、做会,而在于你明白了这道题想考你什么。
5.答题少费时多办事。
解题上要抓好三个字:数,式,形;阅读、审题和表述上要实现数学的三种语言自如转化(文字语言、符号语言、图形语言)。要重视和加强选择题的训练和研究。不能仅仅满足于答案正确,还要学会优化解题过程,追求解题质量,少费时,多办事,以赢得足够的时间思考解答高档题。要不断积累解选择题的经验,尽可能小题小做,除直接法外,还要灵活运用特殊值法、排除法、检验法、数形结合法、估计法来解题。在做解答题时,书写要简明、扼要、规范,不要“小题大做”,只要写出“得分点”即可。
6.错一次反思一次。
每次考试或多或少会发生一些错误,这并不可怕,要紧的是避免类似的错误在今后的考试中重现。
因此平时要注意把错题记下来,做错题笔记包括三个方面:
(1)记下错误是什么,最好用红笔划出。
(2)错误原因是什么,从审题、题目归类、重现知识和找出答案四个环节来分析。
(3)错误纠正方法及注意事项。根据错误原因的分析提出纠正方法并提醒自己下次碰到类似的情况应注意些什么。你若能将每次考试或练习中出现的错误记录下来分析,并尽力保证在下次考试时不发生同样错误,那么在高考时发生错误的概率就会大大减少。
7.分析试卷总结经验。
每次考试结束试卷发下来,要认真分析得失,总结经验教训。特别是将试卷中出现的错误进行分类。
(1)遗憾之错。就是分明会做,反而做错了的题。
(2)似非之错。记忆不准确,理解不够透彻,应用不够自如;回答不严密不完整等等。
(3)无为之错。由于不会答错了或猜错了,或者根本没有作答,这是无思路、不理解,更谈不上应用的问题。原因找到后就尽早消除遗憾、弄懂似非、力争有为。切实解决“会而不对、对而不全”的老大难问题。
8.优秀是一种习惯。
柏拉图说:“优秀是一种习惯”。好的习惯终生受益,不好的习惯终生后悔、吃亏。如“审题之错”是否出在急于求成?可采取“一慢一快”战术,即审题要慢,要看清楚,步骤要到位,动作要快,步步为营,稳中求快,立足于一次成功,不要养成唯恐做不完,匆匆忙忙抢着做,寄希望于检查的坏习惯。
高中数学二次函数有哪些教案篇三
选择题因其答案是四选一,必然只有一个正确答案,那么我们就可以采用排除法,从四个选项中排除掉易于判断是错误的答案,那么留下的一个自然就是正确的答案。
即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。用特殊值法解题要注意所选取的值要符合条件,且易于计算。
这类方法在近年来的初中题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。
有些选择题本身就是由一些填空题、判断题、解答题改编而来的,因此往往可采用直接法,直接由从题目的条件出发,通过正确的运算或推理,直接求得结论,再与选择项对照来确定选择项。我们在做解答题时大部分都是采用这种方法。
要求某个函数关系式,可先假设待定系数,然后根据题意列出方程(组),通过解方程(组),求得待定系数,从而确定函数关系式,这种方法叫待定系数法。
当某个数学问题涉及到相关多乃至无穷多的情形,头绪纷乱很难下手时,行之有效的方法是通过对若干简单情形进行考查,从中找出一般规律,求得问题的解决。
高中数学二次函数有哪些教案篇四
1、中考数学试题的新颖性、灵活性越来越强。
不少师生把主要精力放在难度较大的综合题上,认为只有通过解决难题才能培养能力,因而相对地忽视了基础知识、基本技能、基本方法的复习。复习中首先给出概念、公式、定理,然后讲几道例题,就通过大量的题目来训练。其实定理、公式推证的过程就蕴含着重要的解题方法和规律,教师没有充分暴露思维过程,没有发掘其内在的规律就去做题,试图通过大量地做题去“悟”出某些道理。结果是“悟”不出方法、规律,理解肤浅,记忆不牢,只会机械地模仿,思维水平较低,有时甚至生搬硬套,照葫芦画瓢,将简单问题复杂化,从而造成失分。
2、以课本为主,从教科书中寻找中考题的“影子”。
许多试题的构成是在教科书中的例题、习题的基础上通过类比、加工改造、加强条件或减弱条件、延伸或扩展而成的,所以在复习的第一阶段,应以新课程标准为依据,以教科书为蓝本进行基础知识的复习。
3、突出复习的特点。
从复习安排上来看,搞好基础知识的复习主要依赖于系统的复习,在每一个章节复习中,为了有效地使学生弄清知识的结构,应让学生按照自己的实际查漏补缺,有目的地自由复习。然后让学生通过恰当的训练,加强对概念的理解、结论的掌握、方法的运用和能力的提高。进而达到培养学生的抽象思维能力。
4、梳理知识,加强变式训练。
中考命题是“依据课标,紧扣课本”的,试卷中的.许多题目是以课本中的例题和习题为例加以变化而来的。因此无论什么复习资料都不能代替教材,只有认真地复习教材中的基础知识,掌握基本技能,同时对课本的典型题目做一些变式练习,才能灵活掌握双基,中考中才能正确解答试题。在进行双基复习时,要对课本知识进行梳理,重点知识在梳理中同时加强变式训练,常用辅助。
教学。
方法,常用辅助线进行整理,以求熟练掌握。
5、理清脉络抓基础。
复习中要紧扣教材,夯实基础,以基础题型的复习和基本数学思想、数学方法等的训练为主,穿插少量的综合复习,同时关注新学的知识,对课本知识进行系统梳理,形成知识网络,对典型问题进行变式训练,达到举一反三触类旁通的目的,做到以不变应万变,提高应试能力。
6、分别对待各有侧重。
学习拔尖的学生,在复习中不妨加强习题训练,在解题过程中注重逻辑关系。另外还要针对知识点的难易程度,在中考中所占的比例,有区别、侧重的重点复习。同时,有目的地进行纠错训练,分析易错问题。
高中数学二次函数有哪些教案篇五
通过学生的讨论,使学生更清楚以下事实:
(1)分解因式与整式的乘法是一种互逆关系;。
(2)分解因式的结果要以积的形式表示;。
(3)每个因式必须是整式,且每个因式的次数都必须低于原来的多项式的次数;。
(4)必须分解到每个多项式不能再分解为止。
活动5:应用新知。
例题学习:
p166例1、例2(略)。
在教师的引导下,学生应用提公因式法共同完成例题。
让学生进一步理解提公因式法进行因式分解。
活动6:课堂练习。
1.p167练习;。
2.看谁连得准。
x2-y2(x+1)2。
9-25x2y(x-y)。
x2+2x+1(3-5x)(3+5x)。
xy-y2(x+y)(x-y)。
3.下列哪些变形是因式分解,为什么?
(1)(a+3)(a-3)=a2-9。
(2)a2-4=(a+2)(a-2)。
(3)a2-b2+1=(a+b)(a-b)+1。
(4)2πr+2πr=2π(r+r)。
学生自主完成练习。
通过学生的反馈练习,使教师能全面了解学生对因式分解意义的理解是否到位,以便教师能及时地进行查缺补漏。
活动7:课堂小结。
从今天的课程中,你学到了哪些知识?掌握了哪些方法?明白了哪些道理?
学生发言。
通过学生的回顾与反思,强化学生对因式分解意义的理解,进一步清楚地了解分解因式与整式的乘法的互逆关系,加深对类比的数学思想的理解。
活动8:课后作业。
课本p170习题的第1、4大题。
学生自主完成。
通过作业的巩固对因式分解,特别是提公因式法理解并学会应用。
板书设计(需要一直留在黑板上主板书)。
15.4.1提公因式法例题。
1.因式分解的定义。
2.提公因式法。
高中数学二次函数有哪些教案篇六
一、教材分析:
《34.4二次函数的应用》选自义务教育课程标准试验教科书《数学》(冀教版)九年级上册第三十四章第四节,这节课是在学生学习了二次函数的概念、图象及性质的基础上,让学生继续探索二次函数与一元二次方程的关系,教材通过小球飞行这样的实际情境,创设三个问题,这三个问题对应了一元二次方程有两个不等实根、有两个相等实根、没有实根的三种情况。这样,学生结合问题实际意义就能对二次函数与一元二次方程的关系有很好的体会;从而得出用二次函数的图象求一元二次方程的方法。这也突出了课标的要求:注重知识与实际问题的联系。
本节教学时间安排1课时。
二、教学目标:
知识技能:
1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.
2.理解抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.
3.能够利用二次函数的图象求一元二次方程的近似根。
数学思考:
1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神.
2.经历用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验.
3.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想。
解决问题:
1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。
2.通过利用二次函数的图象估计一元二次方程的根,进一步掌握二次函数图象与x轴的交点坐标和一元二次方程的根的关系,提高估算能力。
情感态度:
1.从学生感兴趣的问题入手,让学生亲自体会学习数学的价值,从而提高学生学习数学的好奇心和求知欲。
2.通过学生共同观察和讨论,培养大家的合作交流意识。
三、教学重点、难点:
教学重点:
1.体会方程与函数之间的联系。
2.能够利用二次函数的图象求一元二次方程的近似根。
教学难点:
1.探索方程与函数之间关系的过程。
2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。
四、教学方法:启发引导合作交流。
五:教具、学具:课件。
六、教学过程:
[活动1]检查预习引出课题。
预习作业:
1.解方程:(1)x2+x-2=0;(2)x2-6x+9=0;(3)x2-x+1=0;(4)x2-2x-2=0.
2.回顾一次函数与一元一次方程的关系,利用函数的图象求方程3x-4=0的解.
师生行为:教师展示预习作业的内容,指名回答,师生共同回顾旧知,教师做出适当总结和评价。
教师重点关注:学生回答问题结论准确性,能否把前后知识联系起来,2题的格式要规范。
设计意图:这两道预习题目是对旧知识的回顾,为本课的教学起到铺垫的作用,1题中的三个方程是课本中观察栏目中的三个函数式的变式,这三个方程把二次方程的根的三种情况体现出来,让学生回顾二次方程的相关知识;2题是一次函数与一元一次方程的关系的问题,这题的设计是让学生用学过的熟悉的知识类比探究本课新知识。
[活动2]创设情境探究新知。
问题。
1.课本p94问题.
3.结合预习题1,完成课本p94观察中的题目。
师生行为:教师提出问题1,给学生独立思考的时间,教师可适当引导,对学生的解题思路和格式进行梳理和规范;问题2学生独立思考指名回答,注重数形结合思想的渗透;问题3是由学生分组探究的,这个问题的探究稍有难度,活动中教师要深入到各个小组中进行点拨,引导学生总结归纳出正确结论。
教师重点关注:
1.学生能否把实际问题准确地转化为数学问题;。
2.学生在思考问题时能否注重数形结合思想的应用;。
3.学生在探究问题的过程中,能否经历独立思考、认真倾听、获得信息、梳理归纳的过程,使解决问题的方法更准确。
设计意图:由现实中的实际问题入手给学生创设熟悉的问题情境,促使学生能积极地参与到数学活动中去,体会二次函数与实际问题的关系;学生通过小组合作分析、交流,探求二次函数与一元二次方程的关系,培养学生的合作精神,积累学习经验。
[活动3]例题学习巩固提高。
问题。
例利用函数图象求方程x2-2x-2=0的实数根(精确到0.1).
师生行为:教师提出问题,引导学生根据预习题2独立完成,师生互相订正。
教师关注:(1)学生在解题过程中格式是否规范;(2)学生所画图象是否准确,估算方法是否得当。
设计意图:通过预习题2的铺垫,同学们已经从旧知识中寻找到新知识的生长点,很容易明确例题的解题思路和方法,这样既降低难点且突出重点。
[活动4]练习反馈巩固新知。
高中数学二次函数有哪些教案篇七
3.能够综合运用各种法则求函数的导数.。
函数的和、差、积、商的求导法则的推导与应用.。
1.问题情境.。
(1)常见函数的导数公式:(默写)。
(2)求下列函数的`导数:;;.。
(3)由定义求导数的基本步骤(三步法).。
2.探究活动.。
例1求的导数.。
思考已知,怎样求呢?
函数的和差积商的导数求导法则:
练习课本p22练习1~5题.。
点评:正确运用函数的四则运算的求导法则.。
函数的和差积商的导数求导法则.。
1.见课本p26习题1.2第1,2,5~7题.。
高中数学二次函数有哪些教案篇八
1、先做简单题,后做难题。
2、遇到较难的大题,把所有跟该题有关的知识点都写出来,要知道数学讲究步骤分。
3、若是证明题,万一不会,可以先写出已知条件,再写出要证明的最后一步,再一步一步往上推,中间步骤随便写点。(使用于粗心的教师,但我们不提倡,重点是要平时学好)。
一、整体把握、抓大放小。
拿到试卷后可以先快速浏览一下所有题目,根据积累的考试经验,大致估计一下每部分应该分配的时间。对于能够很快做出来的.题目,一定要拿到应得的分数。
二、确定每部分的答题时间。
1、考试时占用了很多时间却一点也没有做出来的题目。对于这类题目,你以后考试时就应该尽量减少时间,或者放弃,等以后学习进阶了再尝试着做。
2、考试时花了过多的时间才做出来的题目。对于这类题目,你以后平时做题时要尽量加快速度,或者通过“反复训练”等提高反应速度,这样,你下次考试时能用较少的时间做出来。
三、碰到难题时。
1、你可以先用“直觉”最快的找到解题思路;。
2、如果“直觉”不管用,你可以联想以前做过的类似的题目,从而找到解题思路;。
3、如果这样也不行,你可以猜测一下这道题目可能涉及到的知识点和解题技巧。
4、对于花了一定时间仍然不能做出来的题目,要勇于放弃。
四、卷面整洁、字迹清楚、注意小节。
做到卷面整洁、字迹清楚,把标点、符号、解题步骤等小的地方尽量做好,不要丢掉应得的每一分。
高中数学二次函数有哪些教案篇九
二、立足课堂,提高效率:做到教师入题海,学生出题海.教师应多做题、多研究近几年的中考试题,并根据本班学生的实际情况,从众多复习资料中,选择适合本班学生的最佳练习,也可通过对题目的重组。
三、教师在设计教学目标时,要做到胸中有书,目中有人,让每一节课都给学生留有时间,让他们有独立思考、合作探究交流的过程,最大限度的调动学生的参与度,激发他们的学习兴趣,达到最佳的复习效果.
四、激发兴趣,提高质量:兴趣是学习最好的动力,在上复习课时尤为重要.因此,我们在授课的过程中,在关注知识复习的同时,也要关注学生的学习欲望和学习效果,要让学生在学习的过程中体验成功的快感.这样他们才会更有兴趣的学习下去.
高中数学二次函数有哪些教案篇十
会运用图象判断单调性;理解函数的单调性,能判断或证明一些简单函数单调性;注意必须在定义域内或其子集内讨论函数的单调性。
重点。
难点。
一、复习引入。
1、函数的定义域、值域、图象、表示方法。
(1)单调增函数。
(2)单调减函数。
(3)单调区间。
二、例题分析。
例
1、画出下列函数图象,并写出单调区间:
(1)(2)(2)。
例
2、求证:函数在区间上是单调增函数。
例
3、讨论函数的单调性,并证明你的结论。
变(1)讨论函数的单调性,并证明你的结论。
变(2)讨论函数的单调性,并证明你的结论。
例
三、随堂练习。
1、判断下列说法正确的是。
(1)若定义在上的函数满足,则函数是上的单调增函数;。
(2)若定义在上的函数满足,则函数在上不是单调减函数;。
(4)若定义在上的函数在区间上是单调增函数,在区间上也是单调增函数,则函数是上的单调增函数。
2、若一次函数在上是单调减函数,则点在直角坐标平面的()。
a.上半平面b.下半平面c.左半平面d.右半平面。
3、函数在上是______;函数在上是_______。
3.下图分别为函数和的图象,求函数和的单调增区间。
4、求证:函数是定义域上的单调减函数。
四、回顾小结。
课后作业。
一、基础题。
(1)(2)。
2、画函数的图象,并写出单调区间。
二、提高题。
3、求证:函数在上是单调增函数。
4、若函数,求函数的单调区间。
5、若函数在上是增函数,在上是减函数,试比较与的大小。
三、能力题。
6、已知函数,试讨论函数f(x)在区间上的单调性。
变(1)已知函数,试讨论函数f(x)在区间上的单调性。
高中数学二次函数有哪些教案篇十一
1.质疑问难是学生自主学习的重要表现,优化课堂结构,激活学生的主体意识,必须鼓励学生质疑问难。教师要创造和谐融合的课堂气氛,允许学生随时“插嘴”、提问、争辩,甚至提出与教师不同的看法。
2.二次函数是初中阶段继一次函数、反比例函数之后,学生要学习的最后一类重要的代数函数,它也是描述现实世界变量之间关系的重要的数学模型。
3.学生有疑而问、质疑问难,是用心思考、自主学习、主动探究的可贵表现,理应得到老师的热情鼓励和赞扬。现在对学生的随时“插嘴”,提出的各种疑难问题,应抱欢迎、鼓励的态度给与肯定,并做出正确的解释。
4.初中阶段主要研究二次函数的概念、图像和性质,用二次函数的观点审视一元二次方程,用二次函数的相关知识分析和解决简单的实际问题。
高中数学二次函数有哪些教案篇十二
1.经历探索二次函数y=ax2的图象的作法和性质的过程,获得利用图象研究函数性质的经验。
2.能够利用描点法作出函数y=ax2的图象,并能根据图象认识和理解二次函数y=ax2的性质,初步建立二次函数表达式与图象之间的联系。
3.能根据二次函数y=ax2的图象,探索二次函数的性质(开口方向、对称轴、顶点坐标)。
教学重点:二次函数y=ax2的图象的作法和性质。
教学难点:建立二次函数表达式与图象之间的联系。
教学方法:自主探索,数形结合。
利用具体的二次函数图象讨论二次函数y=ax2的性质时,应尽可能多地运用小组活动的形式,通过学生之间的合作与交流,进行图象和图象之间的比较,表达式和表达式之间的比较,建立图象和表达式之间的联系,以达到学生对二次函数性质的真正理解。
一、认知准备:
1.正比例函数、一次函数、反比例函数的图象分别是什么?
2.画函数图象的方法和步骤是什么?(学生口答)。
你会作二次函数y=ax2的图象吗?你想直观地了解它的性质吗?本节课我们一起探索。
二、新授:
(一)动手实践:作二次函数y=x2和y=-x2的图象。
(同桌二人,南边作二次函数y=x2的图象,北边作二次函数y=-x2的图象,两名学生黑板完成)。
(二)对照黑板图象议一议:(先由学生独立思考,再小组交流)。
1.你能描述该图象的形状吗?
2.该图象与x轴有公共点吗?如果有公共点坐标是什么?
3.当x0时,随着x的增大,y如何变化?当x0时呢?
4.当x取什么值时,y值最小?最小值是什么?你是如何知道的?
5.该图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点。
(三)学生交流:
1.交流上面的五个问题(由问题1引出抛物线的概念,由问题2引出抛物线的顶点)。
2.二次函数y=x2和y=-x2的图象有哪些相同点和不同点?
3.教师出示同一直角坐标系中的两个函数y=x2和y=-x2图象,根据图象回答:
(1)二次函数y=x2和y=-x2的图象关于哪条直线对称?
(2)两个图象关于哪个点对称?
(3)由y=x2的图象如何得到y=-x2的图象?
(四)动手做一做:
1.作出函数y=2x2和y=-2x2的图象。
(同桌二人,南边作二次函数y=-2x2的图象,北边作二次函数y=2x2的图象,两名学生黑板完成)。
2.对照黑板图象,数形结合,研讨性质:
(1)你能说出二次函数y=2x2具有哪些性质吗?
(2)你能说出二次函数y=-2x2具有哪些性质吗?
(3)你能发现二次函数y=ax2的图象有什么性质吗?
(学生分小组活动,交流各自的发现)。
3.师生归纳总结二次函数y=ax2的图象及性质:
(2)性质。
a:开口方向:a0,抛物线开口向上,a〈0,抛物线开口向下[。
b:顶点坐标是(0,0)。
c:对称轴是y轴。
d:最值:a0,当x=0时,y的最小值=0,a〈0,当x=0时,y的最大值=0。
e:增减性:a0时,在对称轴的左侧(x0),y随x的增大而减小,在对称轴的右侧(x0),y随x的增大而增大,a〈0时,在对称轴的左侧(x0),y随x的增大而增大,在对称轴的右侧(x0),y随x的增大而减小。
4.应用:(1)说出二次函数y=1/3x2和y=-5x2有哪些性质。
(2)说出二次函数y=4x2和y=-1/4x2有哪些相同点和不同点?
三、小结:
通过本节课学习,你有哪些收获?(学生小结)。
1.会画二次函数y=ax2的图象,知道它的图象是一条抛物线。
2.知道二次函数y=ax2的性质:
a:开口方向:a0,抛物线开口向上,a〈0,抛物线开口向下。
b:顶点坐标是(0,0)。
c:对称轴是y轴。
d:最值:a0,当x=0时,y的最小值=0,a〈0,当x=0时,y的最大值=0。
e:增减性:a0时,在对称轴的左侧(x0=,y随x的增大而减小,在对称轴的右侧(x0),y随x的增大而增大,a〈0时,在对称轴的左侧(x0),y随x的增大而增大,在对称轴的右侧(x0),y随x的增大而减小。
高中数学二次函数有哪些教案篇十三
教材分析:
幂函数作为一类重要的函数模型,是学生在系统地学习了指数函数、对数函数之后研究的又一类基本的初等函数。?幂函数模型在生活中是比较常见的,学习时结合生活中的具体实例来引出常见的幂函数?.组织学生画出他们的图象,根据图象观察、总结这几个常见幂函数的性质。对于幂函数,只需重点掌握?这五个函数的图象和性质。学习中学生容易将幂函数和指数函数混淆,因此在引出幂函数的概念之后,可以组织学生对两类不同函数的表达式进行辨析。学生已经有了学习幂函数和对象函数的学习经历,这为学习幂函数做好了方法上的准备。因此,学习过程中,引入幂函数的概念之后,尝试放手让学生自己进行合作探究学习。
课时分配1课时。
教学目标。
重点:从五个具体的幂函数中认识的概念和性质。
难点:从幂函数的图象中概括其性质,据幂函数的单调性比较两个同指数的指数式的大小。
知识点:幂函数的定义、五个幂函数图象特征。
能力点:通过具体实例了解幂函数的图象和性质,并能进行简单的应用。
自主探究点:通过作图归纳总结幂函数的相关性质。
考试点:了解幂函数的概念,
结合函数的图象了解它们的变化情况。
易错易混点:学生容易将幂函数和指数函数混淆。
拓展点:通过指数函数的图象性质研究幂函数指数的变化。
教具准备:多媒体辅助教学。
课堂模式:导学案。
一、引入新课。
(一)回顾引入。
【师生互动】师:数学的内在美常常让我感动,下面我们共同来欣赏运算的完美性,
思考:由8、2、3、这四个数,运用数学符号可组成哪些等式?
生:探讨,交流。
师生共同分析:
师:我们知道对于等式。
1.如果一定,随着的变化而变化,我们建立了指数函数。
2.如果一定,随着的变化而变化,我们建立了对数函数。
设想:如果一定,随着的变化而变化,是不是也可以确定一个函数呢?
【设计说明】使学生回忆所学两个基本初等函数,为所要学习的幂函数作铺垫。
(二)观察下列对象:
问题(1):如果张红购买了每千克1元的蔬菜千克,那么她需要付的钱数=元,
问题(2):如果正方形的边长为,那么正方形的面是=。
问题3):如果正方体的边长为,那么正方体的体积是=。
问题(4):如果正方形场地面积为,那么正方形的边长=。
问题(5):如果某人s内骑车行进了1km,那么他骑车的平均速度=。
【师生互动】师:(1)它们的对应法则分别是什么?
(2)以上问题中的函数有什么共同特征?
让学生独立思考后交流,引导学生概括出结论。
生:(1)乘以1(2)求平方(3)求立方。
(4)求算术平方根(5)求-1次方。
师:上述的问题涉及到的函数,都是形如:,其中是自变量,是常数。
师生:共同辨析这种新函数与指数函数的异同。
二、探究新知。
组织探究。
1.幂函数的定义。
一般地,形如(r)的函数称为幂函数,其中是自变量,是常数。
如等都是幂函数,幂函数与指数函数,对数函数一样,都是基本初等函数。
【师生互动】师:1.幂函数的定义来自于实践,它同指数函数、对数函数一样,也是基本初等函数,同样也是一种“形式定义”的函数,引导学生注意辨析。
2.研究函数的图像。
(1)(2)(3)。
(4)(5)。
生:利用所学知识和方法尝试作出五个具体幂函数的图象,观察所作图象,体会幂函数的变化规律。
师:引导学生应用函数的性质画图象,如:定义域、奇偶性。
师生共同分析:强调画图象易犯的错误。
【设计意图】(1)通过具体作图,可使学生加深对图象的直观印象,记忆比较牢固;同时也提高了学生数形结合的思维能力;(2)符合学生的认知规律,由特殊到一般,从具体到抽象;(3)充分发挥学生学习的能动性,以学生为主体,展开课堂教学。
【师生互动】师:引导学生观察图象,归纳概括幂函数的的性质及图象变化规律。
生:观察图象,分组讨论,探究幂函数的性质和图象的变化规律,并展示各自的结论进行交流评析,并填表。
定义域值域奇偶性单调性定点。
师生共同分析幂函数性质:
(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1);。
高中数学二次函数有哪些教案篇十四
今天我说课的课题是二次函数图像及其性质。下面我将从以下几个方面进行阐述:
首先,我对本节教材进行简要分析。
本节内容是人民教育出版的九年级数学课程标准实验教科书《数学》第二册第二十七章第二节第三课时,属于数与代数领域的知识。在此之前,学生已学习了二次函数的概念和二次函数的图像及其性质。本节内容是对二次函数图像及其性质的相关知识的复习总结和综合运用,是后续研究二次函数图像的变换的基础。二次函数在初中函数的教学中有重要地位,它不仅是初中代数内容的引申,也是初中数学教学的重点和难点之一,更为高中学习一元二次不等式和圆锥曲线奠定基础。
本节课中的教学重点是梳理所学过的二次函数及其性质的相关内容,建构符合学生认知结构的知识体系,教学难点是运用数形结合的思想,选用恰当的数学关系式解决二次函数的问题,以及把实际问题转化成二次函数问题并利用二次函数的性质来解决。
基于以上对教材的认识,根据数学课程标准,考虑到学生已有的认知结构与心理特征,制定如下的教学目标。
【知识与技能】:
了解二次函数解析式的二种表示方法,会用配方法转化二次函数的表示形式;
会用描点法画出二次函数的图象,能从图象上认识二次函数的性质;
会根据公式确定抛物线的顶点坐标、开口方向、对称轴以及抛物线与坐标轴的交点坐标。
【过程与方法】:
3、数学的思想方法去观察、研究和解决实际问题,体验数学建模的思想。培养学生运用二次函数图像及其性质的相关知识解决数学综合题和实际问题的能力。
【情感与态度目标】:
在数学教学中渗透美的教育,让学生感受二次函数图像的对称之美,激发学生的学习兴趣。运用二次函数解决实际问题,使学生进一步认识到数学源于生活,用于生活的辩证观点。
为突出重点、突破难点、抓住关键,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈设计思路。
教法选择与教学手段:基于本节课的特点是复习总结所学过的知识及其综合运用,应着重采用复习与总结的教学方法与手段,即利用任务驱动进行复习总结,构建二次函数图像及其性质的综合化、网络化、结构化。通过提问思考、归纳总结、综合运用等形式对二次函数图像及其性质的相关知识和基本解题方法进行有针对性的、系统性的、综合性的教学。复习课例题教学的模式为学生思考,教师分析,解题小结三个环节。
学法指导:让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和解决问题的能力。
最后,我来具体谈一谈本节课的教学过程。
(一)由任务导引相关回忆。
为对二次函数图像及其性质的相关知识进行重构做准备。通过两题练习回忆复习二次函数图像及其性质的相关知识。第一题用配方法把二次函数的一般式化为顶点式的形式,并指出开口方向,对称轴和顶点坐标,引导学生复习回忆,了解二次函数解析式的二种表示方法,掌握用配方法转化二次函数的表示形式,会根据公式确定抛物线的顶点坐标、开口方向、对称轴。第二题用描点法画出二次函数的图象,并说出为何值时随增大而增大,为何值时,随增大而减小,引导学生掌握用描点法画出二次函数的图象,能从图象上认识二次函数的性质。
运用联想、概括方法对二次函数图像及其性质的相关知识进行梳理,由以上练习引导学生回忆、理解二次函数图像及其性质的相关知识,并形成相关的知识结构体系。通过知识回顾帮助学生梳理有关知识点,二次函数的定义、解析式的形式、图像画法、图像及其性质。
通过对二次函数图像及其性质的相关知识的复习,让学生运用相关概念、性质进行解题,采用学生思考,教师分析,解题小结三个环节构成的练习题讲解模式,巩固求解二次函数图像及其性质的基本题目的一般解题方法,并进一步研究二次函数图像及其性质的应用。第五题及第六题是运用二次函数图像及其性质的相关知识解决实际问题,领悟数形结合的思想方法,发展学生的化归迁移的数学思维,培养学生的转化能力。
(四)反思概括,方法总结。
总结本节课的知识点、重点和难点,着重理解二次函数图像及其性质的相关知识和基本解题方法,领悟数形结合的数学思想方法,学会用化归思想,解决实际问题。培养学生由题及法,由法及类的数学总结归纳方法。
(五)作业。
课后通过练习来巩固本节课所复习的知识点、重点和难点,强化教学目标。
各位老师,以上所说只是我预设的一种方案,但课堂上是千变万化的,会随着学生和教师的灵性发挥而随机生成的,预设效果如何,最终还有待于课堂教学实践的检验。
本说课一定存在诸多不足,恳请各位老师提出宝贵意见,谢谢!
高中数学二次函数有哪些教案篇十五
(1)其图象叫抛物线;(2)抛物线y=x2的对称轴是y轴,开口向上,顶点是原点。
补充例题。
下列函数中,哪些是二次函数?哪些不是二次函数?若是二次函数,指出a,b,c?
(1)y=2-3x2;(2)y=x(x-4);
(3)y=1/2x2-3x-1;(4)y=1/4x2+3x-8;
(5)y=7x(1-x)+4x2;(6)y=(x-6)(6+x)。
作业:p122中a组1,2,3。
四、教学注意问题。
1.注意渗透局部和全体、有限和无限、近似和精确等矛盾对立统一的观点。
2.注意培养学生观察分析问题的能力。比如,结合所画二次函数y=x2的图象,要求学生思考:
(1)y=x2的图象的图象有什么特点。(答:具有对称性。)。
(2)如何判断y=x2的图象有上面所说的特点?(答:由观察图象看出来;或由列表求值得出来;或由解析式y=x2看出来。)。
【本文地址:http://www.xuefen.com.cn/zuowen/14265670.html】