教案的编写还需要注重语言的准确性和逻辑的严密性,能够使学生理解和接受。教案的编写要有明确的教学步骤和时间安排。以下是一些关于教案编写的案例分析和经验总结,供大家参考学习。
初一数学正数和负数教案篇一
教学目标。
知识与技能:借助生活中的实例理解有理数的意义,会判断一个数是正数还是负数,能应用正负数表示生活中具有相反意义的量。
过程与方法:
1.体会负数引入的必要性,感受有理数应用的广泛性,并领悟数学知识来源于生活,体会数学知识与现实世界的联系。
2.能结合具体情境出现并提出数学问题,并解释结果的合理性。
情感态度与价值观:乐于接触社会环境中的数学信息,愿意谈论数学话题,在数学活动中发挥积极作用。
教学重、难点。
重点:体会负数引入的必要性和有理数应用的广泛性,能应用正负数表示生活中的具有相反的意义的量。
难点:能应用正负数表示生活中的具有相反的意义的量,养成把数学应用于生活实际问题的习惯。
教学方法:
教学过程:
一、创设情境。
教师出示图片说明自然数的产生、分数的产生.接着出示问题。
学生活动。
学生理解数的符号的产生的好处,学生思考-3~3℃、增长-2.7%。各是什么意思?
设计意图。
通过此活动,激发学生参与课堂教学的热情,使学生进入问题情境,让其感受到引入数学符号的必要性,引入新课。
二、自主学习。
(一)出示本节课的学习目标。
1、通过生活中实例认识到引入负数的必要性。
2、知道什么是负数,零,正数。
4、能用正数、负数表示实际生活中具有相反意义的量。
(二)、出示本节课的自学提纲。
1、.知识点1:正数、负数的概念--------阅读教材第2页,像3、2、0.5、1.8%这样比0大的数叫正数,根据需要,有时在正数前面加上“+”,如+5,。正数前面的“+”,一般省略不写:而像-3、-2、-3.5%这样在正数前面加上“—”号的数叫负数。如-6。“-6”读作负6。
2、知识点2:对“0”的理解--------阅读教材第2页。
0既不是正数,也不是负数,它是正数与负数的分水岭。它的意义很丰富,它既可以表示“没有”,也可以表示其它特定的意义。
3、知识点3;用正数和负数表示具有相反意义的量--------阅读教材第3页。
相反意义的量必须具有两个要素:一是它们的意义相反;二是它们都具有数量,而且一定是量。
学生活动。
学生看学习目标,学生根据自学提纲自主学习。
设计意图。
让学生们明白本节课的学习的任务,指导、引领学生自学,培养学生学习能力。真正实现放把课堂还给学生。
三、师生互动。
做一做:
初一数学正数和负数教案篇二
2、理解正、负数表示一对具有相反意义的量,并会表示。
会用正、负数表示相反意义的量。
用正、负数表示实际生活中具有相反意义的量。
体会正、负数在实际生活中的意义。
用正、负数表示实际生活中具有相反意义的量。
1、比比看谁快:
(2)把下列各数写入相应集合里:
-10,6,―7,0,―2.25,―,10%,
正整数集合{}负整数集合{}。
正数集合{}分数集合{}。
负数集合{}。
2、想一想:
初一数学正数和负数教案篇三
1、教学目标、重点、难点。
教学目标:
(1)通过实例,感受引入负数的必要性。
(3)会区分两种不同意义的量,会用正负数表示具有相反意义的量。
重点:理解相反意义的量,理解负数的意义。
难点:正确区分两种相反意义的量,并会用正负数表示。
2、例、习题的意图。
通过补充的引例,复习回顾上一学段学习过的数的类型,归纳出我们已经学习了整数和分数,然后通过观察、分析p3的几幅画和图表所列举出的一些实际生活中的具有相反意义的量,让学生感受引入负数的必要性。通过分析正、负数与以前学过的整数和分数的区别与联系,进而归纳出正、负数的概念。
例1为p5练习1,设置目的是强化学生对正、负数表示形式的理解。让学生准确的认识和区分正数与负数。
在学生对正、负数的概念与表示形式掌握的基础上,补充例2.例2是明确了哪一种意义的量用正数表示,则与其相反意义的量用负数表示。让学生进一步掌握如何用正、负数表示相反意义的数量。并理解相反意义与数量的含义。进而利用课本p5观察让学生认识正、负数表示实际生活中的数量的意义和必要性。
补充例3是例2的延续,在不明确哪一种意义的量用正数表示的情况下,让学生表示相反意义的量。通过例3的学习,训练学生发现生活中的具有相反意义的数量,理解、体会正、负意义的相对性,并恰当的用正、负数表示。培养学生的发散思维。
补充例4则是对例3正、负数表示相反意义的量的加强,通过训练,让学生说出正、负数所表示的实际意义,进一步培养学生正、负数的应用能力,逐步提升正、负数相对性和相反性的理解。
习题的设置是针对例题掌握情况的检查。教科书p5练习(2)、(3)、(4)是针对例2而设置的。补充练习1检查学生对相反意义与数量的理解。补充练习2是对例3的掌握情况的检查。
3、认知难点与突破方法:
对于相反意义及数量含义的理解,以及区分两种不同意义的量是本课的难点。在教学中注意思维的层次,首先要让学生明确数量指的是具体事物的多少。再分析是否是同一类事物,在是同类事物的基础上确定是否是相反关系。强化学生分析的层次性。在操作上,通过大量实际生活材料的分析和例2的学习让学生对相反意义及数量含义建立一定的感性认识,教师及时的给予适当的归纳,让学生建立初步的理性认识,最后通过练习1的判断对错进一步强化巩固对概念的理解。
用正、负数表示具有相反意义的过程中体现的正与负的相对性是另一个难点,通过例3的教学,鼓励学生发散思维,多角度认识具有相反意义的量,进而让学生认识正、负的相对性,通过例4的教学强化进一步强化对正、负的相对性的理解。
通过回顾小学学过的数的类型,归纳出我们已经学了整数和分数,然后举一些生活中具有相反意义的量,说明为了表示相反意义的量,我们需要引入负数。强调数学的严密性。
教师举例:今天我们已经是七年级的学生了,我是你们的数学老师,下面我自我介绍一下,我的。名字是***,身高1.71米,体重75.5千克,今年32岁,我们班有50名学生,其中男生23人,占全班总人数的46%,女生26人占总人数的53%。
问题1:老师在刚才的介绍中出现了几个数?分别是什么?试将这些数按以前学过的分类方法分类。学生思考、交流后教师总结:整数和分数两类。
问题2:生活中,仅有整数和分数就够用了吗?
在学生交流的基础上教师归纳总结:以前学的数已经不够用了,在实际生活中我们需要引进一些新的数,只有这样才能更好的表示生活实际中数量关系。
教师引导学生通过观察上例中出现的这些数与以前学过的数的区别,进而归纳出正负数的概念。
补充例1:(1)下各数哪些是正数,哪些是负数?
-1,2.5,0,-3.14,,120,-1.732。
正数前面的+号通常省略。了解正负数形式上的区别(符号不同),形成中的联系(在以前学习的非0整数和分数前加上符号)。
问题3:在整数前加上-号后这个数还是整数吗?在分数前加上-号后这个数还是分数吗?使学生对正整数、正分数、负整数、负分数有初步的了解。
(2)指出(1)中的分数、整数。(为有理数的学习做铺垫)。
问题4:为什么要引出负数?通常在日常生活中我们用正数和负数分别表示怎样的量?学生回答问题。(用正负数表示相反意义的数量)。
补充例2:用正、负数表式下列各量。
(1)若把上升5m记作+5m,那么下降5m记作。
(3)向南走5000米记作-5000米,那么向北走8000米记作。
学会用正、负数表示具有相反意义的量,相反意义的量包含两个要素:一是意义相反。如向东的反向是向西,上升与下降,收入与支出。二是他们都是数量。
练习思考书p5观察,在此基础上让学生指出生活中具有相反意义的例子。(检查学生对相反意义的数量的理解程度。
补充例3:用适当的数值表示下列实际问题的数量。
(1)某地白天的温度是30℃,午夜的温度是零下10℃。
(2)某出租车在东西走向的大街上向东行驶3km,又向西行驶了5km.
(3)一商店在一小时内收入200元,又支出150元。
(4)甲公司本月的销售额增长13%,乙公司本月的销售额下降了2.9%。
本例题是一发散性问题,没有规定哪种意义的量用正数表示,所以先要指明哪种意义的量用正数表示,其相反意义的量用负数表示。在解题中鼓励学生的不同思维。比如:若收入200元,记作:-200元,则支出150元记作+150元。反之,若收入200元,记作:+200元,则支出150元记作-150元。进一步加深对正、负数相反性及相对性的理解。同时要明确,通常情况下,零上、增长、收入用正数表示,零下、减少、支出用负数表示。
补充例4:解释下列各语句中表示各数量的数值的实际意义。
(1)七月份的物价比六月份增长了25%,八月份比七月份增长了-2.3%。
(2)经过绿化,我国沙漠化土地每年增长-4.5%。
(3)某仓库上午入库货物-3500t。
(4)缆车上升了-78米。
(5)小红这次考试分数比上次增加了+2分。
(6)盈利-300元。
分析:强调负数表示的是与其具有相反关系的量。(1)降低2.3%,(2)降低4.5%,(3)出库3500t,(4)下降78米,(5)增加了2分,(6)亏损300元。
初一数学正数和负数教案篇四
2.内容解析。
引入负数,将数的范围扩充到有理数,是解决实际问题的需要,也是为了解决数学内部的运算、解方程等问题的需要。本课内容是本章后续的有理数的相关概念及运算的基础。
通过实例引入正数与负数,既能让学生感受负数与现实生活的紧密联系,体会引入负数的必要性,又有助于学生了解正数和负数的意义,从而学会用正数、负数去刻画现实中具有相反意义的量。在刻画现实问题时,通常将“上升”“增加”“盈利”等确定为正,相应地将“下降”“减少”“亏欠”等确定为负。
基于以上分析,确定本节课的教学重点为:感受引入负数的必要性;能用正数和负数表示具有相反意义的量。
二、目标和目标解析。
1.教学目标。
(1)体会引入负数的必要性;
(2)了解负数的意义,会用正数、负数表示具有相反意义的量。
2.目标解析。
(1)学生能自己举出含有相反意义的量的生活实例,说明引入负数的必要性;
(2)学生能借助具体例子,用实际意义(如“增加”与“减少”,“收入”与“支出”等)说明负数的含义。在含有相反意义的量的问题情境中,学生能用正数和负数来表示相应的量。
三、教学问题诊断分析。
学生在小学已经学习了整数、分数(包括小数),即正有理数及0的知识,对负数的意义也有初步的了解,还会用负数表示日常生活中的一些量,但他们对负数意义的了解非常有限。在一些比较复杂的实际问题中,需要针对问题的具体特点规定正、负,特别是要用正数与负数描述向指定方向变化的现象(如“负增长”)中的量,大多数学生都会有困难。这既与学生的生活经验不足有关,同时也因为这样的表示与日常习惯不一致。突破这一难点,需要多举日常生活、生产中的实例,让学生通过例子来理解正数与负数的意义,学会用正数、负数表示具有相反意义的量。
本节课的教学难点为:用正数、负数表示指定方向变化的量。
四、教学过程设计。
1.创设情境,引入新知。
教师展示教科书图1.1-1,并提出。
问题1哪位同学知道这些图片介绍的是什么内容?
学生回答。教师补充说明数的产生产生与日常生活、生产实践的关系,感受数随着社会发展而发展的必要性。
【设计意图】使学生感受数的产生和发展离不开生活和生产的需要。
问题2请同学们阅读本章的引言。你能尝试着回答一下其中的问题吗?
学生思考并尝试解释。对于其中的问题(1),如果本地气温有低于0℃的情况,可以选择自己所在地区的气温状况进行描述。
【设计意图】引言中的问题,有的学生凭生活经验可以回答,有的不能回答。让学生阅读并尝试回答,一方面让他们感受在生活、生产中需要用到负数,另一方面让他们知道,要解决这些问题,就需要学习新的数的知识,从而激发学生的求知欲。
2.观察感知,理解概念。
问题3根据小学的知识,你能指出上述例子中哪些是正数,哪些是负数吗?
学生回答,给出正确答案后,教师给出正数、负数的描述性定义:
大于0的数叫做正数,在正数前加上符号“-”(负)的数叫负数。
问题4阅读课本第2页倒数第二段。你能举例说明什么叫一个数的符号吗?
学生阅读,举例。只要学生能举出与课本上不同的例子,并说明它们的符号就表明他们看懂了这段话。
教师补充说明:一般的,正数的符号是“+”,负数的符号是“-”。0既不是正数,也不是负数。
【设计意图】让学生阅读课文,以培养他们的读书习惯。通过学生举例,可以检验他们对这段课文的理解情况。因为“0既不是正数,也不是负数”是一种规定,所以老师直接说明,学生记住就可以了。
3.例题示范,学会应用。
(2)某年,下列国家的商品进出口总额比上年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增加7.5%.写出这些国家这一年商品进出口总额的增长率。
提问:你是怎么理解例(1)的?
师生合作回答上述问题。估计学生解释体重“增长值”的意义时会出现困难,教师可以在学生解释的基础上补充总结:体重增长值可能是正的,也可能是负的。体重增长值为负数,相当于体重减少。
再提问:你能仿照第(1)题的解答,自己解决(2)吗?
【设计意图】通过具体问题情境,使学生学会用正数与负数表示具有相反意义的量的方法,通过师生合作,突破用正数、负数表示指定方向变化的量这一难点。通过不断追问,引导学生逐步理解题意,重点是找出表示具有相反意义的量的词。
学生总结,师生共同补充、完善。要总结出:
(2)选定一方用正数表示,那么另一方就用负数表示;
(4)当数据没有变化时,增长率是0.
【设计意图】引导学生及时总结,提炼出可以指导解答其他同类问题的一般性结论。一般而言,我们习惯上把“上升”“盈利”“增加”“收入”等规定为正,把与它们相反的量规定为负。
问题6请同学们自己举出一个能用正数、负数表示其中的量的实际例子,并给出答案。
【设计意图】让学生用刚刚总结出的结论解决问题。
4.巩固概念,学以致用。
练习:教科书第3页练习1,2.
【设计意图】巩固性练习,同时检验用正数、负数表示具有相反意义的量的掌握情况。
5.归纳小结,反思提高。
师生共同回顾本节课所学内容,并请学生回答以下问题:
(1)你能举例说明引入负数的必要性吗?
(2)你能用例子说明负数的意义吗?
6.布置作业:教科书习题1.1第1,2,4,8题。
五、目标检测设计。
1.以下各数2014年07月08日-一帆风顺-一帆风顺祝大家健康快乐!天天都有好心情中,正数有;负数有.
【设计意图】考查对正数、负数概念的理解。
2.向东行进-50m表示的实际意义是.
【设计意图】会用正数、负数表示具有相反意义的量。
3.下列结论中正确的是()。
b.o是最小的正数。
c.0是最大的负数。
【设计意图】感受数0的特殊身份,并为学习有理数的分类做铺垫。
4.举一个能用正数、负数表示其中的量的生活实例,并解释其中相关数量的含义。
【设计意图】能用正数与负数表示生活中的数量。
初一数学正数和负数教案篇五
1、教学目标、重点、难点。
教学目标:
(1)通过实例,感受引入负数的必要性。
(2)了解正数、负数的概念。
(3)会区分两种不同意义的量,会用正负数表示具有相反意义的量。
重点:理解相反意义的量,理解负数的意义。
难点:正确区分两种相反意义的量,并会用正负数表示。
2、例、习题的意图。
通过补充的引例,复习回顾上一学段学习过的数的类型,归纳出我们已经学习了整数和分数,然后通过观察、分析p3的几幅画和图表所列举出的一些实际生活中的具有相反意义的量,让学生感受引入负数的必要性。通过分析正、负数与以前学过的整数和分数的区别与联系,进而归纳出正、负数的概念。
例1为p5练习1,设置目的是强化学生对正、负数表示形式的理解。让学生准确的认识和区分正数与负数。
在学生对正、负数的概念与表示形式掌握的基础上,补充例2.例2是明确了哪一种意义的量用正数表示,则与其相反意义的量用负数表示。让学生进一步掌握如何用正、负数表示相反意义的数量。并理解相反意义与数量的含义。进而利用课本p5观察让学生认识正、负数表示实际生活中的数量的意义和必要性。
补充例3是例2的延续,在不明确哪一种意义的量用正数表示的情况下,让学生表示相反意义的量。通过例3的学习,训练学生发现生活中的具有相反意义的数量,理解、体会正、负意义的相对性,并恰当的用正、负数表示。培养学生的发散思维。
补充例4则是对例3正、负数表示相反意义的量的加强,通过训练,让学生说出正、负数所表示的实际意义,进一步培养学生正、负数的应用能力,逐步提升正、负数相对性和相反性的理解。
习题的设置是针对例题掌握情况的检查。教科书p5练习(2)、(3)、(4)是针对例2而设置的。补充练习1检查学生对相反意义与数量的理解。补充练习2是对例3的掌握情况的检查。
3、认知难点与突破方法:
对于相反意义及数量含义的理解,以及区分两种不同意义的量是本课的难点。在教学中注意思维的层次,首先要让学生明确数量指的是具体事物的多少。再分析是否是同一类事物,在是同类事物的基础上确定是否是相反关系。强化学生分析的层次性。在操作上,通过大量实际生活材料的分析和例2的学习让学生对相反意义及数量含义建立一定的感性认识,教师及时的给予适当的归纳,让学生建立初步的理性认识,最后通过练习1的判断对错进一步强化巩固对概念的理解。
用正、负数表示具有相反意义的过程中体现的正与负的相对性是另一个难点,通过例3的教学,鼓励学生发散思维,多角度认识具有相反意义的量,进而让学生认识正、负的相对性,通过例4的教学强化进一步强化对正、负的相对性的理解。
通过回顾小学学过的数的类型,归纳出我们已经学了整数和分数,然后举一些生活中具有相反意义的量,说明为了表示相反意义的量,我们需要引入负数。强调数学的严密性。
教师举例:今天我们已经是七年级的学生了,我是你们的数学老师,下面我自我介绍一下,我的名字是***,身高1.71米,体重75.5千克,今年32岁,我们班有50名学生,其中男生23人,占全班总人数的46%,女生26人占总人数的53%。
问题1:老师在刚才的介绍中出现了几个数?分别是什么?试将这些数按以前学过的分类方法分类。学生思考、交流后教师总结:整数和分数两类。
问题2:生活中,仅有整数和分数就够用了吗?
在学生交流的基础上教师归纳总结:以前学的数已经不够用了,在实际生活中我们需要引进一些新的数,只有这样才能更好的表示生活实际中数量关系。
教师引导学生通过观察上例中出现的这些数与以前学过的数的区别,进而归纳出正负数的概念。
补充例1:(1)下各数哪些是正数,哪些是负数?
-1,2.5,0,-3.14,,120,-1.732。
正数前面的+号通常省略。了解正负数形式上的区别(符号不同),形成中的联系(在以前学习的非0整数和分数前加上符号)。
问题3:在整数前加上-号后这个数还是整数吗?在分数前加上-号后这个数还是分数吗?使学生对正整数、正分数、负整数、负分数有初步的了解。
(2)指出(1)中的分数、整数。(为有理数的学习做铺垫)。
问题4:为什么要引出负数?通常在日常生活中我们用正数和负数分别表示怎样的量?学生回答问题。(用正负数表示相反意义的数量)。
补充例2:用正、负数表式下列各量。
(1)若把上升5m记作+5m,那么下降5m记作。
(3)向南走5000米记作-5000米,那么向北走8000米记作。
学会用正、负数表示具有相反意义的量,相反意义的量包含两个要素:一是意义相反。如向东的反向是向西,上升与下降,收入与支出。二是他们都是数量。
练习思考书p5观察,在此基础上让学生指出生活中具有相反意义的例子。(检查学生对相反意义的数量的理解程度。
补充例3:用适当的数值表示下列实际问题的数量。
(1)某地白天的温度是30℃,午夜的温度是零下10℃。
(2)某出租车在东西走向的大街上向东行驶3km,又向西行驶了5km.
(3)一商店在一小时内收入200元,又支出150元。
(4)甲公司本月的销售额增长13%,乙公司本月的销售额下降了2.9%。
本例题是一发散性问题,没有规定哪种意义的量用正数表示,所以先要指明哪种意义的量用正数表示,其相反意义的量用负数表示。在解题中鼓励学生的不同思维。比如:若收入200元,记作:-200元,则支出150元记作+150元。反之,若收入200元,记作:+200元,则支出150元记作-150元。进一步加深对正、负数相反性及相对性的理解。同时要明确,通常情况下,零上、增长、收入用正数表示,零下、减少、支出用负数表示。
补充例4:解释下列各语句中表示各数量的数值的实际意义。
(1)七月份的物价比六月份增长了25%,八月份比七月份增长了-2.3%。
(2)经过绿化,我国沙漠化土地每年增长-4.5%。
(3)某仓库上午入库货物-3500t。
(4)缆车上升了-78米。
(5)小红这次考试分数比上次增加了+2分。
(6)盈利-300元。
分析:强调负数表示的是与其具有相反关系的量。(1)降低2.3%,(2)降低4.5%,(3)出库3500t,(4)下降78米,(5)增加了2分,(6)亏损300元。
1.p5练习(2)、(3)、(4)。
补充练习2:判断下列说法对错:
a.向南走-60米表示向西走60米()。
b.节约50元与浪费-30元是互为相反意义的量()。
c.快与慢表示具有相反意义的量()。
d.+15米就是表示向东走15米()。
e.黑色与白色表示具有相反意义的量()。
f.向北4.5米和向南8米是具有相反意义的量()。
补充练习3:用正负数表示下列具有相反意义的量。
(1)温度上升3℃和下降5℃。
(2)盈利5万元和亏损8千元。
(3)运进50箱与运出100箱。
(4)向东10米与向西6米。
1、课本p7第1、2、3.
3、如果一个物体沿东西方向运动,若规定向西为负,向东为正,
(1)向东运动5米和向西运动10米各怎样表示?
(2)-30米和50米各表示什么?(3)物体原地不动怎样表示?
4、说出下列每句话的意义。
(1)小明在围棋比赛中输了-5盘。(2)今晚的气温升高了-3℃。
(3)电梯下降了-4层。(4)李华体重增加了-2公斤。
初一数学正数和负数教案篇六
+10%等在已学过的数。
(0除外)的前面添上。
“+”的数叫正数。
教学反思:
本节课采取启发式教学法和情感教学,创设问题情境,引导学生主动思考,总结和归纳,取得了较好的效果,使我认识到教师在教学过程中,不仅要教会学生知识,还要培养学生良好的数学素养,重视教学生做人,才能真正讲出一堂好课,真正成为一名好教师,但在引入正负数概念时,学生由得到的具体数总结归纳时,仍然感到有些难度,教师有些包办代替,还是应该多举些实例,完全由学生得出更好。
初一数学正数和负数教案篇七
正数和负数的意义。
2.内容解析。
引入负数,将数的范围扩充到有理数,是解决实际问题的需要,也是为了解决数学内部的运算、解方程等问题的需要。本课内容是本章后续的有理数的相关概念及运算的基础。
通过实例引入正数与负数,既能让学生感受负数与现实生活的紧密联系,体会引入负数的必要性,又有助于学生了解正数和负数的意义,从而学会用正数、负数去刻画现实中具有相反意义的量。在刻画现实问题时,通常将“上升”“增加”“盈利”等确定为正,相应地将“下降”“减少”“亏欠”等确定为负。
基于以上分析,确定本节课的教学重点为:感受引入负数的必要性;能用正数和负数表示具有相反意义的量。
二、目标和目标解析。
1.教学目标。
(1)体会引入负数的必要性;
(2)了解负数的意义,会用正数、负数表示具有相反意义的量。
2.目标解析。
(1)学生能自己举出含有相反意义的量的生活实例,说明引入负数的必要性;
(2)学生能借助具体例子,用实际意义(如“增加”与“减少”,“收入”与“支出”等)说明负数的含义。在含有相反意义的量的问题情境中,学生能用正数和负数来表示相应的量。
三、教学问题诊断分析。
学生在小学已经学习了整数、分数(包括小数),即正有理数及0的知识,对负数的意义也有初步的了解,还会用负数表示日常生活中的一些量,但他们对负数意义的了解非常有限。在一些比较复杂的实际问题中,需要针对问题的具体特点规定正、负,特别是要用正数与负数描述向指定方向变化的现象(如“负增长”)中的量,大多数学生都会有困难。这既与学生的生活经验不足有关,同时也因为这样的表示与日常习惯不一致。突破这一难点,需要多举日常生活、生产中的实例,让学生通过例子来理解正数与负数的意义,学会用正数、负数表示具有相反意义的量。
本节课的教学难点为:用正数、负数表示指定方向变化的量。
四、教学过程设计。
1.创设情境,引入新知。
教师展示教科书图1.1-1,并提出。
问题1哪位同学知道这些图片介绍的是什么内容?
学生回答。教师补充说明数的产生产生与日常生活、生产实践的关系,感受数随着社会发展而发展的必要性。
【设计意图】使学生感受数的产生和发展离不开生活和生产的需要。
问题2请同学们阅读本章的引言。你能尝试着回答一下其中的问题吗?
学生思考并尝试解释。对于其中的问题(1),如果本地气温有低于0℃的情况,可以选择自己所在地区的气温状况进行描述。
【设计意图】引言中的问题,有的学生凭生活经验可以回答,有的不能回答。让学生阅读并尝试回答,一方面让他们感受在生活、生产中需要用到负数,另一方面让他们知道,要解决这些问题,就需要学习新的数的知识,从而激发学生的求知欲。
2.观察感知,理解概念。
问题3根据小学的知识,你能指出上述例子中哪些是正数,哪些是负数吗?
学生回答,给出正确答案后,教师给出正数、负数的描述性定义:
大于0的数叫做正数,在正数前加上符号“-”(负)的数叫负数。
问题4阅读课本第2页倒数第二段。你能举例说明什么叫一个数的符号吗?
学生阅读,举例。只要学生能举出与课本上不同的例子,并说明它们的符号就表明他们看懂了这段话。
教师补充说明:一般的,正数的符号是“+”,负数的符号是“-”。0既不是正数,也不是负数。
【设计意图】让学生阅读课文,以培养他们的读书习惯。通过学生举例,可以检验他们对这段课文的理解情况。因为“0既不是正数,也不是负数”是一种规定,所以老师直接说明,学生记住就可以了。
3.例题示范,学会应用。
(2)某年,下列国家的商品进出口总额比上年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增加7.5%.写出这些国家这一年商品进出口总额的增长率。
提问:你是怎么理解例(1)的?
师生合作回答上述问题。估计学生解释体重“增长值”的意义时会出现困难,教师可以在学生解释的基础上补充总结:体重增长值可能是正的,也可能是负的。体重增长值为负数,相当于体重减少。
再提问:你能仿照第(1)题的解答,自己解决(2)吗?
【设计意图】通过具体问题情境,使学生学会用正数与负数表示具有相反意义的量的方法,通过师生合作,突破用正数、负数表示指定方向变化的量这一难点。通过不断追问,引导学生逐步理解题意,重点是找出表示具有相反意义的量的词。
学生总结,师生共同补充、完善。要总结出:
(2)选定一方用正数表示,那么另一方就用负数表示;
(4)当数据没有变化时,增长率是0.
【设计意图】引导学生及时总结,提炼出可以指导解答其他同类问题的一般性结论。一般而言,我们习惯上把“上升”“盈利”“增加”“收入”等规定为正,把与它们相反的量规定为负。
问题6请同学们自己举出一个能用正数、负数表示其中的量的实际例子,并给出答案。
【设计意图】让学生用刚刚总结出的结论解决问题。
4.巩固概念,学以致用。
练习:教科书第3页练习1,2.
【设计意图】巩固性练习,同时检验用正数、负数表示具有相反意义的量的掌握情况。
5.归纳小结,反思提高。
师生共同回顾本节课所学内容,并请学生回答以下问题:
(1)你能举例说明引入负数的必要性吗?
(2)你能用例子说明负数的意义吗?
6.布置作业:教科书习题1.1第1,2,4,8题。
五、目标检测设计。
1.以下各数20__年07月08日-一帆风顺-一帆风顺祝大家健康快乐!天天都有好心情中,正数有;负数有.
【设计意图】考查对正数、负数概念的理解。
2.向东行进-50m表示的实际意义是.
【设计意图】会用正数、负数表示具有相反意义的量。
3.下列结论中正确的是()。
a.0既是正数,又是负数。
b.o是最小的正数。
c.0是最大的负数。
d.0既不是正数,也不是负数。
【设计意图】感受数0的特殊身份,并为学习有理数的分类做铺垫。
4.举一个能用正数、负数表示其中的量的生活实例,并解释其中相关数量的含义。
初一数学正数和负数教案篇八
1.新疆乌鲁木齐市高于海平面918米,记作海拔+918米;那么吐鲁番盆地最低点低于海平面155米,记作海拔米.
2.某地一年中最高气温35℃,最低气温-15℃,此地这一年的温差是多少?
二变:|x-1|+|x-2|+...+|x-617|最小值。
6.10袋大米,以每袋50千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如下:
2,-1,-2,+3,-4,+5,-3,0,-2.5,+1.5。
问这10袋大米总共重多少千克?
初一数学正数和负数教案篇九
情感与态度:在负数概念的形成过程中,培养学生的观察、归纳与概括的能力。
负数的引入和意义。
创设情景,生活实例引入,观察猜想,合作探究。
(一)、从学生原有的认知结构提出问题。
学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的。
为了表示一个人、两只手、,我们用到整数1,2,
为了表示半小时、四元八角七分、,我们需用到分数1/2和小数4.87、
为了表示没有人、没有羊、我们要用到0.
但在实际生活中,还有许多量不能用上述所说的自然数,零或分数、小数表示。
(二)、师生共同研究形成正负数概念。
某市某一天的最高温度是零上5℃,最低温度是零下5℃。要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚。
它们是具有相反意义的两个量。
现实生活中,像这样的相反意义的量还有很多。
例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,高于和低于其意义是相反的。
又如,某仓库昨天运进货物吨,今天运出货物吨,运进和运出,其意义是相反的。
同学们能举例子吗?
学生回答后,教师提出:怎样区别相反意义的量才好呢?
现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作-5℃(读作负5℃)。这样,只要在小学里学过的数前面加上+或-号,就把两个相反意义的量筒明地表示出来了。
让学生用同样的方法表示出前面例子中具有相反意义的量:
高于海平面8848米,记作+8848米;低于海平面155米,记作-155米;
运进纲物吨,记作+;运出货物吨,记作-。
教师讲解:什么叫做正数?什么叫做负数。
(三)、运用举例变式练习。
例1所有的正数组成正数集合,所有的负数组成负数集合把下列各数中的正数和负数分别填在表示正数集合和负数集合的圈里:
-11,4,8,+73,-2,7,,,-8,12,-;
课堂练习。
任意写出6个正数与6个负数,并分别把它们填入相应的大括号里:
正数集合:{},
负数集合:{}。
1、北京一月份的日平均气温大约是零下3℃,用负数表示这个温度。
3、在下列各数中,哪些是正数?哪些是负数?
-16,0,004,+,-,,25,8,-3,6,-4,9651,-0,1.
4、如果-50元表示支出50元,那么+200元表示什么?
7、一物体可以左右移动,设向右为正,问:
(1)向左移动12米应记作什么?(2)记作8米表明什么?
初一数学正数和负数教案篇十
初中生爱玩、好动,处于形象思维向抽象思维过渡的阶段,过分抽象的问题,学生往往感到乏味而百思不得其解。而多媒体具有形象、直观的特点,利用它为学生构建思维想象的平台,营造良好的学习氛围,充分调动学生学习的积极性、自觉性,用以达到以快乐的形式去追求知识的目的;新课程标准要求:课堂教学要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动,内容的呈现应采用不同的表达方式,以满足多样化的学习需求。教学过程中。要加强学生的动手实践、自主探索与合作交流的意识,并着力培养学生解决实际问题的能力。
(第1课时)。
人教版九年级数学上册。
山东省滨州市滨城区滨北街道办事处北城中学耿新华。
邮编:256651联系电话:15865403584。
教材分析:
一、教材所处的地位及作用:“1.1正数和负数”一节,是人教版七年级上册第一章第一节的内容,本节内容主要是学习正数、负数和零的定义、联系。是本章有理数学习的基础。
二、教学目标。
知识与技能:借助生活中的实例理解有理数的意义,会判断一个数是正数还是负数,能应用正负数表示生活中具有相反意义的量。
过程与方法:1.体会负数引入的必要性,感受有理数应用的广泛性,并领悟数学知识来源于生活,体会数学知识与现实世界的联系。
2.能结合具体情境出现并提出数学问题,并解释结果的合理性。
情感态度与价值观:乐于接触社会环境中的数学信息,愿意谈论数学话题,在数学活动中发挥积极作用。
三、教学重、难点。
重点:体会负数引入的必要性和有理数应用的广泛性,能应用正负数表示生活中的具有相反的意义的量。
难点:能应用正负数表示生活中的具有相反的意义的量,养成把数学应用于生活实际问题的习惯。
教学过程。
教师在轻松欢快的音乐中演示第一节首图片为主体的多媒体课件。
环节教师活动学生活动设计意图。
创设情境导入新课。
自主学习。
师生互动。
合作探究。
达标检测。
学习总结。
教师出示图片说明自然数的产生、分数的产生.接着。
出示问题。
一、出示本节课的学习目标。
1、通过生活中实例认识到引入负数的必要性。
2、知道什么是负数,零,正数。
4、能用正数、负数表示实际生活中具有相反意义的量。
二、出示本节课的自学提纲。
1、.知识点1:正数、负数的概念---------阅读教材第2页,像3、2、0.5、1.8%这样比0大的数叫,根据需要,有时在正数前面加上“+”,如+5,,,,…。正数前面的“+”,一般省略不写:而像-3、-2、-3.5%这样在正数前面加上“—”号的数叫。如-6,,…。“-6”读作。
2、知识点2:对“0”的理解--------阅读教材第2页。
0既不是数,也不是数,它是正数与负数的分水岭。它的意义很丰富,它既可以表示“没有”,也可以表示其它特定的意义。
3、知识点3;用正数和负数表示具有相反意义的量--------阅读教材第3页。
相反意义的量必须具有两个要素:一是它们的意义;二是它们都具有数量,而且一定是量。
一、指导学生在本组内交流结果,收集每组不会的问题,试着让其他组解决。
二、教师收集全班不会的问题,帮着解决。
做一做:(出示幻灯片)。
初一数学正数和负数教案篇十一
a.收入了50元;b.支出了50元;c.没有收入也没有支出;d.收入了100元。
2.下列说法正确的是()。
a.一个数前面加上“-”号,这个数就是负数;b.零既不是正数也不是负数。
c.零既是正数也是负数;d.若a是正数,则-a不一定就是负数。
3.既是分数,又是正数的是()。
a.+5b.-5c.0d.8。
4.下列说法不正确的是()。
a.有最小的正整数,没有最小的负整数;b.一个整数不是奇数,就是偶数。
c.如果a是有理数,2a就是偶数;d.正整数、负整数和零统称整数。
5.下列说法正确的是()。
a.有理数是指整数、分数、正有理数、零、负有理数这五类数。
b.有理数不是正数就是负数。
c.有理数不是整数就是分数;d.以上说法都正确。
二、填空题。
1.向东走10米记作-10米,那么向西走5米,记作____________.
2.某城市白天的最高气温为零上6℃,到了晚上8时,气温下降了8℃,该城市当晚8时的气温为_________.
3.如果某股票第一天跌了3.01%,应表示为________,第二天涨了4.21%,应表示为_____________.
4.一种零件标明的要求是(单位:mm),表示这种零件的标准尺寸为直径10mm,该零件最大直径不超过____________mm,最小不小于____________mm,为合格产品.
5.若书店在学校的东面500米记作+500米,那么超市的位置记作-600米,则表示____________.
6.在东西走向的公路上,乙在甲的东边3千米处,丙距乙5千米,则丙在甲的.__________.
7.一潜水艇所在的高度为-100米,如果它再下潜20米,则高度是___________,如果在原来的位置上再上升20米,则高度是____________.
8.收入-200元的实际意义是_____________________.
三、解答题。
1.把下列各数填入相应的大括号内:-13.5,2,0,0.128,-2.236,3.14,+27,-,-15%,-1,,26.
正数集合{…},负数集合{…},
整数集合{…},分数集合{…},
非负整数集合{…}.
2.下图中的两个圆分别表示正数集合和分数集合,请你在每个圆中及它们重叠的部分各填入3个数.
4.在一次数学测验中,一年(4)班的平均分为86分,把高于平均分的部分记作正数.
(1)李洋得了90分,应记作多少?
(2)刘红被记作-5分,她实际得分多少?
(3)王明得了86分,应记作多少?
(4)李洋和刘红相差多少分?
初一数学正数和负数教案篇十二
进一步巩固正数、负数的概念;理解在同一个问题中,用正数与负数表示的量具有相同的意义。
经历举一反三用正、负数表示身边具有相反意义的量,进而发现它们的共同特征。
鼓励学生积极思考,激发学生学习的兴趣。
1、重点:正确理解正、负数的概念,能应用正数、负数表示生活中具有相反意义的量。
2、难点:正数、负数概念的综合运用。
3、关键:通过对实例的进一步分析,使学生认识到正负数可以用来表示现实生活中具有相反意义的量。
投影仪。
1、什么叫正数?什么叫负数?举例说明,有没有既不是正数也不是负数的数?
2、如果用正数表示盈利5万元,那么-8千元表示什么?
例1.一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值。
2.20xx年下列国家的商品进出口总额比上年的变化情况是:
美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%。
写出这些国家20xx年商品进出口总额的增长率。
分析:在一个数前面添上负号,它表示的是与原数具有意义相反的数。负与正是相对的,增长-1,就是减少1;增长-6.4%就是减少6.4%,那么什么情况下增长率是0?当与上年持平,既不增又不减时增长率是0.
解:1.这个月小明体重增长2kg,小华体重增长-1kg,小强体重增长0kg.
2、六个国家20xx年商品进出口总额的增长率分别为:
美国-6.4%,德国1.3%,法国-2.4%,英国-3.5%,意大利0.2%,中国7.5%。
归纳:在同一个问题中,分别用正数与负数表示的量具有相反的意义,如盈利-2千元,就是亏本2千元;前进-3米,就是后退3米;浪费-14元,就是节约14元;向南走-7米,就是向北走7米,因此盈利2千元与盈利-2千元具有相反的意义。
1、课本第5页的第8题。
点拨:增长-3.4%,就是减少3.4%,所以这一年里这六国中中国、意大利的服务出口额增长了,美国、德国、英国、日本的服务出口额都减少了,意大利增长最多,日本减少最多。
2、补充练习。
解:向西走10米,记作-10米,那么这人走12米,则表示向东走12米,再走-15米,表示向西走了15米,即这个人从a地先向东走12米,接着再向西走15米,此人这时应该在a地的西方3米处。
通过本节课的学习,你对正数、负数的概念是否有了进一步理解?请你用正负数表示身边具有相反数的量。
课本第5页习题1.1第4、5、6、7题。
第二章2.1正数与负数2.2数轴。
1、会判断一个数是正数还是负数,理解负数的意义。
2、会把已知数在数轴上表示,能说出已知点所表示的数。
3、了解数轴的原点、正方向、单位长度,能画出数轴。
4、会比较数轴上数的大小。
一、本讲主要学习内容。
1、负数的意义及表示。
2、零的位置和地位。
3、有理数的分类。
4、数轴概念及三要素。
5、数轴上数与点的对应关系。
6、数轴上数的比较大小。
其中,负数的概念,数轴的概念及其三要素以及数轴上数的比较大小是重点。负数的意义是难点。
下面概述一下这六点的主要内容。
1、负数的意义及表示。
把大于0的数叫正数如5,3,+3等。在正数前加上“-”号的数叫做负数如-5,-3,-等。负数是表示相反意义的量,如:低于海平面-155米表示为-155m,亏损50元表示-50元。
2、零的位置和地位。
零既不是正数,也不是负数,但它是自然数。它可以表示没有,也可以在数轴上分隔正数和分数,甚至可以表示始点,表示缺位,这将在下面详细介绍。
3、有理数的分类。
正整数、零、负整数统称为整数,正分数、负分数统称为分数,整数和分数统称为有理数。
正整数。
整数零正有理数。
有理数负整数或有理数零。
负分数。
知识与技能:使学生了解正数与负数是从实际需要中产生的;
情感与态度:在负数概念的形成过程中,培养学生的观察、归纳与概括的能力。
负数的引入和意义。
创设情景,生活实例引入,观察猜想,合作探究。
(一)、从学生原有的认知结构提出问题。
学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的。
为了表示一个人、两只手、,我们用到整数1,2,
为了表示半小时、四元八角七分、,我们需用到分数1/2和小数4.87、
为了表示没有人、没有羊、我们要用到0.
但在实际生活中,还有许多量不能用上述所说的自然数,零或分数、小数表示。
(二)、师生共同研究形成正负数概念。
某市某一天的最高温度是零上5℃,最低温度是零下5℃。要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚。
它们是具有相反意义的两个量。
现实生活中,像这样的相反意义的量还有很多。
例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,高于和低于其意义是相反的。
又如,某仓库昨天运进货物吨,今天运出货物吨,运进和运出,其意义是相反的。
同学们能举例子吗?
学生回答后,教师提出:怎样区别相反意义的量才好呢?
现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作-5℃(读作负5℃)。这样,只要在小学里学过的数前面加上+或-号,就把两个相反意义的量筒明地表示出来了。
让学生用同样的方法表示出前面例子中具有相反意义的量:
高于海平面8848米,记作+8848米;低于海平面155米,记作-155米;
运进纲物吨,记作+;运出货物吨,记作-。
教师讲解:什么叫做正数?什么叫做负数。
(三)、运用举例变式练习。
例1所有的正数组成正数集合,所有的负数组成负数集合把下列各数中的正数和负数分别填在表示正数集合和负数集合的圈里:
-11,4,8,+73,-2,7,,,-8,12,-;
正数集合负数集合。
课堂练习。
任意写出6个正数与6个负数,并分别把它们填入相应的大括号里:
正数集合:{},
负数集合:{}。
1、北京一月份的日平均气温大约是零下3℃,用负数表示这个温度。
3、在下列各数中,哪些是正数?哪些是负数?
-16,0,004,+,-,,25,8,-3,6,-4,9651,-0,1.
4、如果-50元表示支出50][元,那么+200元表示什么?
7、一物体可以左右移动,设向右为正,问:
(1)向左移动12米应记作什么?(2)记作8米表明什么?
来源:网络整理免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。
content_2();。
初一数学正数和负数教案篇十三
借助生活中的实例会判断一个数是正数还是负数,能用正负数表示具有相反意义的量。
二、过程与方法。
1、过程:通过实例引入负数,从而指导学生会识别正负数及其表示法,能应用正负数表示具有相反意义的量。
2、方法:讨论法、探究法、讲授法、观察法。
三、情感、态度、价值观。
乐于接触社会环境中的数学信息,愿意谈论数学话题,在数学活动中发挥积极作用。
〔重点难点〕本课的重点是了解正数与负数是由实际需要产生的以及有理数包括哪些数。难点是学习负数的必要性及有理数的分类。关键是要能准确地举出具有相反意义的量的典型例子以及要明确有理数分类的标准。
正、负数的引入,有各种不同的方法。教材是由学生熟知的两个实例:温度与海拔高度引入的。比0℃高5摄氏度记作5℃,比0℃低5摄氏度,记作-5℃;比海平面高8848米,记作8848米,比海平面低155米记作-155米。由这两个实例很自然地,把大于0的数叫做正数,把加“-”号的数叫做负数;0既不是正数也不是负数,是一个中性数,表示度量的“基准”。这样引入正、负数,不仅有利于学生正确使用正、负数表示具有相反意义的量,而且还将帮助学生理解有理数的大小性质。把负数理解为小于0的数。教材中,没有出现“具有相反意义的量”的概念。这是有意回避或淡化这个概念。目的是,从正、负数引入一开始就能较深刻的揭示正、负数和零的性质,帮助学生正确理解正、负数的概念。
关于有理数的分类要明确的是:分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类。
教学建议。
这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的.从内容上讲,负数比非负数要抽象、难理解.因此在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则。例如,在讲解有理数的概念时,让学生清楚地认识有理数与算术数的根本区别,有理数是由两部分组成:符号部分和数字部分(即算术数).这样,在理解算术数和负数的基础上,对有理数的概念的理解就简便多了.
为了使学生掌握必要的数学思想和方法,在明确有理数的分类时,可以有意识地渗透分类讨论的思想方法,理解分类的标准、分类的结果,以及它们的相互联系。通过正数、负数都统一于有理数,可以将对立统一的辩证思想的逐步树立渗透到日常教学中。
一、负数的引入。
我们知道,数产生于人们实际生产和生活的需要。[投影1~3:图1.1-1]人们由记数、排序,产生了数1,2,3……;为了表示“没有”、“空位”引进了数0;测量和分配有时不能得到整数的结果,为此产生了分数和小数。
在生活、生产、科研中经常遇到数的表示与数的运算的问题。
【本文地址:http://www.xuefen.com.cn/zuowen/14257854.html】