文言文是中华传统文化的精髓,我们应该认真学习和理解其中的意义。如何在有限的时间内完成这个任务?探寻他人的总结范文,有助于我们对总结的写作方式和技巧有更全面的了解。
反比例的意义教学设计篇一
教学目标:1、使学生经历从具体实例中认识成反比例的量的过程,初步理解反比例的意义,学会根据反比例的意义判断两种相关联的量是不是成反比例。
2、使学生在认识成反比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。
3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。
教学重点:认识反比例的意义。
教学难点:掌握成反比例量的变化规律及其特征。
设计理念:课堂教学中注重从学生的已有的生活经验出发,引导学生观察、分析,从而发现成反比例量的规律,概括成反比例量的特征。努力为学生提供探究的时空,让学生自己发现、自己探究。通过数学活动,让学生把所学的数学知识应用到解决实际问题中去。
教学步骤教师活动学生活动。
一、复习铺垫1、怎样判断两种相关联的量是否成正比例?用字母怎样表示正比例关系?
2、判断下面两种量是否成正比例?为什么?
时间一定,行驶的路程和速度。
除数一定,被除数和商。
3、单价、数量和总价之间有怎样的关系?在什么条件下,两种量成正比例?
4、导入新课:
如果总价一定,单价和数量的变化有什么规律?这两种量又存在什么关系?今天,我们就来研究和认识这种变化规律。
学生口答,相互补充。
二、探究新知1、出示例3的表格(略)。
学生填表。
2、小组讨论:
(1)表中列出的是哪两种相关联的量?它们分别是怎样变化的?
(2)你能找出它们变化的规律吗?
(3)猜一猜,这两种量成什么关系?
3、全班交流。
4、完成“试一试”
学生独立填表。
思考题中所提出的问题。
组织交流,再次感知成反比例的量。
5、抽象表达反比例的意义。
根据学生的回答,板书:x×y=k(一定)。
揭示板书课题。
学生填表。
小组讨论、交流。
学生初步概括。
相互补充与完善。
独立填表。
交流汇报。
学生概括。
三、巩固应用1、练一练。
每袋糖果的粒数和装的袋数成反比例吗?为什么?
2、练习十三第6题。
先算一算、想一想,再组织讨论和交流。
要求学生完整地说出判断的思考过程。
3、练习十三第7题。
先独立思考作出判断,再有条理地说明判断的理由。
4、练习十三第8题。
先填表,根据表中数据进行判断,明确:长方形的面积一定,长和宽成反比例;长方形的周长一定,长和宽不成反比例。
5、思考:
100÷x=y,那么x和y成什么比例?为什么?
6、同桌学生相互出题,进行判断并说明理由。
讨论、交流。
独立完成,集体评讲。
说一说。
填一填,议一议。
讨论。
相互出题解答。
四、总结反思。
评价总结。
反比例的意义教学设计篇二
本堂课是在学生学习了正比例的基础上学习反比例,由于学生有了前面学习正比例的基础,加上正比例与反比例在意义上研究的时候存在有一定的共性,因此学生在整堂课的学习上与前面学习的正比例相比有明显的提高,而且在课时的安排上,在学习正比例的安排了2个课时,这里只是安排了1个课时,紧随着课之后教材安排了一堂正反比例比较、综合的一堂课,对学生在出现正反比例有点模糊的时候就及时地加以纠正。
反比例关系和正比例关系一样,是比较重要的一种数量关系,学生理解并掌握了这种数量关系,可以加深对比例的理解,并能应用它解决一些简单的正、反比例方面的实际问题。同时通过反比例的教学,可以进一步渗透函数思想,为学生今后学习中学数学和物理、化学打下基础。反比例的意义这部分内容是在学生理解并掌握比和比例的意义、性质的基础上进行教学的,但概念比较抽象,学习难度比较大,是六年级教学内容的一个教学重点也是一个教学难点。
反比例的意义教学设计篇三
1、理解反比例的意义,能根据反比例的意义,正确的判断两种量是否成反比例。
2、通过引导学生讨论探究,分析合作,使学生进一步认识事物之间的联系和发展变化的规律。
3、初步渗透函数思想。
教学重点:引导学生总结出成反比例的量,是相关的两种量中相对应的两个数积一定,进而抽象概括出成反比例的关系式。
教学难点:利用反比例的意义,正确判断两个量是否成反比例。
反比例的意义教学设计篇四
2.通过观察、比较、归纳,提高学生综合概括推理的能力.。
3.渗透辩证唯物主义的观点,进行“运用变化观点”的启蒙教育.。
教学重点。
教学难点。
教学过程。
一、导入新课。
(一)昨天老师买了一些苹果,吃了一部分,你能想到什么?
(二)教师提问。
1.你为什么马上能想到还剩多少呢?
2.是不是因为吃了的和剩下的是两种相关联的量?
教师板书:两种相关联的量。
(三)教师谈话。
在实际生活中两种相关的量是很多的,例如总价和单价是两种相关联的量,总价和。
数量也是两种相关联的量.你还能举出一些例子吗?
二、新授教学。
(一)成正比例的量。
例1.一列火车行驶的时间和所行的路程如下表:
时间(时)。
1
2
3
4
5
6
7
8
……。
路程(千米)。
90。
180。
270。
360。
450。
540。
630。
720。
……。
1.写出路程和时间的比并计算比值.。
(1)。
(2)2表示什么?180呢?比值呢?
(3)这个比值表示什么意义?
(4)360比5可以吗?为什么?
……。
2.思考。
(1)180千米对应的时间是多少?4小时对应的路程又是多少?
(2)在这一组题中上边的一列数表示什么?下边一列数表示什么?所求出的比值呢?
教师板书:时间、路程、速度。
(3)速度是怎样得到的?
教师板书:
(4)路程比时间得到了速度,速度也就是比值,比值相当于除法中的什么?
(5)在这组题中谁与谁是两种相关联的量?它们是如何相关联的?举例说明变化规律.。
3.小结:有什么规律?
教师板书:商不变。
1.华丰机械厂加工一批机器零件,每小时加工的数量和所需的加工时间如下表.。
工效(个)。
10。
20。
30。
40。
50。
60。
……时间(时)。
60。
30。
20。
15。
12。
10。
……。
2.教师提问。
(1)计算工效和时间的乘积.。
(2)这一组题中涉及了几种量?谁与谁是相关联的量?
(3)请你举例说明谁与谁是相对应的两个数?
(4)在这一组题中两种相关联的量是如何变化的?(举例说明)。
3.小结:有什么规律?(板书:积不变)。
(三)不成比例的量。
1.出示表格。
运走的吨数。
10。
20。
30。
40。
剩下的吨数。
90。
80。
70。
60。
总吨数(和不变)。
100。
100。
100。
100。
2.教师提问。
(1)总吨数是怎样得到的?
(2)谁与谁是两种相关联的量?
(3)它们又是怎样变化的?变化的`规律是什么?
运走的吨数少,剩下的吨数多;运走的吨数多,剩下的吨数少;总和不变。
(四)结合三组题观察、讨论、总结变化规律.。
讨论题:
1.这三组题每组题中谁与谁是两种相关联的量?
2.在变化过程中,它们的异同点是什么?
共同点:都有两种相关联的量,一种量变化,另一量也随着变化。
不同点:第一组商不变,第二组积不变,第三组和不变.。
总结:
4.强调第三组题中两种相关联的量叫做不成比例。
5.教师提问。
(1)两种量成正比例必须具备什么条件?
(2)两种量成反比例必须具备什么条件?
(五)字母关系式。
三、巩固练习。
判断下面各题是否成比例?成什么比例?
1.一种圆珠笔。
总价(元)。
1.2。
2.4。
3.6。
4.8。
6
7.2。
支数。
1
2
3
4
5
6
单价(元)。
1
2
4
5
10。
支数。
100。
50。
25。
20。
10。
(1)表中有哪两种相关联的量?
(2)说出几组这两种量中相对应的两个数的比。
(3)每组等式说明了什么?
(4)两种相关的量是否成比例?成什么比例?
2.当速度一定,时间路程成什么比例?
当时间一定,路程和速度成什么比例?
当路程一定,速度和时间成什么比例?
3.长方形的面一定,长和宽。
4.修一条路,已修的米数和剩下的米数.。
四、课堂总结。
五、课后作业。
(一)判断下面每题中的两种量是不是成正比例,并说明理由.。
1.苹果的单价一定,购买苹果的数量和总价.。
2.轮船行驶的速度一定,行驶的路程和时间.。
3.每小时织布米数一定,织布总米数和时间.。
4.长方形的宽一定,它的面积和长.。
(二)判断下面每题中的两种量是不是成反比例,并说明理由.。
1.煤的总量一定,每天的烧煤量和能够烧的天数.。
2.种子的总量一定,每公顷的播种量和播种的公顷数.。
3.李叔叔从家到工厂,骑自行车的速度和所需时间.。
4.华容做12道数学题,做完的题和没有做的题.。
反比例的意义教学设计篇五
教学目标:1、使学生在具体情境中理解比例尺的意义,能看懂线段比例尺,会求一幅图上的比例尺,会把数值比例尺与线段比例尺进行转化。
2、使学生在观察、比较、思考和交流等活动中,培养分析、抽象、概括的能力,进一步体会数学知识之间的联系,感受学习数学的乐趣。
教学重点:使学生理解比例尺的意义,能看懂线段比例尺,会求一幅图的比例尺。
教学难点:使学生理解比例尺的意义,会求一幅图的比例尺。
设计理念:本课设计结合具体的情境,出示不同地图,引发学生思考。再通过比的有关知识介绍比例尺的意义,利用具体生活实例引导学生建构比例尺这一概念,为强化对比例尺的认识,设计中,通过不同形式比例尺的分析比较,以及系列学生自主活动,进一步加深对概念的理解,培养学生分析、概括的能力,进一步体会数学知识之间的联系,感受学习数学的乐趣。
教学步骤教师活动学生活动。
一、设置情境。
比较引入演示:出示出示一组大小不同的中国地图。
师:通过观察,你发现了什么?什么变了?什么没变?
师:想知道地图是怎样绘制出来的吗?今天我们就学习这方面的知识。
(板书课题:比例尺)学生观察。
学生回答。(可能出现:形状没变、大小变了。)。
二、自主探究。
认识新知。
1、出示例6。
师:题中要我们写几个比?这两个比分别是哪两个数量的比?
什么是图上距离?
什么是实际距离?
2、认识探索写图上距离与实际距离比的方法。
师:图上距离与实际距离的单位不同,怎样写出它们的比?
(学生独立完成后,展示、交流写出的比,强调要把写出的比化简。)。
3、比例尺的意义及求比例尺的方法。
师:像刚才写出的两个比,都是图上距离和实际距离的比。我们把图书距离和实际距离的比,叫做这幅图的比例尺。
题中草坪平面图的比例尺是多少?
师:怎样求一幅图的比例尺?
根据学生的回答,相机板书:
图上距离:实际距离=比例尺。
4、进一步理解比例尺的实际意义。
图上距离/实际距离=比例尺。
指出:为了计算简便,通常把比例尺写成前项是1的最简单整数比。像1:1000这样的比例尺,通常叫做数值比例尺。
5、认识线段比例尺。
比例尺1:1000还可以用下面这样的形式来表示。
0102030米。
师介绍线段比例尺。
问:图上1厘米表示实际多少米?3厘米呢?
指出像这样的比例尺通常叫做线段比例尺。学生读题,理解题意,尝试写出两个数量的比。
学生交流,明确方法:
把图上距离与实际距离的单位统一成相同单位,写出比后再化简。
学生总结:图上距离:实际距离=比例尺。
学生在小组里说说,再全班交流。
学生交流:1:1000的意思是图上1厘米的线段表示实际距离1000厘米的距离,也表示图上距离是实际距离的1/1000,还表示实际距离是图上距离的1000倍。
学生:图上1厘米的距离表示实际距离10米。
四、独立练习。
巩固提高1、做“练一练”第1题。
2、做“练一练”第2题。
独立相互说,指名说。先说说每幅图中比例尺的实际意义。
学生各自测量、计算,再交流思考过程。
五、总结评价。
生活延伸1、你学会了什么?你有哪些收获和体会?
2、在生活中找找,哪些会用到比例尺学生交流。
反比例的意义教学设计篇六
人教版六年制第十二册第42~43页的内容。
二、教学目标。
(一)经历探索两种相关联的量的变化过程,发现规律,理解反比例的意义。
(二)根据反比例的意义,正确判断两种量是否成反比例。
(三)渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。
三、教学难点。
正确判断两种相关联的量是否成反比例。
四、教学过程。
(一)情境导入。
1.课前谈话:同学们,你们去过南昌吗?你知道萍乡到南昌需要多长时间吗?(媒体显示:几年前,我乘坐由萍乡开往南昌的k8727次列车需要4小时到达,现在改乘d117次列车,只需2小时5分钟,这是为什么呢?)。
2.学生对上述问题发表意见。
3.师:今天,我们就来研究这种类型的问题。
(二)探索新知。
将本文的word文档下载到电脑,方便收藏和打印。
反比例的意义教学设计篇七
我利用了一节课时间进行了对比整理,让学生在比较的过程中发现两种比例关系的异同后,总结出判断的三个步骤:
第一步先找相关联的两个量和一定的量;
第二步列出求一定量的数量关系式;
看来在一些概念性的教学中必要的点拨引导是不能少的,这时就需要充分发挥教师的主导作用,学生的理解能力是在日积月累的过程中培养起来的,教给学生一定解题的技巧和方法能提高教学效率。
反比例的意义教学设计篇八
一、教学内容:反比例。(教材第47页例2)。教学目标:
1.使学生理解反比例的意义,能正确地判断两种相关联的量是不是成反比例的量。
2.让学生经历反比例意义的探究过程,体验观察比较、推理、归纳的学习方法。
二、重点难点:
引导学生总结出成反比例的量的特点,进而抽象概括出反比例的关系式。利用反比例的意义,正确判断两个量是否成反比例。
三、教学准备:投影仪。
四、教学过程:
(一)复习导入。
1.让学生说说什么是正比例,然后用投影出示下面的题。下面各题中哪两种量成正比例?为什么?(1)每公顷产量一定,总产量和公顷数。
(2)一袋大米的重量一定,吃了的和剩下的。(3)修房屋时,粉刷的面积和所需涂料的数量。
2.说出每小时加工零件数、加工零件总数和加工时间三者之间的关系。在什么条件下,其中两种量成正比例?教师:如果加工零件总数一定,每小时加工数和加工时间会成什么变化?关系怎样?这就是我们这节课要学习的内容。
(二)目标解读:
1、学生认真度学习目标。
2、理解目标。
(三)自主预习:
理解:哪两种量叫做成反比例的量?什么是反比例关系?请举例说明。
(四)检查预习。
(五)合作探究活动一:
1、学习例2:把相同体积的水倒入底面积不同的杯子,高度会怎样变化?出示教材第47页例2的情境图和表格。
3、高度和底面积有这样的变化关系,我们就说高度和底面积成反比例的关系,高度和底面积叫做成反比例的量。活动二:
1、归纳反比例的意义。
像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
2、.用字母表示。
如果用字母x和y表示两种相关联的量,用k表示它们的乘积(一定),反比例关系的式子怎么表示?学生探讨后得出结果。x×y=k(一定)。
3、生活中还有哪些成反比例的量?学生举例说明。如:
(1)大米的质量一定,每袋质量和袋数成反比例。
(2)教室地板面积一定,每块地砖的面积和块数成反比例。(3)长方形的面积一定,长和宽成反比例。活动三:
1、.组织学生将例1与例2进行比较,小组内讨论:正比例与反比例的相同点和不同点有哪些?学生交流、汇报后,引导学生归纳:
相同点:都表示两种相关联的量,且一种量变化,另一种量也随着变化。不同点:正比例关系中比值一定,反比例关系中乘积一定。
2、你还有什么疑问。
如果学生提出表示反比例关系的图像有什么特征,教师应该引导学生观察教材第48页“你知道吗”中的图像。
1.教材第48页的“做一做”。2.教材第51页第9、10题。课堂小结。
说一说成反比例关系的量的变化特征。(六)当堂检测:
1.完成练习册中本课时的练习。2.教材51~52页第8、14题。
(七)总结归纳:
反比例。
两种相关联的量。
变化。
xy=k(一定)。
积一定。
学习例2:把相同体积的水倒入底面积不同的杯子,高度会怎样变化?出示教材第47页例2的情境图和表格。
请学生认真观察表中数据的变化情况,组织学生分小组讨论:(1)水的高度和底面积变化有关系吗?(2)水的高度是怎样随着底面积变化的?(3)水的高度和底面积的变化有什么规律?发现规律:(底面积越大,水的高度越低;底面积越小,水的高度越高,而且高度和底面积的乘积(水的体积)一定。)教师板书配合说明这一规律:30×10=20×15=15×20=??=300教师根据学生的汇报说明:高度和底面积有这样的变化关系,我们就说高度和底面积成反比例的关系,高度和底面积叫做成反比例的量。2.归纳反比例的意义。
组织学生小组内讨论:反比例的意义是什么?学生小组内交流,指名汇报。
教师总结:像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。3.用字母表示。
如果用字母x和y表示两种相关联的量,用k表示它们的乘积(一定),反比例关系的式子怎么表示?学生探讨后得出结果。x×y=k(一定)。
4.师:生活中还有哪些成反比例的量?在教师的引导下,学生举例说明。如:
(1)大米的质量一定,每袋质量和袋数成反比例。
(2)教室地板面积一定,每块地砖的面积和块数成反比例。(3)长方形的面积一定,长和宽成反比例。
5.组织学生将例1与例2进行比较,小组内讨论:正比例与反比例的相同点和不同点有哪些?学生交流、汇报后,引导学生归纳:
如果学生提出表示反比例关系的图像有什么特征,教师应该引导学生观察教材第48页“你知道吗”中的图像。
1.教材第48页的“做一做”。2.教材第51页第9、10题。课堂小结。
说一说成反比例关系的量的变化特征。课后作业。
1.完成练习册中本课时的练习。2.教材51~52页第8、14题。
反比例教学反思(六年级)今天用《反比例的意义》作为校内的研究课,这节课是上周六临时决定的,本来是要用复习单元《量的计量》来上的,但是担心毕业班后面的时间会很紧,所以临时决定提前。不过,我想不管什么的课,只要教师的素质高,一样能上出精彩,不能因为内容好上而选来作为公开课,相反,越是难上的课就越要拿出来研究研究,因为研究课就是供大家来讨论研究的,这样,以后上到同样的内容时就不会不知所措了,再者,越是难上才越能体现功底,并且这样的课上过之后,其他内容的课就会显得不是很难了,因为在信心上占有了优势。
周六决定了这节课后,我便整理了一份草案请师傅过目,在和师傅及其他几位老师研究过后,大家的意见是:这节课的内容比较多,要上好不容易,以往上到这个内容时是最麻烦的,因为这个内容十分抽象,所以,这节课的容量不宜太大。我虽然没有教过六年级,但是看过教材之后,也觉得这部分内容容量比较大,其实也不能说是容量大,就是比较抽象,如果学生学不好、说不出来其中的道理,就比较麻烦,就会影响到这节课能否上完。所以,在修改教案时,我十分注意容量问题,能精简的精简,尽量不在碎小的地方拌足。下面是我设计的思路。
首先简单回顾正比例的概念知识,然后给出单价、总价、数量,问:怎样组合才能符合正比例的要求?接着小结:“既然有正比例,那就有…”(学生说:反比例)引出课题《反比例》,引出课题后,我让学生先根据正比例的意义猜一猜什么是反比例,或者说,你认为什么是反比例。通过猜想,先初步的感知反比例,不管学生猜的对与错,最起码调动了学生的积极性和质疑心理,为后面的学习先奠定一定的基础。因为,后面我们要通过学习来验证猜想的对不对,通过验证后,之前猜对的学生在情感体验上就会得到满足,同时也培养了估计的能力,这也符合《课程标准》培养估计能力和推理的要求。在初步的猜想之后,用了一段小动画来直观的经历、感受反比例的建构过程(这个动画我做错了,后来经大家的提醒,我把这个动画作了修改),这个动画是这样的:有一堆黄沙,先用载重量大一些的货车运,然后换成载重量小一些的货车运,接着再换一辆载重量还要小的货车运,并提问:从动画中能想到什么?让学生知道,每次运的越少,运的次数就越多,每次运的越多,运的次数就越少,初步经历、感受反比例的建构过程。有了这样的一个基础,接下来出示例4和例5并按要求回答,然后把例4和例5放在一起比较,寻找这两道例题的共同点:都有两种相关联的量、都是一种量随着另一种量的变化而变化、两种量里对应数值的乘积一定。找出共同点之后,分步出示反比例的意义,然后用反比例的意义在回去解释例4,接着要求学生用这一知识解释例5,然后学会用字母x、y和k来表示它们之间的关系,接着实际运用,做练一练第1题和练习八的第4题,到这里我都是教要用一句话来判断两个量是否成反比例的,接下来出示例6,跟学生说明,我们也可以列数量关系式来判断,如果要列数量关系式判断的话,它们的乘积就要一定。至此,课的内容已经基本上完,后面就做了两组相关的练习,一组是判断两种量是否成反比例,其中有一题不成比例,有一题成正比例,有两题成反比例,另外一组题目是先把数量关系式填写完整,然后根据数量关系式回答问题。最后总结本课内容,总结时,学生提到了和正比例的区别的联系,这是我备课时所没有想到的,而正好时间又多(因为担心不能上完,所以一直赶着上的),我就顺着学生的思路,要大家比较它们之间的区别和联系,由于前面学的比较好,学生很清楚地找出了它们之间的区别和联系,其中有个学生说到了它们之间的联系时是这样说的:它们相同点都是一种量随着另一种量的变化而变化,但是如果要讲具体怎么变化的就有区别了。为学生的精彩回答而感到高兴,看来他们今天学的比较好。同时,我也暗自为自己庆幸,不是庆幸上的好,而是庆幸课的内容按预计的上完了,也改掉了一直伴随我的老毛病——课堂上罗罗嗦嗦。下午教研活动时大家发表了意见,其中那个动画大家讲的最多,我也知道动画做错了,所以已经做了修改,另外大家提的比较多的是后面的总结,大家认为这节课没有必要进行正比例和反比例的比较,这节课的内容就是理解反比例的意义,但是我却不这样想,首先这部分内容不是我的预设生成,而是非预设生成,学生能想到为什么不趁热打铁比较一下呢?虽然这部分内容是下节课要专门讲的,在这里为什么不可提一提?学生能掌握不是更好吗?所以,在修改教案时,我决定把这个环节添上去。另外大家还认为这节课光练习说了,没有什么写的练习,光会说,那作业怎么写?没有经历写的练习,学生会吗?我想,这的确是有必要的,所以,在修改教案时也增添了进去。这样一来,这节课的内容满满当当,不多不少了。
下面是我整理之后的教案和课件,大家看看,提些建议啊!
原文地址:http://内容来源:绿色圃中小学教育网-http:///。
反比例的意义教学设计篇九
教学目的:
1.通过检测讲评,进一步理解和掌握正、反比例应用题的解题规律。
2.通过一题多变、一题多解等题组练习形式,由浅入深,由易到难,培养学生思维的灵活性。
我们已经学过了正、反比例应用题,今天我们上一节检测讲评课课。(板书课题:正反比例应用题)通过这节课的学习,希望进一步理解和掌握正反比例应用题的解题规律。
检测题。
1.什么叫成正比例的量?它的关系式是什么?
2.什么叫成反比例的量?它的关系式是什么?
3.判断下面两种量成不成比例?成什么比例?
a.订阅《中国少年报》的份数和钱数。
b.日产量一定,天数和总产量。
c.路程一定,速度和时间。
d.圆的周长和半径。
e.长方形的周长一定,长和宽。
f.圆锥的体积一定,底面积和高。
大家对概念掌握得较熟练,但在应用中可看出对概念的理解程度还是有差距的。两种量是不是成正反比例的量先明确是谁和谁,其次看它们是不是相互影响,若是,就看着两种量是不是属于积商关系,积商一定时,就下断论。例如人的身高和体重是不是成正反比例的量,这两种量一种量变化,另一种量不一定发生变化,直接否定。再如,圆周率和圆周长是不是成正反比例的量,因为圆周长变化时圆周率并不发生变化,也是直接否定。a、b、c、d、f中两种量相互影响,且积或商一定所以成正反比例的量,e中两种量相互影响,但不实际上已定,故不成正反比例的'量。大家一定要把握概念的实质,灵活运用。
二、练一练。
1.计算下列各题:
农具厂生产一批农具,3天生产360台,照这样计算,30天可生产多少台?(指名读题)。
师:这道题用比例方法来解答请同学们自己做一做。(一人板演)。
订正时请板演的同学先讲一讲,做题的时候自己是怎么想的?并板书列式:360/3=x/30。
师:这道题,你们觉得他做得咋样?如果工作时间30天不直接告诉我们,还可以怎么说?
生:如果再生产27天,一共可生产多少台?
师:同原题比较,这道题复杂在哪呢?
生:原题的条件是直接的,这题的条件是间接的。
生:原题问题所对应的量是已知的,这题问题所对应的量是未知的。
师:这道题怎样解答呢?(要求学生口头列出比例式)。
生:解:设一共可生产x台,360/3=x/(3+27)(板书:360/3=x/(3+27))。
教师提问:3+27求的是什么?把3+27写成27可以吗?
教师强调:列式时一定要找准相关联的量中相对应的数。
师;这道题还可以怎样解答?
生:解:设27天可生产x台,360/3=x/27x+360。(板书:360/3=x/27x+360)。
教师小结:80%同学能做出地一题,第二问题就有点大了。其实象这道题,问题虽然变了,但题中基本数量关系未变,所以我们都是用正比例的方法来解答的。这道题我们可以直接设问题为x,列出这样的比例式(指360/3=x/(3+27))。也可以间接设27天的生产量为x,求出27天的生产量再加上前3天的生产量,就得到了一共的生产量。
解答正比例应用题的关键一是要正确判断相关联的两种量是否成正比例,二是要找准相关联的量中相对应的数。
师:这道题用比例方法来解答请同学们自己做一做。(一人板演)。
教师订正时请同学讲述解题思路,并板书方程:100x=80*20。
将原题变成:
以上4题要求学生独立完成。
教师评讲:通过刚才的变换我们发现,较复杂的反比例应用题,其复杂性表现在两个方面。一是已知条件发生变化,引起未知数x对应值的复杂化。二是问题发生变化,引起未知数x的复杂化。但不管怎样,我们要紧扣反比例的意义,对应用题中两相关联的量进行正确的判断。
等于两种相关联的量相除,则成正比例;定量等于两种相关联的量相乘,则成反比例。
反比例的意义教学设计篇十
数学备课大师目录式免费主题备课平台!
反比例关系是一种重要的数量关系,它渗透了初步的函数思想。所以本节课体现了以下2点:
1、温故知新,渗透难点。
本节课《成反比例的量》中重点和难点都是学生理解“成反比例”这个概念,而这个概念的得出要从研究数量关系入手,实质上是对数量之间关系一种新的定义,一种新的内在揭示。对于学生来说,数量关系并不陌生,在以前的应用题学习中是反复强调过的,本节课的教学并不仅仅停留在数量关系上,而是要从一个新的数学角度来加以研究,用一种新的数学思想来加以理解,用一种新的数学语言来加以定义。“成反比例的量”与数量关系是有本质联系的,都是研究两种数量之间的关系,而且是两种数量之间相乘的关系,因此在复习题中我让学生大量的复习了常见的乘法数量关系,并且联系教材复习了教材及练习中涉及到的一些数量关系,渗透了难点。
2、重概念的形成过程,加强思维训练。
学习数学概念的最终目的是应用于实际,去灵活解决实际问题,而实现这个目标归根结底依赖于对概念的本质理解。成功的概念教学是要在得出概念之前下功夫,要设计多种教学环节,利用各种教学手段使学生充分体验得出概念的思维过程,先做到对概念本质的理解,再顺理成章的引出概念的物质外壳---即用语句表达。
例如我在教学《成反比例的量》时,我通过复习常见的数量关系,从生活事例中引出数量关系,然后给这种数量关系一种新的理解,将这种数量关系重新定义为成反比例关系,给具备这种数量关系的数量重新定义为成反比例的量,沿着这条线索学生由浅入深,由表及里的体验了概念形成的过程。为帮助学生建构“反比例”的意义,课堂流程重点设计两大板块。其一是“选择材料、主体解读”的“原型体验”板块。在这一板块中,借助三则具体材料让学生经历商量选择、独立解读、交流互评和推荐典型等数学活动,积累了较多的与反比例有关的信息和感性认识;其二是交流思维、点化引领的数学化生成板块。在这一板块中,学生立足小组间的交流和思维共享,借助教师适时介入的适度点拨,生成了“反比例”数学概念,并通过回馈材料的概念解释促进了理解的深入。并能利用概念准确的判断两种量是否成反比例。
宏丰小学。
王建军。
数学备课大师今日用大师明日做大师!
反比例的意义教学设计篇十一
本堂课是在学生学习了正比例的基础上学习反比例,由于学生有了前面学习正比例的基础,加上正比例与反比例在意义上研究的时候存在有一定的共性,因此学生在整堂课的学习上与前面学习的正比例相比有明显的提高。
第一堂课在教学的时候,对于课本上的练一练没有进行选择,要求学生全部解答,结果发现学生化的时间比较多,而且效果也不是特别的理想。有了上次的经验,教师做适当的补充和引导,在第二节课的时候,学生的完成情况就比较理想,时间不多效率也高。
另外,由于在课始的导入环节中的未知每本页数与装订的本书的求解就已经知道求解方法,所遇课堂学生就没有刻意的去讲解,结果从课后的练习第二题来看,学生的掌握情况不是很好,虽然有些同学已经利用的了反比例的方法解答。后来想想本堂课学习的是反比例,既然已经学习了反比例,对于课后安排的这样的习题就不应该还只是利用上节课的方法去解答,应该很好的把这堂课所学习到的知识利用起来,一来是学生进一步理解反比例,二来可以为后面学生学习利用反比例解答应用题留下伏笔。
这个问题的提出,使我对于为什么教材在安排上引入了利用字母表示有了更好的理解,起初不太清楚为什么要用字母表示,现在想想,字母的标识其实是最能用数学语言来判断是不是成反比例,所以可以写成ah=s(一定)来说明底和高成反比例。这样学生在书写数量关系的时候,思维方法就会更明确。
《反比例的意义》一课是北师大版六年级下册教学内容,它是在教学《正比例的意义》的基础上的认识,因此在教学设计上,分为三步:。
第一,先从复习正比例开始,复习成正比例的条件和特点。通过“说一说成正比例的两个量是怎样变化”和“判断两个量是否成正比例”的练习,让学生回顾“一种量随着另一种量的变化而相应变化,两种量之间的比值一定。”的正比例的意义。然后引入新课题——反比例。
(从课堂的效果看,感觉在这个环节上的设计还是比较传统化,学生的回答中规中矩,学生的积极性和投入性不是很高,课堂气氛稍显沉闷。课后我想如果这样设计:给出路程,速度,时间,问怎样组合才能符合正比例的要求接着小结,“既然有正比例,那就有…”(让学生说出“反比例”)从而引出课题《反比例》,引出课题后,让学生先根据正比例的意义猜一猜什么是反比例,不管学生猜的对与错,让学生初步感知反比例,这样会不会更能调动起学生的积极性和学生的发散思维,为后面更好的学习作铺垫)。
第二,通过例2与例3两个情境(如果按教材的安排先讲例1,觉得会增加难度,让学生不知所以,于是这节课暂不讲例1),让学生了解反比例的意义以及特点,a,路程一定,速度与时间的关系;b,果汁总量一定,分的杯数与每杯的果汁量的关系。然后让学生自己总结出反比例的意义和成反比例的条件:一种量变化,另一种量也随着相反变化,在变化过程中,两种量的乘积一定。
(这个环节的设计,我采用了与教学正比例时同样的教学程序。考虑到上一节课的研究方法学生已经有了一定的认识,所以采取了放手的形式,引导后就直接把研究和讨论的要求给学生,让学生仿照正比例的学习再次的研究反比例的意义。但在教学过程中,感觉还是扶着学生走,有点放不开。)。
第三,在学生理解反比例意义的基础上,让学生通过练习尝试判断给出的两种量,是否成反比例。
1,在教学的过程中,能注意生活与实际的相结合,通过生活中的两个情境引导学生理解反比例,让学生容易上手,也容易去判断。
2,在提问的方面,基本兼顾了优生和中下生,但感觉面不够广。学生的回答很完整,而且也有条理性,感觉是平常课堂上要求的结果反映。
3,在教学的设计上,条理是清晰的,思路是明确的,但感觉还是有点不够活。如果让学生自己来设计问题,让学生互相提问题,编问题,让学生自己来探索,自己去提问,自己去发现,我想,这样可能会更好的调动起学生的积极性,发挥学生的质疑能力和创造力,效果一定会更好。
反比例的意义教学设计篇十二
1、理解反比例的意义,能根据反比例的意义,正确的判断两种量是否成反比例。
2、通过引导学生讨论探究,分析合作,使学生进一步认识事物之间的联系和发展变化的规律。
3、初步渗透函数思想。
引导学生总结出成反比例的量,是相关的两种量中相对应的两个数积一定,进而抽象概括出成反比例的关系式。
利用反比例的意义,正确判断两个量是否成反比例。
1、下面两种量是不是成正比例?为什么?
购买练习本的价钱0。80元,1本;1。60元,2本;3。20元,4本;4。80元6本。
2、成正比例的量有什么特征?
1、导入新课:这节课我们继续学习常见的数量关系中的另一种特征——成反比例的量。
2、教学p42例3。
(1)引导学生观察上表内数据,然后回答下面问题:
a、表中有哪两种量?这两种量相关联吗?为什么?
b、水的高度是否随着底面积的变化而变化?怎样变化的?
d、这个积表示什么?写出表示它们之间的数量关系式。
(2)从中你发现了什么?这与复习题相比有什么不同?
a、学生讨论交流。
b、引导学生回答:
(3)教师引导学生明确:因为水的体积一定,所以水的高度随着底面积的变化面变化。底面积增加,高度反而降低,底面积减少,高度反而升高,而且高度和底面积的乘积一定,我们就说高度和底面积成反比例关系,高度和底面积叫做成反比例的量。
(4)如果用字母x和y表示两种相关的量,用k表示它们的积一定,反比例可以用一个什么样的式子表示?板书:x×y=k(一定)。
1、想一想:成反比例的量应具备什么条件?
2、判断下面每题中的两个量是不是成反比例,并说明理由。
(1)路程一定,速度和时间。
(2)小明从家到学校,每分走的速度和所需时间。
(3)平行四边形面积一定,底和高。
(4)小林做10道数学题,已做的题和没有做的题。
(5)小明拿一些钱买铅笔,单价和购买的数量。
(6)你能举一个反比例的例子吗?
这节课我们学习了成反比例的量,知道了什么样的两个量是成反比例的两个量,也学会了怎样判断两种量是不是成反比例。
p45~46练习七第6~11题。
反比例的意义教学设计篇十三
教学内容:第64—65页的例3和“试一试”,“练一练”和练习十三的第6—8题。教学目标:
1.使学生经历从具体实例中认识成反比例的量的过程,初步理解反比例的意义,学会根据反比例的意义判断两种相关联的量是不是成反比例。
2.使学生在认识成反比例的量的过程中,体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。
3.使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。教学重难点:教学过程:
一、教学例11.谈话引出例1的表格,让学生说一说表中列出了哪两种量。
2.引导学生观察表中的数据,说一说这两种量的数值分别是怎样变化的。
可先让同桌相互说一说,再组织全班交流。通过交流,使学生初步感知两种量的变化情况:单价扩大,数量反而缩小;单价缩小,数量反而扩大。
小结:数量和单价是两种相关联的量,单价变化,数量也随着变化。
3.引导学生进一步观察表中的数据,找一找这两种量的变化的规律,启发学生从“变化”中去寻找“不变”。
学生可能会从不同的角度去寻找规律。
教师可根据交流的实际情况,及时引导学生通过计算确认这一规律,并有意识地从后一种角度突出这一规律。
如果学生发现不了上述规律,可引导学生写出几组相对应的路程与时间的比,并求出比值。
根据学生的回答,教师板书关系式:数量×单价=总价(一定)。
5.教师对两种量之间的关系作具体说明:数量和单价是两种相关联的量,单价变化,数量也随着变化。当单价和对应数量的积总是一定,也就是总价一定时,单价和数量成反比例,单价和数量是成反比例的量。
(板书:路程和时间成正比例)。
二、教学“试一试”
1.要求学生根据表中的已知条件先把表格填写完整。
2.根据表中的数据,依次讨论表格下面的三个问题,并仿照例3作适当的板书。3.让学生根据板书完整地说一说铅笔的总价和数量成什么关系。
三、抽象表达正比例的意义。
1.引导学生观察上面的两个例子,说说它们有什么共同点。
爱心。
用心。
专心。
根据学生的回答,板书关系式:
四、巩固练习。
1.完成第65页的“练一练”。
先让学生独立思考并作出判断,再要求说明判断理由。2.做练习十三第6~8题。
第6、7题让学生按题目要求先各自算一算、想一想,再组织讨论和交流。让学生完整地说出判断两种量是否成反比例的思考过程。
第8题。
(1)让学生根据左边表格中的要求收集数据,并回答问题(1)。(2)(1)让学生根据右边表格中的要求收集数据,并回答问题(2)。
填好表格后,组织学生讨论,明确:只有当两种相关联的量的积一定时,它们才能成反比例。
五、全课小结。
这节课你学会了什么?通过这节课的学习,你还有哪些收获?
爱心。
用心。
专心2。
反比例的意义教学设计篇十四
教学目标:
1.通过观察、分析、对比等活动,理解成反比例的量,并能找出生活中成反比例的量的实例。
2.揭示知识间的联系,培养学生分析、比较、判断和推理及处理纷繁复杂信息的能力。
3.进一步培养自主学习,合作交流,探索研究的意识和能力,激发学习数学的热情。教学重点:
认真分析两种量的变化情况及规律。教具:
教学课件教学过程:一.复习导入。
1.什么是成正比例的量?
2.判断两个量是否成正比例必须满足哪些条件?
3.判断下面表格中的两个量是否成正比例,并说明理由。课件出示。
表一。
高度/厘米24681012。
体积/立方厘米50100150200250300表二。
高度/厘米302015105。
底面积/平方厘米1015203060。
学生独立思考,指名汇报。
1.研究表2中高度与底面积的变化规律。
师:表2中的数据是通过这样一个实验得到的。课件出示课本第42页例3中学生实验的画面。
请同学们口算验证一下,这些杯子里水的体积是相同吗?学生口算验证并填表。
2.水的高度是怎样随着底面积变化的?
3.水的高度和底面积的变化有什么规律?学生小组讨论并汇报讨论结果。
请同学们结合上例小结:什么是成反比例的量?
学生试概括,师引导学生准确表述并板书反比例的意义。思考:怎样依据反比例的意义判断两种量是否成反比例?3.用字母表示反比例关系。如果用字母x和y表示两种相关联的量,用k表示他们的积一定,反比例关系可以表示为()。4.反比例关系图像。学习了正比例关系,我们认识了正比例关系的图像,知道正比例关系的图像是一条经过原点的直线,反比例关系的图像是怎样的,让我们一起看看刚才例3中的反比例关系图像。
1.出示课本第43页的做一做。指名读题,理解题意。
学生先独立思考,再指名汇报。2.填空。(1)两种()的量,一种量变化,另一种量也随着变化,如果这两种量中()的两个数的()一定,这两种量就叫做(),他们的关系叫做反比例关系。(2)如果用字母x和y表示两种相关联的量,用k表示它们的积(一定),反比例的关系式可以表示为()。
3.判断下面题中的两个量是否成反比例,并说明理由。(1)路程一定,速度和时间。
(2)书的总册数一定,每包的册数和包数。(3)在一块菜地上种的黄瓜和西红柿的面积。4.判断。
1.被除数一定,除数和商成反比例。()2.2x5=10,所以2和5成反比例。()。
3.铺地面积一定时,方砖面积和所需块数成反比例。()4.班级学生的总人数一定,出勤率与缺勤率成反比例。()四.拓展应用。
你能举一个生活中成反比例的量的例子吗?
五、课堂小结。
通过本节课的学习你有什么新的收获?板书设计:
两种相关联的量。
成反比例的量一种量变化,另一种量也随着变化。
如果这两种量中相对应的两个数的积一定。
这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
反比例的意义教学设计篇十五
我在教学“正比例和反比例的意义”这部分内容着重使学生理解正反比例的意义。
生活是数学知识的源泉,正反比例是来源于生活的。
课上学生基本能够正确判断,说理也较清楚。
教学有法,但教无定法,贵在得法,我认为只要切合学生实际的,让师生花最短的时间获得最大的学习效益的方法都是成功的,都是有价值的。
将本文的word文档下载到电脑,方便收藏和打印。
反比例的意义教学设计篇十六
1、大家好,我是西街小学的刘老师。今天我们学习的内容是判断两种量是否成反比例关系。首先我们必须明确成反比例关系的两种量满足的条件:两种量成相关联的量,意思就是说这两种量有关系2它们乘积一定,这决定了两种量的变化趋势是相反的,一种量随着另外一种量增大而减小。这两个条件,我们可以用一个数学表达式代替:xy=k(一定),满足这个式子就可以证明出他们是反比例关系。接下来我们观察这个等式的特征。等号右边是一个定值,等号左边是两种相关联的量相乘。抓住反比例关系的数学表达式的特征,对于判断两种量是否成反比例关系十分重要。下面我们结合练习题进行讲解。
二练习。
1、判断下面每题中的两种量是不是成反比例,并说明理由。(1)全班人数一定,按各组人数相等的要求分组,组数与每组人数根据常识我们知道,组数和每组人数是两种相关联的量。组数乘以每组人数等于全班人数,根据条件可知全班人数一定。所以组数和每组人数成反比例关系。
(2)生产手机的总量一定,工作时间和效率。
同样工作时间和效率是两种相关联的量,工作时间乘以效率等于工作总量,有条件可知,手机的总量是一定的,所以生产时间和效率成反比例关系。(3)在一块菜地上种的黄瓜与生菜的面积。
黄瓜和生菜的面积是相关联的量,但是黄瓜的面积+生菜的面积=菜地的面积,不符合乘积一定的条件,所以不是反比例关系。通过上面的题目我们不难发现判断两种量是否相关比较容易,重点在于判断乘积是否一定。
二、填一填。
(1)平行四边形的()一定,()和()成反比例关系。平行四边形中哪两种量成反比例关系,我们首先能够想到它的面积公式,底乘以高等于面积,我们让面积一定,就刚好符合反比例关系的表达式,这道题就迎刃而解了。
(2)三角形的()一定,()和()成反比例关系。同样我们会想到三角形的面积公式:底乘以高除以二等于三角形的面积。这个等式与我们的反比例的数学表达式有所不同,等号的左边多个2怎们办?我们可以通过等式的性质对这个式子变形,两边同时乘以二就可以得到底乘以高等于三角形的面积乘以2。我们让三角的面积一定,两个三角形的面积也是一定的。这样就符合我们的关系式。所以三角形的面积一定,底和高也成反比例关系。对于第二题,我们主要是对相关的公式进行变形然后判断。
三、有x,y,z三个相关联的量,并有xy=z.(1)当z一定时,x和y成()比例关系;(2)当x一定时,z和y成()比例关系;(3)y一定时,z和x成()比例关系。
我们看第一题,x和y直接满足了题目中的条件xy=z,所以很容易判定是反比例的关系;第二题,当x一定时,我们就把x放在等式的右边,x等于z除以y,满足了正比例的数学表达式,所以x和y成正比例关系;我们就可以用同样的方法判定第三题,y一定时,我们就把y放在等式的右边,y等于z除以x,满足了正比例的数学表达式,x和z成正比例关系。这种题型就是考察对代数式的转化能力。一般可以通过对代数式进行变形,把两种相关量写在等号的左边,不变的数写在右边。在看他们是乘还是除,继而判断是什么比例。以上就是我们学习的全部内容,谢谢。
【本文地址:http://www.xuefen.com.cn/zuowen/14049135.html】