反比例的意义教学设计范文(18篇)

格式:DOC 上传日期:2023-11-21 09:43:07
反比例的意义教学设计范文(18篇)
时间:2023-11-21 09:43:07     小编:碧墨

总结是我们成长过程中必不可少的一环,我们应该勇敢地面对并积极总结。如何进行有效的演讲请大家仔细阅读下面的总结范文,相信能对你的写作提供很好的参考。

反比例的意义教学设计篇一

2.通过观察、比较、归纳,提高学生综合概括推理的能力.。

3.渗透辩证唯物主义的观点,进行“运用变化观点”的启蒙教育.。

教学重点。

教学难点。

教学过程。

一、导入新课。

(一)昨天老师买了一些苹果,吃了一部分,你能想到什么?

(二)教师提问。

1.你为什么马上能想到还剩多少呢?

2.是不是因为吃了的和剩下的是两种相关联的量?

教师板书:两种相关联的量。

(三)教师谈话。

在实际生活中两种相关的量是很多的,例如总价和单价是两种相关联的量,总价和。

数量也是两种相关联的量.你还能举出一些例子吗?

二、新授教学。

(一)成正比例的量。

例1.一列火车行驶的时间和所行的路程如下表:

时间(时)。

1

2

3

4

5

6

7

8

……。

路程(千米)。

90。

180。

270。

360。

450。

540。

630。

720。

……。

1.写出路程和时间的比并计算比值.。

(1)。

(2)2表示什么?180呢?比值呢?

(3)这个比值表示什么意义?

(4)360比5可以吗?为什么?

……。

2.思考。

(1)180千米对应的时间是多少?4小时对应的路程又是多少?

(2)在这一组题中上边的一列数表示什么?下边一列数表示什么?所求出的比值呢?

教师板书:时间、路程、速度。

(3)速度是怎样得到的?

教师板书:

(4)路程比时间得到了速度,速度也就是比值,比值相当于除法中的什么?

(5)在这组题中谁与谁是两种相关联的量?它们是如何相关联的?举例说明变化规律.。

3.小结:有什么规律?

教师板书:商不变。

1.华丰机械厂加工一批机器零件,每小时加工的数量和所需的加工时间如下表.。

工效(个)。

10。

20。

30。

40。

50。

60。

……时间(时)。

60。

30。

20。

15。

12。

10。

……。

2.教师提问。

(1)计算工效和时间的乘积.。

(2)这一组题中涉及了几种量?谁与谁是相关联的量?

(3)请你举例说明谁与谁是相对应的两个数?

(4)在这一组题中两种相关联的量是如何变化的?(举例说明)。

3.小结:有什么规律?(板书:积不变)。

(三)不成比例的量。

1.出示表格。

运走的吨数。

10。

20。

30。

40。

剩下的吨数。

90。

80。

70。

60。

总吨数(和不变)。

100。

100。

100。

100。

2.教师提问。

(1)总吨数是怎样得到的?

(2)谁与谁是两种相关联的量?

(3)它们又是怎样变化的?变化的`规律是什么?

运走的吨数少,剩下的吨数多;运走的吨数多,剩下的吨数少;总和不变。

(四)结合三组题观察、讨论、总结变化规律.。

讨论题:

1.这三组题每组题中谁与谁是两种相关联的量?

2.在变化过程中,它们的异同点是什么?

共同点:都有两种相关联的量,一种量变化,另一量也随着变化。

不同点:第一组商不变,第二组积不变,第三组和不变.。

总结:

4.强调第三组题中两种相关联的量叫做不成比例。

5.教师提问。

(1)两种量成正比例必须具备什么条件?

(2)两种量成反比例必须具备什么条件?

(五)字母关系式。

三、巩固练习。

判断下面各题是否成比例?成什么比例?

1.一种圆珠笔。

总价(元)。

1.2。

2.4。

3.6。

4.8。

6

7.2。

支数。

1

2

3

4

5

6

单价(元)。

1

2

4

5

10。

支数。

100。

50。

25。

20。

10。

(1)表中有哪两种相关联的量?

(2)说出几组这两种量中相对应的两个数的比。

(3)每组等式说明了什么?

(4)两种相关的量是否成比例?成什么比例?

2.当速度一定,时间路程成什么比例?

当时间一定,路程和速度成什么比例?

当路程一定,速度和时间成什么比例?

3.长方形的面一定,长和宽。

4.修一条路,已修的米数和剩下的米数.。

四、课堂总结。

五、课后作业。

(一)判断下面每题中的两种量是不是成正比例,并说明理由.。

1.苹果的单价一定,购买苹果的数量和总价.。

2.轮船行驶的速度一定,行驶的路程和时间.。

3.每小时织布米数一定,织布总米数和时间.。

4.长方形的宽一定,它的面积和长.。

(二)判断下面每题中的两种量是不是成反比例,并说明理由.。

1.煤的总量一定,每天的烧煤量和能够烧的天数.。

2.种子的总量一定,每公顷的播种量和播种的公顷数.。

3.李叔叔从家到工厂,骑自行车的速度和所需时间.。

4.华容做12道数学题,做完的题和没有做的题.。

反比例的意义教学设计篇二

教学内容:

教科书练习十三的第9~13题。

教学目标:

1.使学生进一步理解正比例和反比例的意义,弄清它们的联系和区别,掌握它们的变化规。

律,能够正确地判断成正、反比例的关系。

2.进一步提高学生的分析、比较、抽象、概括等能力。

3.进一步感知数学与生活的联系。

教学重点:

弄清正比例和反比例的量的意义。

教学难点:

找生活中成正、

教学准备:多媒体。

教学过程:

一、揭示课题,回顾整理。

1、师:前几节课,我们学习了什么内容?这节课,我们练习正比例和反比例的有关知识。(板书课题)。

2、回忆正、反比例意义。

二、比较分析,区分特征。

1、出示练习十三第9题。

观察两张表格并思考回答书中第69页的问题。(表略)。

2、全班交流。

3、引导比较、总结正、反比例的特点(根据学生回答,板书)。

4、讨论:判断两种相关联的量成不成正比例或者反比例关系的关键是什么?

三、巩固练习,感知应用。

1、出示练习十三第11题。

先填一填、想一想,再组织讨论和交流。

要求学生完整地说出判断的思考过程。

2、练习十三第10题。

看图填表。

3、练习十三第12题。

先独立判断,再交流判断理由。

4、a、b、c三种量的关系是:a×b=c。

如果a一定,那么b和c成()比例。

如果b一定,那么a和c成()比例。

如果c一定,那么a和b成()比例。

5、判断。

(1)两种相关联的量,不成正比例就成反比例。()。

(2)在一定的距离内,车轮周长和它转动的圈数成反比例。()。

(3)x和y表示两种变化的相关联的量,同时5x-7y=0,x和y不成比例。()。

6、练习十三第13题。

找出生活中成正比例和成反比例的量的实例,用表格表示出来。

小组讨论完成表格。

说说是怎样想的?

四、总结评价。

通过学习你有何收获?

学生交流。

五、作业。

完成《练习与测试》相关测试。

板书设计:

成反比例的量。

反比例的意义教学设计篇三

购买练习本的价钱0.80元,1本;1.60元,2本;3.20元,4本;4.80元6本。

2、成正比例的量有什么特征?

二、探究新知。

1、导入新课:这节课我们继续学习常见的数量关系中的另一种特征成反比例的量。

2、教学p42例3。

(1)引导学生观察上表内数据,然后回答下面问题:

a、表中有哪两种量?这两种量相关联吗?为什么?

b、水的高度是否随着底面积的变化而变化?怎样变化的?

d、这个积表示什么?写出表示它们之间的数量关系式。

(2)从中你发现了什么?这与复习题相比有什么不同?

a、学生讨论交流。

b、引导学生回答:

(3)教师引导学生明确:因为水的体积一定,所以水的高度随着底面积的变化面变化。底面积增加,高度反而降低,底面积减少,高度反而升高,而且高度和底面积的乘积一定,我们就说高度和底面积成反比例关系,高度和底面积叫做成反比例的量。

(4)如果用字母x和y表示两种相关的量,用k表示它们的积一定,反比例可以用一个什么样的式子表示?板书:xy=k(一定)。

三、巩固练习。

1、想一想:成反比例的量应具备什么条件?

2、判断下面每题中的两个量是不是成反比例,并说明理由。

(1)路程一定,速度和时间。

(2)小明从家到学校,每分走的速度和所需时间。

(3)平行四边形面积一定,底和高。

(4)小林做10道数学题,已做的题和没有做的题。

(5)小明拿一些钱买铅笔,单价和购买的数量。

(6)你能举一个反比例的例子吗?

四、全课小节。

这节课我们学习了成反比例的量,知道了什么样的'两个量是成反比例的两个量,也学会了怎样判断两种量是不是成反比例。

五、课堂练习。

p45~46练习七第6~11题。

反比例的意义教学设计篇四

知识与技能目标:使学生理解反比例关系的意义,能根据反比例的意义正确判断两种量是否成反比例。

(一)复习猜想导入,引出问题。

1、成正比例的量有什么特征?什么叫正比例关系?

2、在生活中两个相关联的量有的成正比例关系,还可能成什么关系?学生很自然想到反比例,激发学生的学习欲望,问学生想学反比例的哪些知识,学生大胆猜测,对反比例的意义展开合理的猜想。由此导入新课。

达成目标:猜想导课,激发探究愿望。

(二)共同探索,总结方法。

1、明确这节课的学习目标:(1)理解反比例的意义,能正确地判断两种相关联的量是不是成反比例的量。(2)经历反比例意义的探究过程,体验观察比较、推理、归纳的学习方法。

2、情境导入,学习探究。(1)我们先来看一个实验。

高度(厘米)。

底面积(平方厘米)10。

体积(立方厘米)。

提问:根据列表,你从中你发现了什么?

(2)学生讨论交流。

(3)引导学生回答:表中的两个量是高度和底面积。

高度扩大,底面积反而缩小;高度缩小,底面积反而扩大。

每两个相对应的数的乘积都是300.(4)计算后你又发现了什么?

每两个相对应的数的乘积都是300,乘积一定。

教师小结:我们就说水的高度和体积成反比例关系,水的高度和体积是成反比例的量。

教师提问:高底面积和体积,怎样用式子表示他们的关系?板书:高×底面积=水的体积(一定)。

(5)如果用字母x和y表示两种相关联的量,用k表示他们的积一定,反比例关系可以用一个什么样的式子表示?板书:x×y=k(一定)。

小结:通过上面的学习,你认为判断两种相关联的量是否成反比例,关键是什么?

(6)归纳总结反比例的意义。(7)比较归纳正反比例的异同点。

达成目标:比较思想是在小学数学教学中应用十分普遍的数学思想方法,《成反比例的量》是继《成正比例的量》一课后学习的内容,两节课的学习内容和学习方法有相似之处,学生从知识的差别中找到同一,也可以从同一中找出差别,学生学习新知识,进行深化拓展,归纳总结。

(三)运用方法,解决问题。

1、生活中,哪些相关联的量成反比例关系,举例说一说。

2、课后做一做每天运的吨数和运货的天数成反比例关系吗?为什么?

3、出示反比例图像,与正比例图像进行比较学习。

达成目标:学生利用对反比例概念的理解,判断相关联的量是否成反比例,学会分析并进行判断。

(四)反馈巩固,分层练习。

判断下面每题中的两个量是不是成反比例,并说明理由。

(1)路程一定,速度和时间。

(2)小明从家到学校,每分走的速度和所需时间。

(3)平行四边形面积一定,底和高。

(4)小林做10道数学题,已做的题和没有做的题。

(5)小明拿一些钱买铅笔,单价和购买的数量。

达成目标:使学生体会到数学来源于现实生活,又服务于现实生活的特点,体现数学的应用性。

(五)课堂总结,提升认识。

反比例。

高度(厘米)。

底面积(平方厘米)10。

体积(立方厘米)。

300。

300。

300。

300300高度扩大,底面积反而缩小;高度缩小,底面积反而扩大。高×底面积=水的体积(一定)反比例关系式:x×y=k(一定)。

反比例的意义教学设计篇五

本堂课是在学生学习了正比例的基础上学习反比例,由于学生有了前面学习正比例的基础,加上正比例与反比例在意义上研究的时候存在有一定的共性,因此学生在整堂课的学习上与前面学习的正比例相比有明显的提高,而且在课时的安排上,在学习正比例的安排了2个课时,这里只是安排了1个课时,紧随着课之后教材安排了一堂正反比例比较、综合的一堂课,对学生在出现正反比例有点模糊的时候就及时地加以纠正。

反比例关系和正比例关系一样,是比较重要的一种数量关系,学生理解并掌握了这种数量关系,可以加深对比例的理解,并能应用它解决一些简单的正、反比例方面的实际问题。同时通过反比例的教学,可以进一步渗透函数思想,为学生今后学习中学数学和物理、化学打下基础。反比例的意义这部分内容是在学生理解并掌握比和比例的意义、性质的基础上进行教学的,但概念比较抽象,学习难度比较大,是六年级教学内容的一个教学重点也是一个教学难点。

反比例的意义教学设计篇六

教学目标:1、使学生经历从具体实例中认识成反比例的量的过程,初步理解反比例的意义,学会根据反比例的意义判断两种相关联的量是不是成反比例。

2、使学生在认识成反比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。

3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。

教学重点:认识反比例的意义。

教学难点:掌握成反比例量的变化规律及其特征。

设计理念:课堂教学中注重从学生的已有的生活经验出发,引导学生观察、分析,从而发现成反比例量的规律,概括成反比例量的特征。努力为学生提供探究的时空,让学生自己发现、自己探究。通过数学活动,让学生把所学的数学知识应用到解决实际问题中去。

教学步骤教师活动学生活动。

一、复习铺垫1、怎样判断两种相关联的量是否成正比例?用字母怎样表示正比例关系?

2、判断下面两种量是否成正比例?为什么?

时间一定,行驶的路程和速度。

除数一定,被除数和商。

3、单价、数量和总价之间有怎样的关系?在什么条件下,两种量成正比例?

4、导入新课:

如果总价一定,单价和数量的变化有什么规律?这两种量又存在什么关系?今天,我们就来研究和认识这种变化规律。

学生口答,相互补充。

二、探究新知1、出示例3的表格(略)。

学生填表。

2、小组讨论:

(1)表中列出的是哪两种相关联的量?它们分别是怎样变化的?

(2)你能找出它们变化的规律吗?

(3)猜一猜,这两种量成什么关系?

3、全班交流。

4、完成“试一试”

学生独立填表。

思考题中所提出的问题。

组织交流,再次感知成反比例的量。

5、抽象表达反比例的意义。

根据学生的回答,板书:x×y=k(一定)。

揭示板书课题。

学生填表。

小组讨论、交流。

学生初步概括。

相互补充与完善。

独立填表。

交流汇报。

学生概括。

三、巩固应用1、练一练。

每袋糖果的粒数和装的袋数成反比例吗?为什么?

2、练习十三第6题。

先算一算、想一想,再组织讨论和交流。

要求学生完整地说出判断的思考过程。

3、练习十三第7题。

先独立思考作出判断,再有条理地说明判断的理由。

4、练习十三第8题。

先填表,根据表中数据进行判断,明确:长方形的面积一定,长和宽成反比例;长方形的周长一定,长和宽不成反比例。

5、思考:

100÷x=y,那么x和y成什么比例?为什么?

6、同桌学生相互出题,进行判断并说明理由。

讨论、交流。

独立完成,集体评讲。

说一说。

填一填,议一议。

讨论。

相互出题解答。

四、总结反思。

评价总结。

反比例的意义教学设计篇七

教学目标:1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

2、使学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。

3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。

教学重点:认识正比例的意义。

教学难点:掌握成正比例量的变化规律及其特征。

设计理念:课堂教学中从学生的已有的生活经验出发,引导学生观察、分析,从而发现成正比例量的规律,概括成正比例量的特征。课堂教学中给学生提供探究的平台,凡是能让学生自己发现的,就让学生亲自去探究。通过数学活动,让学生把所学的数学知识应用到解决实际问题中去,进一步培养学生的观察能力和发现规律的能力。

教学步骤教师活动学生活动。

一、复习铺垫激情促思。

1、说出下列每组数量之间的关系。

(1)速度时间路程。

(2)单价数量总价。

(3)工作效率工作时间工作总量。

2、师:这些是我们已经学过的一些常见数量关系,每组数量之间是有联系的,存在着相依关系。当其中一种量变化时,另一种量也随着变化,而且这种变化是有一定的规律的,你想知道其中的奥秘吗?今天,我们就来研究和认识这种变化规律。

学生口答,相互补充。

二、初步感知探究规律1、出示例1的表格(略)。

说说表中列出了哪两种量。

(1)引导学生观察表中的数据,说一说这两种量的数值分别是怎样变化的。

初步感知两种量的变化情况,得出:路程和时间是两种相关联的量,时间变化,路程也随着变化。(板书:相关联的量)。

(2)引导学生观察表中数据,寻找两种量的变化规律。

根据学生交流的实际情况,及时肯定并确认这一规律,特别是有意识地从后一种角度突出这一规律。

根据发现的规律启发学生思考:这个比值表示什么?上面的规律能否用一个式子表示?

根据学生的回答,板书关系式:路程/时间=速度(一定)。

(板书:路程和时间成正比例)。

2、教学“试一试”

学生填表后观察表中数据,依次讨论表下的4个问题。

根据学生的讨论发言,作适当的板书。

3、抽象表达正比例的意义。

根据学生的回答,板书:=k(一定)。

揭示板书课题。

先观察思考,再同桌说说。

大组讨论、交流。

学生可能发现一种量扩大(缩小)到原来的几倍,另一种量也随着扩大(缩小)到原来的几倍。也可能发现两种量中相对应的两个数的比值不变。

学生根据板书完整地说一说表中路程和时间成什么关系。

学生独立填表。

完整说说铅笔的总价和数量成什么关系。

学生概括。

三、巩固应用深化规律。

1、练一练。

生产零件的数量和时间成正比例吗?为什么?

2、练习十三第1题。

先算一算、想一想,再组织讨论和交流。

要求学生完整地说出判断的思考过程。

3、练习十三第2题。

先独立判断,再有条理地说明判断的理由。

4、练习十三第3题。

先说出把已知的正方形按怎样的比放大,放大后正方形的边长各是几厘米,再画一画。

分别求出每个图形的周长和面积,并填写表格。

讨论、明确:只有当两种相关联的量的比值一定时,它们才成正比例。

讨论、交流。

独立完成,集体评讲。

说明判断的理由。

说一说,画一画。

填一填,议一议。

讨论。

四、总结回顾评价反思。

这节课你学会了什么?你有哪些收获?还有哪些疑问?

评价总结。

反比例的意义教学设计篇八

1、理解反比例的意义,能根据反比例的意义,正确的判断两种量是否成反比例。

2、通过引导学生讨论探究,分析合作,使学生进一步认识事物之间的联系和发展变化的规律。

3、初步渗透函数思想。

教学重点:引导学生总结出成反比例的量,是相关的两种量中相对应的两个数积一定,进而抽象概括出成反比例的关系式。

教学难点:利用反比例的意义,正确判断两个量是否成反比例。

反比例的意义教学设计篇九

教学目标:1、使学生在具体情境中理解比例尺的意义,能看懂线段比例尺,会求一幅图上的比例尺,会把数值比例尺与线段比例尺进行转化。

2、使学生在观察、比较、思考和交流等活动中,培养分析、抽象、概括的能力,进一步体会数学知识之间的联系,感受学习数学的乐趣。

教学重点:使学生理解比例尺的意义,能看懂线段比例尺,会求一幅图的比例尺。

教学难点:使学生理解比例尺的意义,会求一幅图的比例尺。

设计理念:本课设计结合具体的情境,出示不同地图,引发学生思考。再通过比的有关知识介绍比例尺的意义,利用具体生活实例引导学生建构比例尺这一概念,为强化对比例尺的认识,设计中,通过不同形式比例尺的分析比较,以及系列学生自主活动,进一步加深对概念的理解,培养学生分析、概括的能力,进一步体会数学知识之间的联系,感受学习数学的乐趣。

教学步骤教师活动学生活动。

一、设置情境。

比较引入演示:出示出示一组大小不同的中国地图。

师:通过观察,你发现了什么?什么变了?什么没变?

师:想知道地图是怎样绘制出来的吗?今天我们就学习这方面的知识。

(板书课题:比例尺)学生观察。

学生回答。(可能出现:形状没变、大小变了。)。

二、自主探究。

认识新知。

1、出示例6。

师:题中要我们写几个比?这两个比分别是哪两个数量的比?

什么是图上距离?

什么是实际距离?

2、认识探索写图上距离与实际距离比的方法。

师:图上距离与实际距离的单位不同,怎样写出它们的比?

(学生独立完成后,展示、交流写出的比,强调要把写出的比化简。)。

3、比例尺的意义及求比例尺的方法。

师:像刚才写出的两个比,都是图上距离和实际距离的比。我们把图书距离和实际距离的比,叫做这幅图的比例尺。

题中草坪平面图的比例尺是多少?

师:怎样求一幅图的比例尺?

根据学生的回答,相机板书:

图上距离:实际距离=比例尺。

4、进一步理解比例尺的实际意义。

图上距离/实际距离=比例尺。

指出:为了计算简便,通常把比例尺写成前项是1的最简单整数比。像1:1000这样的比例尺,通常叫做数值比例尺。

5、认识线段比例尺。

比例尺1:1000还可以用下面这样的形式来表示。

0102030米。

师介绍线段比例尺。

问:图上1厘米表示实际多少米?3厘米呢?

指出像这样的比例尺通常叫做线段比例尺。学生读题,理解题意,尝试写出两个数量的比。

学生交流,明确方法:

把图上距离与实际距离的单位统一成相同单位,写出比后再化简。

学生总结:图上距离:实际距离=比例尺。

学生在小组里说说,再全班交流。

学生交流:1:1000的意思是图上1厘米的线段表示实际距离1000厘米的距离,也表示图上距离是实际距离的1/1000,还表示实际距离是图上距离的1000倍。

学生:图上1厘米的距离表示实际距离10米。

四、独立练习。

巩固提高1、做“练一练”第1题。

2、做“练一练”第2题。

独立相互说,指名说。先说说每幅图中比例尺的实际意义。

学生各自测量、计算,再交流思考过程。

五、总结评价。

生活延伸1、你学会了什么?你有哪些收获和体会?

2、在生活中找找,哪些会用到比例尺学生交流。

反比例的意义教学设计篇十

教学目的:

1.使学生理解反比例的意义.能够正确判断两种量是不是成反比例。2.使学生进一步认识事物之间的相互联系和发展变化规律。3.初步渗透函数思想。

一、谈话导入:

师:咱们一块做几道题判断一下。出示:

1、除数一定,被除数和商。

2、单产量一定,总产量和面积。

3、加数一定,和和另一个加数。

4、每张纸厚度一定,总厚度和纸的张数指名说并说请判断依据。

师:看来大家对正比例知识理解掌握得不错,学完正比例接下来我们该学习什么了?(生答)是啊,有正就有反,这节课我们就来探究反比例的有关知识(板书:反比例)。

二、学习。

师:既然正与反意义是相反的,大家猜想一下,成反比例的两个量的关系是怎样的呢?(生猜想)。

师:到底同学们的猜想是否正确?我们要用事实来验证。独立填写研究单,然后在组内交流。

学生自己填,在小组活动,师巡视学生台前展示交流。

师:对于这句话大家有什么不理解的吗?判断两个量是否成反比例的要点是什么?

指名说,(大屏幕出示红色字)。

师强调:要想判断两个量是不是成反比例,除了要相关联,最重要的一点就是要保证这两个量乘积一定。

出示表格,明确正比例和反比例的异同点。

师:今天我们学习了反比例关系,对于今天学过的内容,大家还有疑问吗?

三、练习。

1、书上51页8、9、10题,独立写,集体交流。

2、书上51页11题,指名交流,说理。

四、总结。

师:这节课你有什么收获?指名说。

师:我们不仅收获了知识,更重要的是运用学过的知识学习了新的内容,掌握了这种学习方法,并且不断反思,不断总结,相信我们会在数学的道路上越走越远。

反比例的意义教学设计篇十一

1、使学生经历从具体实例中认识成反比例的量的过程,初步理解反比例的意义,学会根据反比例的意义判断两种相关联的量是不是成反比例。

2、使学生在认识成反比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。

3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。

掌握成反比例量的变化规律及其特征。

课堂教学中注重从学生的已有的生活经验出发,引导学生观察、分析,从而发现成反比例量的规律,概括成反比例量的特征。努力为学生提供探究的时空,让学生自己发现、自己探究。通过数学活动,让学生把所学的数学知识应用到解决实际问题中去。

教学步骤教师活动学生活动。

一、复习铺垫1、怎样判断两种相关联的量是否成正比例?用字母怎样表示正比例关系?

2、判断下面两种量是否成正比例?为什么?

时间一定,行驶的路程和速度。

除数一定,被除数和商。

3、单价、数量和总价之间有怎样的关系?在什么条件下,两种量成正比例?

4、导入新课:

如果总价一定,单价和数量的变化有什么规律?这两种量又存在什么关系?今天,我们就来研究和认识这种变化规律。

学生口答,相互补充。

二、探究新知1、出示例3的.表格(略)。

学生填表。

2、小组讨论:

(1)表中列出的是哪两种相关联的量?它们分别是怎样变化的?

(2)你能找出它们变化的规律吗?

(3)猜一猜,这两种量成什么关系?

3、全班交流。

4、完成“试一试”

学生独立填表。

思考题中所提出的问题。

组织交流,再次感知成反比例的量。

根据学生的回答,板书:x×y=k(一定)。

揭示板书课题。

学生填表。

小组讨论、交流。

学生初步概括。

相互补充与完善。

独立填表。

交流汇报。

学生概括。

三、巩固应用1、练一练。

每袋糖果的粒数和装的袋数成反比例吗?为什么?

2、练习十三第6题。

先算一算、想一想,再组织讨论和交流。

要求学生完整地说出判断的思考过程。

3、练习十三第7题。

先独立思考作出判断,再有条理地说明判断的理由。

4、练习十三第8题。

先填表,根据表中数据进行判断,明确:长方形的面积一定,长和宽成反比例;长方形的周长一定,长和宽不成反比例。

5、思考:

100÷x=y,那么x和y成什么比例?为什么?

6、同桌学生相互出题,进行判断并说明理由。

讨论、交流。

独立完成,集体评讲。

说一说。

填一填,议一议。

讨论。

相互出题解答。

四、总结反思。

反比例的意义教学设计篇十二

教学内容:教科书94页“练习与实践”的第7~10题。

教学目标:

1、使学生进一步理解比的意义和基本性质以及比与分数、除法的关系的理解。

2、能运用比和比例的知识解决一些简单实际问题,积累解决问题的经验。

教学重点:

使学生加深认识比例的意义和基本性质。

教学难点:

能判断两个比能能不能组成比例,能比较熟练地解比例。

教学准备:多媒体。

教学过程:

一、整理与反思。

今天我们一起来复习正比例和反比例相关知识。

怎样判断两种量是否成正比例或反比例关系?

学生交流。

二、练习与实践。

1.完成“练习与实践”第7题。

让学生先独立完成,再点评。

2.完成“练习与实践”第8题。

引导学生列举几组对应的数值。

再分析每组中两个数的关系,再判断。

3.完成“练习与实践”第9题。

第1小题让学生根据图中标出的点的位置算出相应的耗油量与行驶路程的比值,再作判断。(行驶75千米的耗油量是6升。)。

第2小题让学生在教材提供的方格图上描点、连线,

引导学生联系画出的图象判断汽车在市区行驶时,行驶的路程与耗油量成不成正比例。

体会数形结合在解决问题方面的价值。

4.完成“练习与实践”第10题。

什么叫比例尺?比例尺有几种类型?举例说说它的意思?(重点是线段比例尺)。

怎样求图上距离?怎样求实际距离。

学生量出的图上距离。

利用提供的线段比例尺,求出相应的实际距离。

三、小结。

通过学习你有什么收获?

学生交流。

四、作业。

完成《练习与测试》相关作业。

板书设计。

关于正比例和反比例的复习。

反比例的意义教学设计篇十三

本节复习课的主要教学目标是通过系统的整理,让学生加深理解正、反比例的意义,正、反比例的联系与区别及最后运用正、反比例解答生活中的数学问题。

(1)以学生为主。学生自己先整理、交流、汇报,教师只是起着沟通学生和教材的作用。

(2)以课本为主。在复习中,让学生牢固掌握基础知识的基础上,进行拓展,把课本和资料有机结合,使之互为补充,相得益彰。

(3)以课内为主。把问题尽量解决在课堂上。上课前认真作好准备,学生课前进行整理,教师精心准备教案,教学过程中,精讲精练。

(4)以练为主。教师边讲边练,练习由浅入深,由简到繁,体现了基础性、层次性。尤其是最后一题注重一题多解,让学生更多地参与学习过程,让学生学习得更加主动,使他们学会从多角度思考问题,培养学生的发散思维和解决问题的能力。

(5)以提高学生能力为主。学生整理和复习的方法不是很熟练,要求教师在课堂上适时点拨,在学习方法上给予指导。学生在学习中不但要掌握知识,而且要学会学习,这是本课时的一个重要目标。

教会学生学习需要一个长期的过程,需要教师在每一节课中不断的渗透,长此以往,才能正提高学生的能力。

反比例的意义教学设计篇十四

我利用了一节课时间进行了对比整理,让学生在比较的过程中发现两种比例关系的异同后,总结出判断的三个步骤:

第一步先找相关联的两个量和一定的量;

第二步列出求一定量的数量关系式;

看来在一些概念性的教学中必要的点拨引导是不能少的,这时就需要充分发挥教师的主导作用,学生的理解能力是在日积月累的过程中培养起来的,教给学生一定解题的技巧和方法能提高教学效率。

反比例的意义教学设计篇十五

知识与技能:1.进一步熟悉作函数图象的主要步骤,会作反比例函数的图象。

2.体会函数的三种表示方法的相互转换,对函数进行认识上的整合。

3.培养学生从函数图象中获取信息的能力,初步探索反比例函数的性质。

过程与方法:通过学生自己动手列表,描点,连线,提高学生的'作图能力;通过观察图象,概括反比例函数图象的有关性质,训练学生的概括总结能力.

情感、态度与价值观:让学生积极参与到数学学习活动中去,增强他们对数学学习的好奇心和求知欲。

教学难点1)重点:画反比例函数图象并认识图象的特点.

教学关键教师画图中要规范,为学生树立一个可以学习的模板。

教学方法激发诱导,探索交流,讲练结合三位一体的教学方式。

教学手段教师画图,学生模仿。

教具三角板,小黑板。

学法学生动手,动眼,动耳,采用自主,合作,探究的学习方法。

(包含课前检测、新课导入、新课讲解、课堂练习、小结、形成性检测、反馈拓展、作业布置)。

内容设计意图。

反比例的意义教学设计篇十六

1、大家好,我是西街小学的刘老师。今天我们学习的内容是判断两种量是否成反比例关系。首先我们必须明确成反比例关系的两种量满足的条件:两种量成相关联的量,意思就是说这两种量有关系2它们乘积一定,这决定了两种量的变化趋势是相反的,一种量随着另外一种量增大而减小。这两个条件,我们可以用一个数学表达式代替:xy=k(一定),满足这个式子就可以证明出他们是反比例关系。接下来我们观察这个等式的特征。等号右边是一个定值,等号左边是两种相关联的量相乘。抓住反比例关系的数学表达式的特征,对于判断两种量是否成反比例关系十分重要。下面我们结合练习题进行讲解。

二练习。

1、判断下面每题中的两种量是不是成反比例,并说明理由。(1)全班人数一定,按各组人数相等的要求分组,组数与每组人数根据常识我们知道,组数和每组人数是两种相关联的量。组数乘以每组人数等于全班人数,根据条件可知全班人数一定。所以组数和每组人数成反比例关系。

(2)生产手机的总量一定,工作时间和效率。

同样工作时间和效率是两种相关联的量,工作时间乘以效率等于工作总量,有条件可知,手机的总量是一定的,所以生产时间和效率成反比例关系。(3)在一块菜地上种的黄瓜与生菜的面积。

黄瓜和生菜的面积是相关联的量,但是黄瓜的面积+生菜的面积=菜地的面积,不符合乘积一定的条件,所以不是反比例关系。通过上面的题目我们不难发现判断两种量是否相关比较容易,重点在于判断乘积是否一定。

二、填一填。

(1)平行四边形的()一定,()和()成反比例关系。平行四边形中哪两种量成反比例关系,我们首先能够想到它的面积公式,底乘以高等于面积,我们让面积一定,就刚好符合反比例关系的表达式,这道题就迎刃而解了。

(2)三角形的()一定,()和()成反比例关系。同样我们会想到三角形的面积公式:底乘以高除以二等于三角形的面积。这个等式与我们的反比例的数学表达式有所不同,等号的左边多个2怎们办?我们可以通过等式的性质对这个式子变形,两边同时乘以二就可以得到底乘以高等于三角形的面积乘以2。我们让三角的面积一定,两个三角形的面积也是一定的。这样就符合我们的关系式。所以三角形的面积一定,底和高也成反比例关系。对于第二题,我们主要是对相关的公式进行变形然后判断。

三、有x,y,z三个相关联的量,并有xy=z.(1)当z一定时,x和y成()比例关系;(2)当x一定时,z和y成()比例关系;(3)y一定时,z和x成()比例关系。

我们看第一题,x和y直接满足了题目中的条件xy=z,所以很容易判定是反比例的关系;第二题,当x一定时,我们就把x放在等式的右边,x等于z除以y,满足了正比例的数学表达式,所以x和y成正比例关系;我们就可以用同样的方法判定第三题,y一定时,我们就把y放在等式的右边,y等于z除以x,满足了正比例的数学表达式,x和z成正比例关系。这种题型就是考察对代数式的转化能力。一般可以通过对代数式进行变形,把两种相关量写在等号的左边,不变的数写在右边。在看他们是乘还是除,继而判断是什么比例。以上就是我们学习的全部内容,谢谢。

反比例的意义教学设计篇十七

本堂课是在学生学习了正比例的基础上学习反比例,由于学生有了前面学习正比例的基础,加上正比例与反比例在意义上研究的时候存在有一定的共性,因此学生在整堂课的学习上与前面学习的正比例相比有明显的提高。

第一堂课在教学的时候,对于课本上的练一练没有进行选择,要求学生全部解答,结果发现学生化的时间比较多,而且效果也不是特别的理想。有了上次的经验,教师做适当的补充和引导,在第二节课的时候,学生的完成情况就比较理想,时间不多效率也高。

另外,由于在课始的导入环节中的未知每本页数与装订的本书的求解就已经知道求解方法,所遇课堂学生就没有刻意的去讲解,结果从课后的练习第二题来看,学生的掌握情况不是很好,虽然有些同学已经利用的了反比例的方法解答。后来想想本堂课学习的是反比例,既然已经学习了反比例,对于课后安排的这样的习题就不应该还只是利用上节课的方法去解答,应该很好的把这堂课所学习到的知识利用起来,一来是学生进一步理解反比例,二来可以为后面学生学习利用反比例解答应用题留下伏笔。

这个问题的提出,使我对于为什么教材在安排上引入了利用字母表示有了更好的理解,起初不太清楚为什么要用字母表示,现在想想,字母的标识其实是最能用数学语言来判断是不是成反比例,所以可以写成ah=s(一定)来说明底和高成反比例。这样学生在书写数量关系的时候,思维方法就会更明确。

《反比例的意义》一课是北师大版六年级下册教学内容,它是在教学《正比例的意义》的基础上的认识,因此在教学设计上,分为三步:。

第一,先从复习正比例开始,复习成正比例的条件和特点。通过“说一说成正比例的两个量是怎样变化”和“判断两个量是否成正比例”的练习,让学生回顾“一种量随着另一种量的变化而相应变化,两种量之间的比值一定。”的正比例的意义。然后引入新课题——反比例。

(从课堂的效果看,感觉在这个环节上的设计还是比较传统化,学生的回答中规中矩,学生的积极性和投入性不是很高,课堂气氛稍显沉闷。课后我想如果这样设计:给出路程,速度,时间,问怎样组合才能符合正比例的要求接着小结,“既然有正比例,那就有…”(让学生说出“反比例”)从而引出课题《反比例》,引出课题后,让学生先根据正比例的意义猜一猜什么是反比例,不管学生猜的对与错,让学生初步感知反比例,这样会不会更能调动起学生的积极性和学生的发散思维,为后面更好的学习作铺垫)。

第二,通过例2与例3两个情境(如果按教材的安排先讲例1,觉得会增加难度,让学生不知所以,于是这节课暂不讲例1),让学生了解反比例的意义以及特点,a,路程一定,速度与时间的关系;b,果汁总量一定,分的杯数与每杯的果汁量的关系。然后让学生自己总结出反比例的意义和成反比例的条件:一种量变化,另一种量也随着相反变化,在变化过程中,两种量的乘积一定。

(这个环节的设计,我采用了与教学正比例时同样的教学程序。考虑到上一节课的研究方法学生已经有了一定的认识,所以采取了放手的形式,引导后就直接把研究和讨论的要求给学生,让学生仿照正比例的学习再次的研究反比例的意义。但在教学过程中,感觉还是扶着学生走,有点放不开。)。

第三,在学生理解反比例意义的基础上,让学生通过练习尝试判断给出的两种量,是否成反比例。

1,在教学的过程中,能注意生活与实际的相结合,通过生活中的两个情境引导学生理解反比例,让学生容易上手,也容易去判断。

2,在提问的方面,基本兼顾了优生和中下生,但感觉面不够广。学生的回答很完整,而且也有条理性,感觉是平常课堂上要求的结果反映。

3,在教学的设计上,条理是清晰的,思路是明确的,但感觉还是有点不够活。如果让学生自己来设计问题,让学生互相提问题,编问题,让学生自己来探索,自己去提问,自己去发现,我想,这样可能会更好的调动起学生的积极性,发挥学生的质疑能力和创造力,效果一定会更好。

反比例的意义教学设计篇十八

1、理解反比例的意义,能根据反比例的意义,正确的判断两种量是否成反比例。

2、通过引导学生讨论探究,分析合作,使学生进一步认识事物之间的联系和发展变化的规律。

3、初步渗透函数思想。

引导学生总结出成反比例的量,是相关的两种量中相对应的两个数积一定,进而抽象概括出成反比例的关系式.

利用反比例的意义,正确判断两个量是否成反比例.

教法:自主探究,合作交流。

学法:小组合作交流。

教具:课件。

一、定向导学(5分).

1、下面两种量是不是成正比例?为什么?

购买练习本的价钱0.80元,1本;1.60元,2本;3.20元,4本;4.80元6本.

2、成正比例的量有什么特征?(口答)。

3、出示学习目标。

1、理解反比例的意义,能根据反比例的意义。

2、正确的判断两种量是否成反比例。

二、自主学习(15分).

1、自学课本p47例2。

思考:

a、表中的两种量是()和()。这两种量是不是相关联?为什么?

b、水的高度是随着()的变化而变化,水的高度越()杯子的底面积就越()。

c、相对应的杯子底面积和水的高度的乘积分别是(),一定吗?

d、这个积表示()表示它们之间的数量关系式是()。

(2)从中你发现了什么?这与复习题相比有什么不同?

a、学生讨论交流。

b、引导学生回答:

(3)教师引导学生明确:因为水的体积一定,所以水的高度随着底面积的.变化面变化。底面积增加,高度反而降低,底面积减少,高度反而升高,而且高度和底面积的乘积一定,我们就说高度和底面积成反比例关系,高度和底面积叫做成反比例的量。

(4)如果用字母x和y表示两种相关的量,用k表示它们的积一定,反比例可以用一个什么样的式子表示?板书:x×y=k(一定)。

三、合作交流(6分)。

1、成反比例的量应具备什么条件?

2、数学书第48页的做一做,学生独立完成,集体订正。

四、质疑探究(4分)。

举出生活中反比例关系的例子。

五、小结检测(4分)。

1、说说反比例的意义,如何判断两种量是否成反比例。

2、检测。

判断下面每题中的两个量是不是成反比例,并说明理由。

(1)路程一定,速度和时间。

(2)小明从家到学校,每分走的速度和所需时间。

(3)平行四边形面积一定,底和高。

(4)小林做10道数学题,已做的题和没有做的题。

(5)小明拿一些钱买铅笔,单价和购买的数量。

(6)你能举一个反比例的例子吗?

3、第51页8题。

4、第51页9题。

六、堂清(6分)。

p51练习九第10、11、12题。

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

用字母表示:x×y=k(一定)。

【本文地址:http://www.xuefen.com.cn/zuowen/14032061.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档