四年级数学植树问题教学设计(汇总20篇)

格式:DOC 上传日期:2023-11-21 07:49:19
四年级数学植树问题教学设计(汇总20篇)
时间:2023-11-21 07:49:19     小编:梦幻泡

总结是对过去一段时间的经验和收获的总结,有助于我们总结经验,查漏补缺。总结可以帮助我们更好地管理时间和资源。请大家参考以下范文,了解总结的写作风格。

四年级数学植树问题教学设计篇一

2、通过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单的植树问题。

2、渗透数形结合的思想,培养学生借助图形解决问题的意识;

3、培养学生的合作意识,养成良好的交流习惯。

1、通过实践活动激发热爱数学的情感;

2、感受日常生活中处处有数学,体验学习成功的喜悦。

学习者特征分析(结合实际情况,从学生的学习习惯、心理特征、知识结构等方面进行描述):

通过平时的观察,我发现四年级学生的思维仍以形象思维为主,但抽象逻辑思维有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。但这种能力不是那么强,在学习中很难独立的完成学习任务,但学生的合作意识已经有了很大的提高。能在学习中在教师的引导下积极参与学习,完成学习任务。适当的鼓励是激励学生学习,克服困难的最好方法。在生活经验方面,学生们看到过“道路两旁每隔一定距离会种有树”,但是,在这样的现象中包含哪些数学概念他们是不清楚的,需要教师针对此予以明确;在数学知识方面,他们知道“依此类推”和“除法的意义”,像“100米的小路,每隔5米栽一棵”,他们可以通过计算和画图的方法解决,只是对这些量之间存在的数量关系还有待进一步探究。

1、猜谜导入揭题。

师:“两棵小树十个杈,不长叶子不开花。能写会算还会画,天天干活不说话。”(手)。

师:生活中“间隔”随处可见,比如,每相邻两棵树之间的距离,也是一个间隔,这节课我们就一起来研究和解决一些简单的、与间隔有关的问题——植树问题。(板书课题:植树问题)。

【设计意图】以学生熟悉的手为素材,初步感受手指数与间隔数有的关系,使学生感受数学与生活的密切联系,在不知不觉中展开对数学问题的探索,激发探求植树问题的欲望。

1、激趣引入,启发探究积极性。

(课件出示)出示江口小学为绿化环境的招聘启事及设计要求。

招聘启示。

学校将进行校园环境美化,特诚聘环境设计师一名。要求设计植树方案一份,择优录取。

江口小学。

20xx.6。

设计要求:

在一条长20米的小路一边等距离植树,两端要栽。

【设计意图】通过招聘启示让学生设计植树方案的出发点是让所有参与者都能平等的、积极主动的参与到学习的全过程中,在参与中学习和构建新的知识、形成能力。

四年级数学植树问题教学设计篇二

上午我上了四年级数学《植树问题》结合自己上课情况和市三小教研员,橡胶所教研员,和本学期邢教研员的评价,做课后反思如下,我认为这节课有以下几点做得比较好:

一、创设情境,让数学走近生活。

创设与学生的生活环境和知识背景密切相关的、学生感兴趣的学习情境有利于学生积极主动地投入到数学活动中。课前导入我用学生了解的主席、国家总理植树活动,让学生知道植树的重要性,我选择学生的小手为素材,引入植树问题的学习。学生在手指并拢、张开的活动中,清晰地看出手指的个数与空格数之间是相差1的。然后做快速问答的游戏,使学生直观认识并总结出了间隔和点数的关系,为下面的学习作了铺垫,同时也激起了学生的学习兴趣。利用线段来分析给学生以清楚表示,找出规律。

在处理教材时我把例题改为条件开放的植树问题,例题的数学有点大,先找出小数据,将路的长度变成20米。如此修改的意图是,让学生在开放的情境中,突现学生的知识起点,从而用一一对应的思想方法让学生理解多1少1的原因,建立起深刻、整体的表象,提炼出植树问题解题的方法。在这里数据小了,便于学生利用线段图操作,建立数形结合,有利于学生的思考,降低了学习的难度。

二、注重学生的自主探索,体验探究乐趣。

体验是学生从旧知识向隐含的新知识迁移的过程。教学中,我创设了情境,向学生提供多次体验的机会,为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的时间与空间。如果说生活经验是学习的基础,生生间的合作交流是学习的推动力,那么借助图形帮助理解是学生建构知识的一个拐杖。有了这根拐杖,学生们才能走得更稳、更好。因此,在教学过程中,我注重了对数形结合意识的渗透。教学中我先激励学生自己动手拭操作,想办法设计植树方案,在学生自主探索的过程中很多学生采用了画线段图的方式,交流时利用多媒体再现线段图,让学生看到把一条线段平均分成4段,加上两个端点,一共有5个点,也就是要栽5棵树。使学生发现植树时准备树苗的问题并不能简单的用除法来解决。改变间距后,段数和棵数相应也发生了变化,紧接着提出问题:“你能找出什么规律?”启发学生透过现象发现规律,也就是栽树的棵数要比段数(间隔数)多1。最后按照教材要求应用发现的规律来解决前面的植树问题:100米长的小路,按5米可以平均分成20段,也就是共有20个间隔,而栽树的棵数比间隔数多1,因此一共要准备21棵树苗。这样就把整个分析、思考、解决问题的全过程展示出来,让学生经历这个过程并从中学习一些解决问题的方法和策略。

三、关注植树问题爱护环境。

植树问题的模型是现实世界中一类相近事件的放大,它源于现实,又高于生活。所以,在现实中有着广泛的应用价值。为了让学生理解这一建模的意义,加强了模型应用功能的练习,本课练习有以下两个层次:

(1)直接应用模型解决简单的实际问题。课堂上,安排学生自主完成已知总长和间距求棵数、已知棵数和间距求总长的练习,让学生从正反两个方面出发,直接应用模型解决简单的实际问题。训练学生双向可逆思维的能力。给学出示建公车站,和生活中钟表问题。

(2)推广到与植树问题相近的一些问题中,让学生进一步体会,现实生活中的许多不同事件,公共汽车站台的事件,都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,感悟数学建模的重要意义。

四、改正措施。

这节课充分利用了多媒体设备,所以课堂容量较大,时间的点紧张,但是也造成个别学生吃不透的现象。在以后的教学中要注意把握好度,适当进行取舍,照顾好中差生。谢谢老师们指导。

四年级数学植树问题教学设计篇三

让学生自己动手,自己实验,得出规律,解决生活中的实际问题。

通过小组合作、交流,培养学生的协作精神。

长方形泡沫塑料板(每小组一块,正面画圆,背面画其他的封闭图形),牙签,画有长方形的练习纸。

一、复习铺垫。

指名回答,引导学生说出棵数与段数的.关系:

两端都种只种一端两端都不种。

棵数=段数+1棵数=段数棵数=段数-1。

请你把这个规律跟同桌说一遍;教师在黑板上贴示。

二、引入新课:

这些你能找到它的端点来吗?这就是我们今天要重点来讨论的内容封闭路线上的植树的规律。

1、湖、花坛等等,它们的外围线路都是封闭的。它和不封闭路线上的植树规律是否相同呢?我们自己动手种一下就知道了。

2)、学生以小组为单位操作;

3)、交流:你们小组种了几棵,把圆分成了几段?

4)、初步概括:你们发现了什么规律?(在圆形路线上植树,棵数=段数)。

2、是不是每种封闭路线上的植树规律都是这样的呢?我们还要进一步研究。

1)、出示长方形空地题目。

教师巡视指导;

3)、学生交流:说说你们小组是怎么种的?种了几棵?把长方形分成了几段?

得出:种植路线是长方形的,种植棵数与种植段数是相等的。

4)、出示教科书第120页的例3,让学生先独立思考,再讨论解决。

5)、展示不同的解决问题的方法,集体讨论判断正误。

3、研究在其他封闭图形上种树:

a、你还想在什么封闭路线上种树?(指名回答)。

b、学生在泡沫塑料板的各种封闭图形上种树,边种边数:种了几棵?分成了几段?

c、小组交流。

4、得出规律:在封闭路线上植树:棵数=段数(板书)。

5、联系:它和非封闭路线上的哪种情况相同?

(告诉学生事物就是这样相互联系的!

6、质疑问难:大家还有什么疑问吗?

如果在不规则的封闭路线上植树,棵数和段数是否相同?

三、尝试练习:

练习第121页的做一做上的习题。

学生尝试练习,交流,指名板书解题方法。

四、课堂小结。

这节课你最大的收获是什么?

四年级数学植树问题教学设计篇四

教学。

设计由本站会员“夜色恋人”投稿精心推荐,小编希望对你的学习工作能带来参考借鉴作用。

作为一位无私奉献的人民教师,可能需要进行教学设计编写工作,借助教学设计可以提高教学效率和教学质量。如何把教学设计做到重点突出呢?以下是小编精心整理的小学人教版四年级数学植树问题教学设计,仅供参考,欢迎大家阅读。

教学目标分析(结合课程标准说明本节课学习完成后所要达到的具体目标):

知识技能目标:

2、通过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单的植树问题。

过程目标:

2、渗透数形结合的思想,培养学生借助图形解决问题的意识;

3、培养学生的合作意识,养成良好的.交流习惯。

情感目标:

1、通过实践活动激发热爱数学的情感;

2、感受日常生活中处处有数学,体验学习成功的喜悦。

学习者特征分析(结合实际情况,从学生的学习习惯、心理特征、知识结构等方面进行描述):

通过平时的观察,我发现四年级学生的思维仍以形象思维为主,但抽象逻辑思维有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。但这种能力不是那么强,在学习中很难独立的完成学习任务,但学生的合作意识已经有了很大的提高。能在学习中在教师的引导下积极参与学习,完成学习任务。适当的鼓励是激励学生学习,克服困难的最好方法。在生活经验方面,学生们看到过“道路两旁每隔一定距离会种有树”,但是,在这样的现象中包含哪些数学概念他们是不清楚的,需要教师针对此予以明确;在数学知识方面,他们知道“依此类推”和“除法的意义”,像“100米的小路,每隔5米栽一棵”,他们可以通过计算和画图的方法解决,只是对这些量之间存在的数量关系还有待进一步探究。

教学过程(按照教学步骤和相应的活动序列进行描述,要注意说明各教学活动中所需的具体资源及环境):

一、创设情景,激发兴趣。

1、猜谜导入揭题。

师:“两棵小树十个杈,不长叶子不开花。能写会算还会画,天天干活不说话。”(手)。

师:生活中“间隔”随处可见,比如,每相邻两棵树之间的距离,也是一个间隔,这节课我们就一起来研究和解决一些简单的、与间隔有关的问题——植树问题。(板书课题:植树问题)。

【设计意图】以学生熟悉的手为素材,初步感受手指数与间隔数有的关系,使学生感受数学与生活的密切联系,在不知不觉中展开对数学问题的探索,激发探求植树问题的欲望。

二、经历探究,发现规律。

1、激趣引入,启发探究积极性。

(课件出示)出示江口小学为绿化环境的招聘启事及设计要求。

招聘启示。

学校将进行校园环境美化,特诚聘环境设计师一名。要求设计植树方案一份,择优录取。

设计要求:

在一条长20米的小路一边等距离植树,两端要栽。

【设计意图】通过招聘启示让学生设计植树方案的出发点是让所有参与者都能平等的、积极主动的参与到学习的全过程中,在参与中学习和构建新的知识、形成能力。

小学四年级数学植树问题教学设计如果还不能满足你的要求,请在本站搜索更多其他小学四年级数学植树问题教学设计范文。

四年级数学植树问题教学设计篇五

教学目标分析(结合课程标准说明本节课学习完成后所要达到的具体目标):

知识技能目标:

2、通过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单的植树问题。

过程目标:

2、渗透数形结合的思想,培养学生借助图形解决问题的意识;

3、培养学生的合作意识,养成良好的交流习惯。

情感目标:

1、通过实践活动激发热爱数学的情感;

2、感受日常生活中处处有数学,体验学习成功的喜悦。

学习者特征分析(结合实际情况,从学生的学习习惯、心理特征、知识结构等方面进行描述):

通过平时的观察,我发现四年级学生的思维仍以形象思维为主,但抽象逻辑思维有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。但这种能力不是那么强,在学习中很难独立的完成学习任务,但学生的合作意识已经有了很大的提高。能在学习中在教师的引导下积极参与学习,完成学习任务。适当的鼓励是激励学生学习,克服困难的最好方法。在生活经验方面,学生们看到过“道路两旁每隔一定距离会种有树”,但是,在这样的现象中包含哪些数学概念他们是不清楚的,需要教师针对此予以明确;在数学知识方面,他们知道“依此类推”和“除法的意义”,像“100米的小路,每隔5米栽一棵”,他们可以通过计算和画图的方法解决,只是对这些量之间存在的数量关系还有待进一步探究。

教学过程(按照教学步骤和相应的活动序列进行描述,要注意说明各教学活动中所需的具体资源及环境):

一、创设情景,激发兴趣。

1、猜谜导入揭题。

师:“两棵小树十个杈,不长叶子不开花。能写会算还会画,天天干活不说话。”(手)。

师:生活中“间隔”随处可见,比如,每相邻两棵树之间的距离,也是一个间隔,这节课我们就一起来研究和解决一些简单的、与间隔有关的问题——植树问题。(板书课题:植树问题)。

【设计意图】以学生熟悉的手为素材,初步感受手指数与间隔数有的关系,使学生感受数学与生活的密切联系,在不知不觉中展开对数学问题的探索,激发探求植树问题的欲望。

二、经历探究,发现规律。

1、激趣引入,启发探究积极性。

(课件出示)出示江口小学为绿化环境的招聘启事及设计要求。

招聘启示。

学校将进行校园环境美化,特诚聘环境设计师一名。要求设计植树方案一份,择优录取。

江口小学。

20xx.6。

设计要求:

在一条长20米的小路一边等距离植树,两端要栽。

【设计意图】通过招聘启示让学生设计植树方案的出发点是让所有参与者都能平等的、积极主动的参与到学习的全过程中,在参与中学习和构建新的知识、形成能力。

四年级数学植树问题教学设计篇六

本册教材的数学广角主要是渗透有关植树问题的思想方法。它通过生活中常见实际问题,让学生发现规律,抽取出植树问题的数学模型,再用来解决简单的实际问题。本课时是本单元的第2课时,是探讨关于一条线段并且两端都不栽的情况。

“两端都不栽”与“两端都栽”的区别是比较明显的,可以借助线段图帮助学生建立两者的表象,再正确建立数学模型。

教学目标。

1、建立“树的棵数=间隔数-1”的数学模型;能利用数学模型解决简单的实际问题。

2、在解决问题的过程中发现规律,建立模型,应用模型,建立初步的解决植树问题的思想方法。

3、体会数学模型的生活意义与作用,体验到学习的`喜悦。

学习重点:建立“树的棵数=间隔数-1”的数学模型。

学习难点:“两端都不栽”与“两端都栽”有什么联系与区别。

预设过程。

一、复习两端都栽。

在一条12路的一侧种树(两端都种),每2米种一棵,共需种几棵?

1、揭题:植树问题。

2、呈现问题,请学生解决。新课标第一网。

3、反馈解法,强调“两端都种”与“间隔数+1”。

二、研究两端都不栽。

在一条12路的一侧种树(两端都不种),每2米种一棵,共需种几棵?

1、提出研究课题:要是两端都不种呢?

2、呈现问题,请学生思考后试解。

3、反馈解法,强调“两端都不种”与“间隔数-1”。

4、比较:“两端都种”与“两端都不种”有什么不同?

三、练习。

1、画示意图,完成p118例2,注意“两端都不种”与“两旁都种”。

2、画示意图,完成做一做1,注意“两端都种”与“两旁都种”。

3、画示意图,完成做一做2,发现“锯的次数=段数-1”。

4、完成补充题,知道“四层楼三个间隔”。

四、总结。

四年级数学植树问题教学设计篇七

上午我上了四年级数学《植树问题》结合自己上课情况和市三小教研员,橡胶所教研员,和本学期邢教研员的评价,做课后反思如下,我认为这节课有以下几点做得比较好:

创设与学生的生活环境和知识背景密切相关的、学生感兴趣的学习情境有利于学生积极主动地投入到数学活动中。课前导入我用学生了解的主席、国家总理植树活动,让学生知道植树的重要性,我选择学生的小手为素材,引入植树问题的学习。学生在手指并拢、张开的活动中,清晰地看出手指的个数与空格数之间是相差1的。然后做快速问答的游戏,使学生直观认识并总结出了间隔和点数的关系,为下面的学习作了铺垫,同时也激起了学生的学习兴趣。利用线段来分析给学生以清楚表示,找出规律。

在处理教材时我把例题改为条件开放的植树问题,例题的数学有点大,先找出小数据,将路的长度变成20米。如此修改的意图是,让学生在开放的情境中,突现学生的知识起点,从而用一一对应的思想方法让学生理解多1少1的原因,建立起深刻、整体的表象,提炼出植树问题解题的方法。在这里数据小了,便于学生利用线段图操作,建立数形结合,有利于学生的思考,降低了学习的难度。

体验是学生从旧知识向隐含的新知识迁移的过程。教学中,我创设了情境,向学生提供多次体验的机会,为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的时间与空间。如果说生活经验是学习的基础,生生间的合作交流是学习的推动力,那么借助图形帮助理解是学生建构知识的一个拐杖。有了这根拐杖,学生们才能走得更稳、更好。因此,在教学过程中,我注重了对数形结合意识的渗透。教学中我先激励学生自己动手拭操作,想办法设计植树方案,在学生自主探索的过程中很多学生采用了画线段图的方式,交流时利用多媒体再现线段图,让学生看到把一条线段平均分成4段,加上两个端点,一共有5个点,也就是要栽5棵树。使学生发现植树时准备树苗的问题并不能简单的用除法来解决。改变间距后,段数和棵数相应也发生了变化,紧接着提出问题:“你能找出什么规律?”启发学生透过现象发现规律,也就是栽树的棵数要比段数(间隔数)多1。最后按照教材要求应用发现的规律来解决前面的植树问题:100米长的小路,按5米可以平均分成20段,也就是共有20个间隔,而栽树的棵数比间隔数多1,因此一共要准备21棵树苗。这样就把整个分析、思考、解决问题的全过程展示出来,让学生经历这个过程并从中学习一些解决问题的方法和策略。

植树问题的模型是现实世界中一类相近事件的放大,它源于现实,又高于生活。所以,在现实中有着广泛的应用价值。为了让学生理解这一建模的意义,加强了模型应用功能的练习,本课练习有以下两个层次:

(1)直接应用模型解决简单的实际问题。课堂上,安排学生自主完成已知总长和间距求棵数、已知棵数和间距求总长的练习,让学生从正反两个方面出发,直接应用模型解决简单的实际问题。训练学生双向可逆思维的能力。给学出示建公车站,和生活中钟表问题。

(2)推广到与植树问题相近的一些问题中,让学生进一步体会,现实生活中的许多不同事件,公共汽车站台的事件,都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,感悟数学建模的重要意义。

这节课充分利用了多媒体设备,所以课堂容量较大,时间的点紧张,但是也造成个别学生吃不透的现象。在以后的教学中要注意把握好度,适当进行取舍,照顾好中差生。谢谢老师们指导。

四年级数学植树问题教学设计篇八

教学内容:

人教版五年级上册数学第七单元数学广角植树问题

教学目标:

知识技能目标:

1、利用学生熟悉的生活情境,通过动手操作的实践活动,使他们发现间隔数与植树棵数之间的关系。

2、通过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单的植树问题。

过程目标:

1、使学生经历感知、理解知识的过程,培养学生从实际问题中发现规律,并应用规律来解决问题的能力。

2、渗透数形结合的思想,培养学生借助图形解决问题的意识。

3、培养学生的合作意识,养成良好的交流习惯。

情感目标:

1、通过实践活动激发热爱数学的情感;

2、感受日常生活中处处有数学,体验学习成功的喜悦。

教学重点:

理解“植树问题(两端要种)”的特征,应用规律解决问题

教学难点:

理解“间距数+1=棵数,棵数-1=间距数

教学过程:

1、教学“间隔”的含义

师:每位同学都有一双灵巧的手,他不但会写字、画画、干活,在他里面还藏着有趣的数学知识,你想了解他吗?请举起你的右手。(五指伸直、并拢、张开)

2、举例生活中的“间隔”

师:生活中的“间隔”到处可见,你能举几个例子吗?(两棵树之间、两个同学之间、钟声…)

3、理解间隔数,引入课题。

在一条路上植树,每两棵树之间相等的段数叫间隔数(课件演示),每个间隔的长叫间距,研究间隔数和棵数之间关系的问题,我们统称为植树问题,这节课我们来研究植树问题。(板书课题)

1、出示招聘启事

在操场边,有一条20米长的小路。学校计划在小路一边种树,要求每隔5米栽一棵。特聘请校园设计师数名,要求设计植树方案一份,择优录取。

2、出示例题,理解题意:

师:(课件出示例题。)

(课件解释关键词语,加深学生理解)

师:你认为要求一共植树多少棵,关键是知道什么?(间隔数)那么间隔数和棵数之间是什么关系?下面我们就来研究。

3、出示合作要求。

(1)教师讲解小组合作要求。

(2)学生4人小组开始合作学习,利用学具设计出植树方案。(可

以用不同的形式表达)

(3)教师巡视,指导学生小组合作。

(4)小组作品展示,及小组评价。教师及时点评学生的设计方案,并及时鼓励学生。

(5)引导学生总结出在实际生活中的植树情况可以分为三种:第一种两端都栽,第二种:只栽一端,第三种:两端都不栽。

4、以小组为单位探究棵数与间隔数间的关系:

(1)数一数:数出棵数和间隔数。

(2)比一比:比较出棵数和间隔数之间的规律。

两端都要栽时,植树的棵数比间隔数多1(棵数=间隔数+1)。

只栽一端时,植树的棵数与间隔数相同(棵数=间隔数)。

两端都不栽时,植树的棵数比间隔数少1(棵数=间隔数-1)。

1、公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?

2、广场上的大钟5时敲响5下,8秒敲完。12时敲12下,需要多长时间敲完?

四年级数学植树问题教学设计篇九

p13例6(0的运算)。

1、使学生掌握关于0的运算时应该注意的问题。

2、0不能做除数及原因。

3、复习巩固《四则运算》的知识。

0不能做除数及原因。

(一)谈话导入。

师:我们上周一直在学习四则运算,主要讲了四则混合运算,不知道你们的掌握情况怎么样?现在我们就来做几道题。

课件显示:

(2)8×7÷2。

(3)2+3+6×5。

(4)72÷9-1×3。

(5)(9+11)×5。

做好评比!

(二)回顾四则运算的概念、运算顺序。

老师提问,学生回答,老师板书,然后课件再次显示关于四则运算的.概念以及四则混合运算的运算顺序。

加法。

减法。

乘法。

除法。

没有括号的。

加减混合或乘除混合:

加减乘除混合:

先乘除,再加减。

有括号的:

先算括号里面的。

文本框:四则运算。

(三)新授。

1、引入。

(1)快速口算。

排火车进行快速口算。

课件显示:。

(1)100+0=(2)0+56=。

(3)0×78=(4)154-0=。

(7)0÷76=(8)235+0=。

(11)0×29=(12)9×0=。

(2)举例总结关于0的四则运算,在运算时应该注意些什么。

课件显示。

一个数加上0,还得原数;

被减数等于减数,差是0;

一个数减去0,还得原数;

一个数和0相乘,仍得0;

0除以一个非0的数,还得0;

100+0=100。

0+56=56。

154-0=154。

99-0=99。

0×78=0。

29×0=0。

0÷23=0。

0÷76=0。

(3)0不能作除数。

课件显示:

0不能作除数。

18÷9=?2×9=18。

36÷6=?6×6=36。

6÷0=??×0=6。

6÷0是不可能得到商的,因为找不到一个数同0相乘得到6。

0÷0=??×0=0。

0÷0是不可能得到一个确定的商,因为0乘以任何数都得0。

(4)巩固运用0不能作除数。

考考你!判断对错。

课件显示:

(1)128+0=128(2)0+45=45。

(3)88+0=0(4)1×0=1。

(5)0×97=0(6)0÷56=0。

(7)16÷0=0(8)60-0=60。

(9)0÷76=76(10)10÷0=10。

(四)巩固练习。

1、应用题的解答。

课件显示:

寒假中,小明3天完成87道口算题,照这样计算,他6天能完成多少道口算题?

2、判断并改错。

=75。

240÷40×3。

=240÷120。

=2。

让学生先判断再自己改错,提醒注意在四则混合运算中的运算顺序!

(五)做课堂练习,结课。

做书《练习二》的第二题,以巩固。

五、作业设计。

1、背会《四则运算》的概念及四则混合运算的运算顺序;

2、做《学习之友》单元测试题。

四年级数学植树问题教学设计篇十

1.在具体问题情境中,感受求平均数是解决一些实际问题的需要,通过操作和思考体会平均数的意义,学会并能灵活运用方法求简单数据的平均数(结果是整数)。

2.能运用平均数的知识解释简单的生活现象,解决简单实际问题,进一步积累分析和处理数据的方法,发展统计观念。

一、设疑引欲,提出问题。

师:体育课上,同学们在进行套圈比赛,一起来看看。比赛分男生一组,女生一组,规定每人套15个圈。

师:(出示前三轮比赛成绩)这是前三轮比赛的结果,你觉得哪组套得更准些?为什么?

(学生讨论、交流)。

师:比赛继续进行。(课件继续出示)现在哪个组套得更准些呢?(„„)我觉得女生组套得更准些。因为她们套中的个数多呀!

(学生讨论、交流)。

2、移多补少,平均数的意义。

师:指名汇报,显示移多补少的过程,结果:男生平均每人套中7个。

师:数学上,像这样从多的里面移一些补给少的,使得每个数都一样多。这一过程就叫“移多补少”。(板书:移多补少)。

师:这里的“7”是什么意思?是指“王宇”套中的个数吗?(学生讨论、交流,结合统计图汇报)。

师(出示女生套圈统计图):你估计女生平均每人套中几个?如果用一条线像表示男生平均每人套中个数那样表示女生的,你觉得这条线可能放在哪儿?(学生思考、汇报)出示一条线置于“10”的位置,能放在这儿吗?为什么?出示一条线置于“4”的位置,能放在这儿吗?为什么?你觉得她们的平均数在哪些数之间?(4~10)。

师:现在怎么办?学生汇报“移多补少”,课件演示过程。

生:有的比平均数多(师:多了几个?)有的比平均数少?(师:少了几个?)(课件分别演示比平均数多和少的直条)。

师:比平均数多的个数和比平均数少的个数怎么样?(相等、一样多)师:会不会是一种巧合呢?我们再来看看女生组的情况。谁来说说对这个“6”,你是怎样理解的?是不是每个女生实际都套中6个,实际是怎样的?看着屏幕一起来说说。(根据学生回答,课件演示女生比平均数多和少的直条)。

师:平均数会比这里最大的数大吗?师:会比最小的数小吗?

师:对了,平均数是通过把多的部分移给少的部分,使大家都相等而得到的数,所以它在最小数和最大数之间。其实,这是平均数的又一个重要特点。利用这一特点,我们可以大概地估计出一组数据的平均数。

3、探索计算方法。

(1)师:除了移多补少的方法,你还有其他方法求出平均数吗?(学生汇报)。

师:好办法,给这种方法也取个名字:求和均分。师:能列出算式吗?(6+9+7+6=28(个))。

师:28表示什么?谁来说一说。(男生组套中的总个数)师:为什么要除以4?(男生有4人)师:道理讲得很清楚。

(2)师:下面请大家自己算一算女生组的平均数师:谁来说说你的方法。(10+4+7+5+4=30(个))师:(根据学生回答板书,指着30)30个表示什么?师:(指板书)为什么这里用总数除以的是5而不是4?师:解释得真好。

学生独立完成,指名汇报交流。

指出:在实际操作中,我们可以灵活选择合适的方法解题。

2、刚才我们知道了,超出平均数的部分和不到平均数的部分一样多。把握了这一特点,我们可以巧妙地解决相关的实际问题。

(师出示如下三张纸条,如图9)师:老师大概估计了一下,觉得这三张纸条的平均长度大约是10厘米。不计算,你能根据平均数的特点,大概地判断一下,老师的这一估计对吗?生:我觉得不对。因为第二张纸条比10厘米只长了2厘米,而另两张纸条比10厘米一共短了5厘米,不相等。所以,它们的平均长度不可能是10厘米。

师:照你看来,它们的平均长度会比10厘米长还是短?生:

师:它们的平均长度到底是多少,还是赶紧口算一下吧。

指名汇报。

师:你觉得,当把它变成多少的时候,它们的平均数是8?(5)你是怎么想的?

师:现在,请大家观察下面的三幅图,你有什么发现?把你的想法在小组里说一说。

生:我发现,每一幅图中,前三次成绩不变,而最后一次成绩各不相同。师:最后的平均数——生:也不同。

师:看来,要使平均数发生变化,只需要改变其中的几个数?生:一个数。

师:瞧,前两个数始终不变,但最后一个数从5变到8再变到11,平均数——。

生:也跟着发生了变化。

师:难怪有人说,平均数这东西很敏感,任何一个数据的“风吹草动”,都会使平均数发生变化。现在看来,这话有道理吗?(生:有)其实呀,善于随着每一个数据的变化而变化,这也是平均数的一个重要特点。在未来的数学学习中,我们还将就此作更进一步的研究。

3、出示第3题。

师:下面这些问题,同样需要我们借助平均数的特点来解决。瞧,学校篮球队的几位同学正在进行篮球比赛。李强所在的篮球队,队员的平均身高是160厘米。

1.每个队员的身高一定是160厘米,对吗?

师:为了使同学们对这一问题有更深刻的了解,我还给大家带来了一幅图。(出示中国男子篮球队队员的合影)这是以姚明为首的中国男子篮球队队员。老师从网上查到这么一则数据,这支篮球队队员的平均身高为200厘米。这是不是说,篮球队每个队员的身高都是200厘米?师:你知道姚明的身高是多少吗?生:姚明的身高是226厘米。

师:看来,还真有超出平均身高的人。不过,既然队员中有人身高超过了平均数——。

生:那就一定有人身高不到平均数。

师:没错。据资料显示,这位队员的身高只有178厘米,远远低于平均身高。看来,平均数只反映一组数据的整体水平,并不代表其中的每一个数据。

师:可别小看这一数据哦。10年前,中国男性的平均寿命大约是69岁。比较一下,发现了什么?生:中国男性的平均寿命比原来长了。

(师呈现相关资料:中国女性的平均寿命大约是78岁)师:发现了什么?

生:女性的平均寿命要比男性长。

师:既然这样,那么,如果有一对60多岁的老夫妻,是不是意味着,老奶奶的寿命一定会比老爷爷长?生:不一定!生:虽然女性的平均寿命比男性长,但并不是说每个女性的寿命都会比男性长。万一这老爷爷特别长寿,那么,他完全有可能比老奶奶活得更长些。

师:说得真好!平均数的知识生活中随处可见。希望我们同学们做个有心人,用学到的知识解决一些问题。最后,让我们一起了解一些实际的平均数据。

四年级数学植树问题教学设计篇十一

教学目标:

1、生进一步掌握含有两级运算的'运算顺序,正确计算三步式题。

2、生的头脑中强化小括号的作用。

3、习中总结归纳出四则混合运算的顺序。

教学重、难点:掌握含有两级运算的运算顺序,正确计算三步式题。

教学用具:四则运算运算顺序归纳、

教学过程:

一、复习引入、忆前两节课的学习内容,回顾学习过的四则运算顺序。

前面我们学习了几种不同的四则运算,你们还记得吗?谁能说说你在前面都学会了哪些四则运算顺序?(根据学生的回答进行板书。)。

二、新授。

出示例5(1)42+6×(12-4)(2)42+6×12-4。

学生在练习本上独立解答。(画出顺序线)两名学生板演。全班学生进行检验。

学生针对问题发表自己的意见。

概括:加法、减法、乘法和除法统称四则运算。(板书)。

谁能把我们学习的四则运算的运算顺序帮大家来总结一下?(学生自由回答。)。

三、巩固练习p12/做一做1、2p14/4(教师巡视纠正。)。

四、作业p14—15/2、3、5—7。

板书设计:四则运算。

(1)42+6×(12-4)(2)42+6×12-4。

=42+6×8=42+72-4。

=42+48=114-4。

=90=110。

运算顺序:(1)在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。

(2)在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法。

(3)算式里有括号的,要先算括号里面的。

加法、减法、乘法和除法统称四则运算。

四年级数学植树问题教学设计篇十二

教学目标:

一、知识与技能性:

1.利用学生熟悉的生活情境,通过动手操作的实践活动,让学生发现间隔数与植树棵数之间的关系。

2.通过小组合作、交流,使学生能理解间隔数与植树棵数之间的规律。

3.能够借助图形,利用规律来解决简单植树的问题。

二、过程与方法:

1.进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。

2.渗透数形结合的思想,培养学生借助图形解决问题的意识。

3.培养学生的合作意识,养成良好的交流习惯。

三、情感态度与价值观。

通过实践活动激发热爱数学的情感,感受日常生活中处处有数学、体验学习成功的喜悦。

教学重、难点。

引导学生在观察、操作和交流中探索并发现间隔数与棵数的规律,并能运用规律解决实际问题。

教学准备:

课件。

教学过程:

一、动手种树,初步感知。

1、创设情景。

2、理解题意。

[出示要求]:在操场边上,有一条20米长的小路,学校计划在小路的一边种树,请按照每隔5米种一棵的要求,设计一份植树方案,并说明你的设计理由。

师:从这份要求上,你能获得哪些信息?

(20米长的小路,一边,每隔5米种一棵)。

3、设计方案,动手种树。

师:了解了信息,请同学们设计一份植树方案。你可以用这条线段来代表20米长的小路,其中每一小段的长度是1厘米,我们用它来表示1米长的小路,请你用自己喜欢的图案或图形来表示小树苗,把你设计的方案画一画。比一比,谁画得快种得好,老师就聘请他作学校的环境设计师。

学生活动,教师巡视指导。

4、反馈交流。

师:根据你的方案,需要种几棵树?

师:同学们真会动脑筋,设计出了这么多的方案。那他们的方案分别是怎样的呢?

请设计师们给大家作一下介绍。

师:他的设计符合要求吗?

师:这位同学是按照每隔5米种一棵的要求来设计的,我们把这个距离叫做间隔距离,在这份设计方案中,有几个间隔距离呢?我们一起来数一数。有4个这样的间隔距离。像这样间隔距离的个数我们又把它叫做间隔数。

师:接下来我们来看看种4棵树的设计方案是怎样的?

生答。

师:最后我们来看看种3棵树的设计方案又是怎样的呢?

生答。

师:就一个要求,同学们就设计出了三种不同的植树方案,真是太能干了!

看来你们都有成为环境设计师的资格。李老师会把你们的方案上交到学校的。

师:第一种方案,在路的头尾都种了一棵树,我们就把它叫做是“两端都种”的植树方案,第二种方案,只种头不种尾或者只种尾不种头,我们就把它叫做是“只种一端”的植树方案,第三种植树方案头尾都不种树,我们就把它叫做是“两端不种”的植树方案。(板书:两端都栽只栽一端两端不栽)。

二、合作探究,总结方法。

1、总结规律。

师:现在我们一起来研究一下,在这三种植树方案中,它们的间隔数和树的棵数之间分别有着什么样的关系呢?同桌同学先讨论讨论,然后完成这张表格。

植树方案间隔数(个)棵数(棵)间隔数与棵数的关系。

学生反馈交流,师生共同完成表格。

师小结:刚才我们通过每隔5米种一棵树的要求,发现了植树的三种方案,并知道了每种方案中棵数与间隔数之间的关系,接下来我们重点来研究“两端都种”的植树问题。

(学生活动后反馈交流)。

师小结。

2、运用规律。

三、开放练习,应用方法。

(1)学生独立解答。

(2)全班交流结果。

2、师:如果两侧都要种,一共需要多少棵樟树苗?(把第1题中的“一侧”改为“两侧”?)。

(1)学生独立解答。

(2)集体反馈。

(1)学生独立解答。

(2)集体反馈。

师小结。

(1)学生独立解答。

(2)集体反馈。

师:看来,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决。

6、书本p122练习二十第4题。

四、课堂小结,课外延伸。

师:通过这节课的学习你有什么收获?

(主板书)(副板书)。

间隔距离间隔数棵数。

两端要栽:间隔数+1=棵数1米20个21棵。

只栽一端:间隔数=棵数2米10个11棵。

两端不栽:间隔数-1=棵数4米5个6棵。

10米2个3棵。

四年级数学植树问题教学设计篇十三

教学目标:

1、通过探究发现一条线段上两端要种的植树问题的规律。

2、使学生经历和体验“复杂问题简单化”的解题策略和方法。

3、让学生感受数学在日常生活中的广泛应用,尝试用数学的.方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

教学过程:

一、创设情景。

1、我们来看这幅图(/|/|/|),提问:人数与杠杆数有什么关系?

边板书边说:“一个人后面一根杠杆,一个人后面一根杠杆,一个人后面一根杠杆,人数与杠杆数一一对应,人数=杠杆数”。

2、我们再来看这幅图(/|-|-|),提问:他们在抬杠杆时出现了什么问题?

请大家讨论一下,为什么左边的杠杆没有抬起来?怎样才能把左边的杠杆抬起来?

1)增加1人(动画演示)。

提问:人数与杠杆数有什么关系?

板书:人数=杠杆数+1。

提问:你能说说这两幅图的区别吗?

板书:两端有人一端有人。

2)首尾相接(动画演示)。

提问:人数与杠杆数有什么关系?

板书:人数=杠杆数。

提问:如果有4人,怎样才能把4根杠杆抬起来?5人呢?

小结:围成一个封闭图形时,人数=杠杆数。

二、探究新知。

1、p.117例题1。

1)学生读题。

审题:每隔5米栽一棵,怎么理解?(每段5米)两端要栽,说明什么?

提要求:请同学们先独立解题,再由小组讨论解题思路以及理由。

汇报:先算什么?

提示:如果我们一时想不清要不要加1,我们怎么办?我们可以先把数据改成小一点,再画线段图,找出规律再解答。

学生画出线段图后说说规律。

2)对比后揭示课题:

我们来对比一下抬杠杆与植树有什么联系?

树的棵数相当于什么?

两端都有人相当于什么?

间隔数相当于什么?

教师小结:我们把研究间隔数与棵数之间的关系的问题称为植树问题。

3)改编题:

如果把“一边植树”改成“两边植树”,怎么解答?

你准备先算什么?

学生独立解题后交流答案。

三、尝试练习。

1、p.118做一做。

学生读题后提问:每隔6米,就是什么?

学生看线段图中的第一棵和最后一棵,说说是两端都种还是一端种?先算什么?

独立解答。交流答案。

2、出示p.122t.2.3.1。

让学生独立解答。

汇报交流。

重点强调:t.1。

课件演示5时的敲钟过程,让学生说说什么时候敲完,敲的下数相当于植树问题中的什么?敲钟的时间相当于什么?再说说解题思路。

四、拓展练习。

出示题目:“起点至第一栏的距离为13.72米,中间共有10个栏,栏间距离为9.14米,最后一栏至终点的距离是14.02米。你们知道他从起点到终点跑了多少米吗?”

出示线段图后,学生独立解答后交流。

五、课堂总结。

学生说说有什么收获。

教师补充强调:植树问题中,有四种不同的类型,其中当两端都种时,棵数=间隔数+1。

四年级数学植树问题教学设计篇十四

1、经历收集日常生活中常见大数的过程,并能说出这些大数的意义。

2、能对多位数进行估计,发展估计意识。

3、会正确读、写多位数。

对多位数进行估计,发展估计意识。

会正确读、写多位数。

1、教师以参与者的身份,出示一些我国第五次人口普查的数据,以供学生讨论。

(1)你能读出这些数吗?

(2)你能写出香港和澳门的人口数吗?

2、让学生对收集的数据根据大小进行分类,然后与学生共同讨论“亿以内的数”的读法,并让学生在读的过程中能自己归纳读数的方法;接着与学生讨论“亿以上的数”的读法。学生在进行读数时,必须与数位顺序表结合起来,以增强学生的.直观性。同样,在写数方面,也可以分两步进行,先写“亿以内的数”,再写“亿以上的数”。

3、如果学生收集的数据中没有特殊的多位数,如“级的中间零”、“级的末尾零”等,教师可以作一些补充,也可以组织学生先讨论这些特殊数据的读写方法,然后再加以指导。

4、总结讨论。与同学交流你是怎样读数和写数的。

第7页“试一试”第1题,教师在组织学生“说一说”时,可以先让学生收集一些当地的有关人口数据,在此基础上,引出一些比较大的数据,以便于学生能体验到大数据的实际意义。同样,也可以让学生收集一些其他方面的数据,如当地的工农业生产的产值、城区面积等,通过一些具体的、可以感受的数据,了解较大数据的意义。

第2题,组织一组组可以对比的数据,说说它们的实际意义是写数的基础。在学生写数时,安排一些学生身边可以感受的具体参照物进行比较,对学生理解较大数的意义是有很大的帮助。

学生完成练一练的题目。

亿级。

万级。

个级。

千百十亿千百十万千百十个。

亿亿亿。

万万万。

1265830000。

读作:十二亿六千五百八十三万。

四年级数学植树问题教学设计篇十五

教学目标:

1、在具体情境中进一步体会负数的意义,认识负数的作用;

2、会用负数表示生活中的问题,知道正负数是可以抵消的;

3、通过学习,让学生感受到数学知识来源与生活,应用于生活,培养学生应用数学知识解决实际问题的'能力。

教学重点:

1、正确理解正数和负数所表示的具体意义,理解正负抵消。

2、解决有关正数和负数的数学问题。

教学难点:

借助游戏、学生的生活经验及直观材料,理解正负数的求和。

教学过程:

一、复习旧知,导入新课。

1、学生完成学案“温故互查”并二人小组交流。

2、揭示《正负数(一)》并板书课题。

二、创设情境,提出问题:

1、玩剪刀、石头、布的游戏.

2、在表格中记录得分情况,然后根据得分情况独立完成学案“设问导读”第一小题,在小组内交流、讨论。

3、汇报交流结果。

三:运用新知,解决问题。

阅读课本第74页的“试一试”:

1、独立完成导学案“设问导读”的第二小题。

2、小组交流。

3、展示汇报。

四、巩固应用,内化提高。

1、独立完成学案“自我检测”1题和2题,小组交流。

2、独立完成学案“巩固练习”,小组交流、汇报。

五、全课总结。

通过这节课的学习,你有什么收获?

四年级数学植树问题教学设计篇十六

1.利用学生熟悉的生活素材、通过画线段图、填表格、讨论交流等活动,能化繁为简并说出两端都栽的情况下间隔数与棵数之间的关系。

2.能发现并理解植树问题(两端要栽)的一般解题规律,并能利用规律解决相关的实际问题。

任务一:通过猜谜活动,以及画线段图、做表格等活动,完成目标一。

任务二:通过课堂例题的理解分析,找到两端都栽的植树问题的一般解题规律,达成目标二前半部分。另外利用习题的解决,达成目标二的后半部分。

【学习重点】:发现棵数与间隔数的关系。

【学习难点】:理解两端都栽的植树问题的一般解题规律并能运用规律解决问题。

【教学准备】:课件、小组学习单。

【教学过程】:

一、导入新课。

1、猜谜语,直观认识间隔。

新课前老师给大家带来一个谜语,请看,“两棵小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。打一人体的组成部分。”它是什么呢?谁知道?(手)。

哦,怎么看出5了?(表示手指的个数)谁还看到了数字5?真不错,除了用数字可以表示手指的个数,咱们的手上还有没有数字?(还能看到手指之间的间隔,两个手指之间的缝隙,教师说明,缝隙就称为间隔。)。

手指之间还有一个个的间隔。同学们,咱们手上五个手指之间到底有几个间隔呢?(4个)。

我们一起来数一数。还真有4个间隔。那四个手指之间有几个间隔?三个手指之间呢?两个手指之间呢?(生依次回答。)。

你发现什么了吗?(生说)。

的确,手指数和间隔数之间是有着一定的规律的,它们之间的这种规律最适合解决今天我们要研究的这类问题,这类问题的名字叫做植树问题。板书:植树问题。

二、探究规律实现目标。

1、例题探究。

说起植树问题我们就先从植树谈起吧。请看例题。

a、从题中你能知道哪些信息?谁来说一说?生说,师画。

师小结:

一边是小路的一侧,指左边或者右边,全长1000米是指小路的总长。每隔五米栽一棵是每两棵树之间的距离,简称间距。两端要栽指起点与终点处都要栽。

b、算一算,一共要栽多少棵树?反馈答案:

方法1:1000÷5=200(棵)。

方法2:1000÷5=200200+2=22(棵)。

方法3:1000÷5=200200+1=21(棵)。

疑问:现在出现了三种答案,到底哪种答案是正确的呢?下面我们一起来验证一下,你想用什么方法验证?(生说:画线段图的方法)。

三、自主探究,发现规律。

1、化繁为简探规律。

是个好办法!我们可以选择画线段图来验证。每隔5米栽一棵就画一段,再过5米再画一段,这样我们需要画多少段呢?好画吗?为什么呀?(数据太大了)。那怎么办呢?(选择简单的数据进行研究,得出规律再解决这道题)。

是呀,在遇到比较复杂的问题时,我们可以先用比较简单的例子来研究。你准备选用哪个数来研究?(生说)下面请大家自己选择简单的数据在练习本上试着进行验证,并把你试的结果汇报给组长填在表格中,之后观察表格中的数据,你发现了什么?把你的发现在小组内说一说。

四年级数学植树问题教学设计篇十七

“植树问题”在实际生活中应用比较广泛,它通常是指沿着一定的路线植树,这条路线的总长度被平均分成若干个间隔,由于路线的不同以及植树要求不同,路线被分成的间隔数和植树的棵数之间的关系就不同。本节课就是要渗透有关植树问题的一些思想方法,通过学生的动手操作、自主探究来发现现实生活中它们的规律,抽取出其中的数学模型,然后再用规律解决植树中的相关问题。教学目标:

1.使学生理解并掌握“植树问题”的基本解题方法,并能解决一些实际生活中存在的与“植树”有关的问题。

2.掌握“植树问题”中三种情况:两端都要种,两端都不种,只种一端的解题方法。

掌握“植树问题”中三种情况:两端都要种,两端都不种,只种一端的解题方法。

绳子、挂图、泡沫、小树、题卡。

一.创设情境,导入新课。

1.小游戏:

点名学生动手操作,给绳子打3个结并观察:给绳子打3个结,会把绳子分成几个间隔?(有三种情况:4个、3个、2个)(解释“间隔”的意思)。

通过刚才的游戏,你得出了什么结论?(强调结数和间隔数的三种关系)。

2.导入新课:今天这节课我们就来学习和间隔有关的植树问题(板书课题:植树问题)。

二.新课探究:

2.分组动手操作(分八小组,每组6人),在泡沫上“植树”,

要求:

(1)计算一共需要准备多少棵树苗。

(2)思考棵数与间隔数的关系。

3.汇报结果:

(1)两端都种:50÷5+1=11(棵)结论:棵数=间隔数+1。

(2)只种一端:50÷5=10(棵)结论:棵数=间隔数。

(3)两端都不种:50÷5-1=9(棵)结论:棵数=间隔数-1。

4、总结(学生汇报教师书写):

(1)两端都种:棵数=间隔数+1。

(2)只种一端:棵数=间隔数。

(3)两端都不种:棵数=间隔数-1。

三、课堂练习。

1、做一做:

2、数学竞技场:分组竞赛,每组派代表选题,解答对得相应的分值,解答错则机会让给其他表现好的小组,总分最高的小组获胜。

(1)挂灯笼(20分):要在长90米的教学楼上每隔5米挂一个灯笼,需要准备多少个灯笼?(两端都不挂)。

(2)插彩旗(20分):学校要在长12米的国旗台前每隔2米插一面彩旗,一共需要多少面彩旗?(两端都插)。

(6)街道上(50分):在一条全长2000米的街道两旁每隔50米安装一盏路灯,一共需要几盏灯?(两端都安装)。

四、全课小结:这节课我们学习了什么内容?你还有什么疑问?(植树问题的三种情况)。

两端都种:棵数=间隔数+1。

只种一端:棵数=间隔数。

两端都不种:棵数=间隔数-1。

例题:寰岛小学决定美化校园,要在长50米的塑胶跑道的。

一侧每隔5米植一棵树,一共需要准备多少棵树苗?

两端都种:50÷5+1=11(棵)。

只种一端:50÷5=10(棵)。

两端都不种:50÷5-1=9(棵)。

(1)挂灯笼:要在长90米的教学楼上每隔5米挂一个灯笼,需要准备多少个灯笼?(两端都不挂)。

(2)插彩旗:学校要在长12米的国旗台前每隔2米插一面彩旗,一共需要多少面彩旗?(两端都插)。

(6)街道上:在一条全长2000米的街道两旁每隔50米安装一盏路灯,一共需要几盏灯?(两端都安装)。

本节课旨在通过学生的学习活动让学生发现数学规律,建立植树问题的数学模型,理解“棵数”与“间隔数”的关系,从而发展学生的数学应用意识,培养学生主动探究和合作学习的精神,最终掌握植树相关问题的解决办法。总的来说,本节课学生参与面广,积极性和主动性得到充分发挥,课堂效率也高,较好地展示了动手操作、合作学习的优势,主要体现了以下几点:

一、动手操作、合作交流、探究规律:

本节课,学生以小组为单位,利用手中的学具设计不同的植树方案,有利于学生发挥小组交流合作的优势,学生在相互的表达和倾听中促使思路的清晰化,促进知识结构的形成,提高了学生的思维水平,完善了学生的认知结构。

二、练习的设计独特、新颖、有梯度:

本节课的教学我既注重教学过程,也注重教学效果。在练习环节中,我设计了有梯度的练习,体现了分参次教学。同时我还从不同的角度引导学生运用所学知识解决一些生活中常见的植树相关问题,有效实现了生活问题数学化、数学问题生活化的目的。由于练习的解答采取竞赛的方式,充分调动了学生学习的积极性,优化了课堂教学效果,大大提高了课堂教学效率。(数学竞技场的练习题学生大约能够做5道题,其余的题可留到第二课时再完成。)。

三、充分体现学生的主体作用及教师的主导作用:

本节课,我通过引导学生动手操作(模拟植树)------交流讨论(植树方案)------得出结论(三种植树问题的解决方法)-----应用结论(解决生活中植树的相关问题),充分体现学生的主体作用,教师只是做了适时的点拨。

四年级数学植树问题教学设计篇十八

(以两步为主,不超过三步。)。

2、利用学过的小数加、减、乘、除法解决日常生活中的实际问题,发展问题,发展应用意识。

一、创设情境。

创设计算电视广告费的`情境。

二、自主探究,创建数学模型。

让学生看懂问题的意思,然后,让学生自己解答。

学生的解答方法可能不完全相同,有的学生可能会分步计算,也是可以的。以学生所列综合算式为例,研究连除、乘除混合的运算顺序和脱式步骤,说明小数混合运算和整数四则混合的运算顺序是一致的。

三、巩固与应用。

试一试:

第1题:其中第2小题是带有中括号的算式题,指导学生练习时,可以先让学生说一说它的运算顺序。

第2题:先让学生说一说题目的意思,回忆一下四月份有多少天,再独立解答。

练一练:

第1题:要求学生脱式进行计算。

第2题:先让学生说一说从这张收费表中能获得哪些信息,再让学生独立解答。

第3题:

先让学生说一说从图中能获得哪些问题,再独立解答。

四、总结。

根据学生的练习情况,进行小结,重点讲解。

四年级数学植树问题教学设计篇十九

1、通过练习,熟练掌握一位数除整十、整百数和几百几十数以及一位数除两位数的口算方法。

2、提高学生用多种策略解决同一个问题的能力。

3、培养学生总结概括的能力。

掌握算理。

提高口算正确率。

口算卡片。

1、口算。

450÷96000÷6100÷10。

39÷372÷480÷5。

120+48。

2、估算。

387÷5426÷8218÷4。

142÷5135÷7320÷6。

说一说426÷8、142÷5的估算过程。

1、教材第13页练习三的第7题。

指名学生读题。

分析数量关系。

集体列式计算。

说一说,为什么用除法计算。

说一说你是怎样想的。

请学生说出不同算法。

2、教材第13页练习三的第8题。

理解题意。

说一说,题中要我们求什么。

要求这两个问题,都需要哪些相关信息?

说一说,为什么用除法计算,怎样计算360÷4、360÷9。

(1)读题。

(2)独立分析题意,列式解答。

(3)订正口算过程及结果。

2、出示课件。

海龟的寿命大约是青蛙的多少倍?你还能提出哪些问题?

(1)阅读所给信息。

(2)讨论:根据所给信息,你还能提出哪些问题?

(3)教师板书学生所提问题。

(4)尝试解决这些问题。

找出下面每行数的排列规律,在()里填上合适的数。

481632()。

24381279()。

25112347()。

824123618()。

四年级数学植树问题教学设计篇二十

学习目标:

1、通过学习学会四则混合运算的运算顺序。

2、通过学习能理解带中括号的四则混合运算的运算顺序。3、能熟练、正确地进行运算。养成良好的计算习惯。学习难点:

理解带中括号的四则混合运算的运算顺序。教学过程:一、温故知新。

师:在上新课之前我们做几道口算练习,比比看谁做得又对又快。开始。出示口算练习:

25×3=。

16×5=。

45×2+3=36÷4=。

25÷5=。

师:看来大家的口算很不错,下面老师出个更难的题目,大家有信心解决吗?

师:一天,淘气、笑笑、聪聪三个同学到文具店里买文具,他们要买3个计算器和1支钢笔。有什么办法帮他们算一算一共需要多少元,好吗?开动小脑筋,把想到的办法写在本子上。呆会老师请几个同学来说说你是怎样想的,怎样列式计算的,开始!22×3=66(元)。

24÷4=6(元)。

66+6=72(元)师:每一个算式求的是什么?

师:看来这个也难不倒大家,老师再出几道题考考大家,敢接受挑战吗?(课件出示)请把你的想法与同桌交流,先说出下面各题的运算顺序,再计算。

35+65×40÷5。

12×(153-83)÷8。

师:生活中总会遇到一些问题需要解决,合作是解决问题的好办法。请在小组内合作解决以下问题:(课件出示)。

1、根据例题情境,提出两个数学问题,并尝试解决。(小组代表板演,并让学生说说运算顺序)。

2、小客车比吉普车每时多行驶多少千米?(解答之前让学生说说要求的问题是什么,需要知道什么,怎么列算式计算。小组代表板演。)。

师:同学们的合作得有序而愉快,而老师却遇到了一个难题,你能想办法帮老师吗?请继续小组合作:

3、小组内讨论交流9÷3×5-2=1成立吗?你能添上括号使它成立吗?(让小组代表说说想法,老师演示)。

你收获了什么。

(总结四则混合运算的运算顺序)根据学生说的,教师整理,课件出示:

只有加、减或只有乘、除——一般按从左到右依次进行计算既有加、减,又有乘、除——先算乘、除,再算加、减。

既有小括号,又有中括号——先算小括号里面的,再算中括号里面的。七、作业布置。

【本文地址:http://www.xuefen.com.cn/zuowen/13999702.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档