通过写读后感,可以提升自身的审美能力和文学素养。在写读后感时可以通过对书籍内容的比较和对比,突出自己对书中观点和主题的独特见解。以下是小编为大家精心准备的几篇经典读后感范文,供大家参考。希望通过阅读这些范文,大家可以更好地掌握读后感的写作技巧和方法,也能够启发我们对于书中内容的更深层次的思考和理解。总之,读后感是我们读书的一种重要补充,可以在读书后促使我们思考和交流,希望大家都能够写出一篇精彩的读后感!
数学书的读后感篇一
几年前,我还在读大二的时候,有一次在随意找书,无意中发现了这本《数学之美》,看到书名之后,我以为这是一本纯粹讲解数学的书籍,由于我对数学的理论和计算兴趣并不大,但是我对于数学的发展史、数学的思维方法以及那些有趣的数学家的故事感兴趣。所以当我仅仅看到这个书名之后,我想从中找到这些有趣的东西,但是看到第二章的时候,我就没有了兴趣,当时只觉得书中罗里吧嗦讲了一堆数学在it各个领域的应用,于是就放下了。
后来自己也从事了it行业,并且接触到了很多的概念和技术知识,知道了了机器学习、深度学习、自然语言处理等等。于是就想起来曾经在大学看过一本《数学之美》的书籍,里边大概写了一些it领域的数学知识,于是前一段时间在回家的火车上带着这本书看完了。
现在我来谈谈自己读完的感想。
首先我谈谈这本书好的地方:
第一、作者使用一些有趣的例子讲明白了晦涩的专业知识。比如说作者在第六章,使用竞彩足球队夺冠的例子,形象的说明了信息的含义和信息熵的'含义。诸如这些有趣的例子,我觉得可以作为初学通信专业学生的科普教材。
第二、作者讲述了自然语言处理领域中的大牛人物,这样针对专业领域杰出人物的介绍常常更容易引起学生的兴趣,所谓榜样的力量是无穷的。比如对自然语言领域的大牛人物——弗里德里克贾里尼克(frederekjelinek)的介绍。我个人觉得,当前工科大学中对于这一类的故事讲解太少,以为的讲解专业知识太过于枯燥,另外,很多专业知识,只要本书写的很详细学生都能看懂,无需讲解。多分享一些前任的工作方法和、经历和事迹,更能从情感上调动学生的积极性。
本书也有很多缺点,第一、以我来看,本书依然是一本专业性的书籍,不适合非it专业的学生阅读,书中还是存在大量的数学公式和知识,没有一定的专业基础根本读不下去。
第二、本书取名《数学之美》,书名太大,并没有从数学的角度讲解数学之美,而主要从it领域讲解数学的应用,更多的是概率论的应用。
最后我的看法是,本书作为it专业领域的学生科普书籍很不错,相比教材来说有趣了不少,也能让读者了解到行业发展的情况。不单单的去学习一些枯燥的专业知识,还要去了解这门技术的来龙去脉,以及未来的发展方向。所以推荐学习电子信息类专业的学生阅读。结合作者在google的经历,用浅显易懂的语言解释了以上数学分支在文本挖掘(自然语言分析,分词,语义分析),网络爬虫,密码学,搜索引擎等工作原理,可作为这些方面的入门之作,值得一读。
另外、我看完最大的收获就是,知道了原来这个世界是由这些人创造了这些有趣知识,知道了原来这些听起来高大上的技术知识,是这么发展来的,知道了原来学过的那些数学知识,是用在了什么地方!比如以前学习概率论的时候,只知道到计算盒子里边的黑球和白球(教科书中的例子真是又幼稚,又无趣),知道了更多人的故事,看见了更多的世界!所以呢,本书还是值得画上两三个小时概略读一读的。
数学书的读后感篇二
这个暑假,我读了《数学王国探秘》这一本书,这本书让我了解到数学的历史以及一些数学知识,逸事。让我有了很深的感触。
数学是起源于生活,也应用于生活。人们创造数目的最早的动机便是想知道一堆物体具体的数目。在数学的发展中,出现了一个智慧的迷宫,那就是幻方。这个游戏是给定1,2……n2。这些数字要求它们排列成n×n的方阵,并要使每一行,每一列,每一条对角线上的所有数字之和相等。每条直线上的数字之和叫做幻方常数。但有一个问题如何快速解决标准幻方,即从1按自然数顺序依次填到n2,这首先就要确定幻方常数例如三阶幻方常数是15,四阶幻方常数是34,那么n阶幻方的常数m是多少呢。我们可以先把n阶幻方的所有数的之和求出,得s=1+2+3+……+(n2―1)+n2=(1+n2)+(2+n2-1)+(3+n2―2)+……=n2/2(1+n2)再除n得m=1/n×n2/2(1+n2)=n/2(1+n2)所以标准幻方均可用m=n/2(1+n2)。
而幻方的的排法也是异常的多,五阶幻方超过2亿,七阶幻方超过3亿,让我也不得不感叹数学的灵活多变。
书中让我另一处感触最深的一个便是巧算勾股数,在学习勾股定理的时候我们便会注意到整勾股数的问题也就是x2+y2=z2的正整数解组,简称勾股数,例如(3,4,5)所以如果a,b,c都是勾股数并具有(a2+b2=c2)那么a,b,c就称为一组勾股数那么,只需要将他们同时乘以正整数k,其结果(ka,kb,kc)也是一组勾股数。所以只要考虑a,b,c两两互素的勾股数,并把它称为基本勾股数组。那么怎么创造出一组勾股数来呢?毕达哥拉斯提出的一组在课本里出现过,便是设m是任意大于或等于2的正整数,则(m2―1,2m,m2+1)一定是一个勾股数,因为这组是两两互素,是基本勾股数组。但无法给出所有勾股数组。我国的数学名著《九章数论》给出了更妙的方法:若给两个数m,n那么,1/2(m2―n2)、mn、1/2就是一组勾股数每次给的m,n不同所得勾股数也不同。并且如果m,n互素,这个公式便能套出所有两两互素的勾股数组。因此这个公式叫做x2+y2=z2的通解公式。
数学的奇妙我只领略一二,以后还有更长的数学道路需要我去体味。
数学书的读后感篇三
这学期教研组推荐大家阅读一本好书,我认真读了这本书觉得以下几方面对我感触最深。数学思维是人脑对数学对象的本质、相互关系以及内在规律性的认识。现代教学论认为,数学教学是数学思维活动的教学。而思维能力又是学生诸能力中的核心。因此培养学生的思维能力,是落实小学数学素质教育的重要任务之一。马芯兰通过数学课堂教学的有效活动,在训练学生的数学思维、培养学生的数学能力上,为我们创造了成功的范例。
数学是一门具有高度抽象性与严密逻辑性的学科,任何概念、法则、公式的产生都离不开抽象概括、逻辑推理。根据学科与学生思维的特点,马芯兰运用现代教学论的观点,注重感受性,强化实践性,以促进学生由多感官的感性认识“内化”为思维的过程。马芯兰进行了大胆的创新,她创设各种教学情境,引导学生通过学具操作、画线段图、画批关系句、连思维线、分析说理等一系列可操作的手段,将学生对知识理解的.思维过程“外化”,即以外部操作来促进思维的操作。这种从感知入手,通过“内化”又再一次“外化”的智力活动过程,不仅使教师及时地掌握反馈的信息,而且也大大促进了学生思维的发展。
数学思想方法是数学知识的本质反映,是数学的灵魂,是知识转化为学生能力的纽带。布鲁纳指出,掌握基本数学思想和方法,能使数学更易于接受和更利于记忆,领会基本数学思想和方法是通向迁移大道的“光明之路”。马芯兰在教学中十分注重对数学思想方法的点拨和运用。例如:从教学10以内数的认识、比较两个数的大小开始,她就有意识地利用集合图和实物图渗透对应与假设的数学思想。在此后的教学中,不论是探索知识的形成过程,方法的思考过程,还是研究规律的揭示过程,她都引导学生运用这些数学思想。因此当解答具体问题时,学生不仅能顺利地分析出数量之间的对应关系,而且还能将对应、假设、转化等几种数学思想方法进行综合而灵活的运用,表现出极强的数学思维能力。
马芯兰打破传统的课堂教学结构,成功地设计了渗透课、迁移课、结构课、变式课、思维训练课、发散思维课、结构训练课、理解方法创新课、基本技能训练课、疑难问题解答课等等。尽管这些训练课的内容不同、形式各异,但是都充分体现了马芯兰对小学数学知识精髓的驾驭和对学生认知水平透彻的把握。她的训练课具有以下鲜明的特点。因此在教学中总是想方设法为学生创造各种机会和条件,让学生积极参与各种各样的教学活动,并在自由、平等、相互切磋的争辩中,去认识、思考和发现。对于学生提出的不同见解,他不急于发表意见,只有在学生百思不得其解时,才适时地加以点拨。在这种宽松、和谐的教学氛围中,学生学习的主体作用得到了尽情的发挥。
数学书的读后感篇四
我读了一本有关数学的课外书叫《数学司令》。主要讲的是牛牛是一个数学学得不好的小学生,再一次数学竞赛中牛牛获得了市区的第一名,得到了77国王的有请,接下来就讲述了77王国与88王国的一场数学战争,自从牛牛来到77王国百战百胜,从中我学到了很多数学知识。
三角形的进攻很好,但是就怕敌人从后面攻击,防御功能稍差一些,所以三角形不是打败敌人的最好作战方式,还需我们在必要的时候既要做好进攻又要做好防御,四边形的防御功能就要好一些,由此推出四边形、五边形、六边形,四边形、五边形、六边形的防御很好,但是攻击不好,因为攻击是最主要的,但是防御也很重要,通过四边形、五边形、六边形我们又想到了圆形,圆形可以无限制的乘人,圆形进攻非常好,而且防御也相当不错,所以77王国就是用圆形阵打败了88王国,赢得了最后的胜利。
这本书不但让我学到了一些数学知识,还让我明白:成功要树立不贪别人便宜的好品德、要有善于思考创新的意识。
数学书的读后感篇五
在这个寒假中,我读了一本书,名叫《不一样的数学故事》。这是一本有趣的书,本书的作者是梦小得。
这本书主要讲数学十分好玩,书中的人物有怪怪老师和他的一群学生。
我读完了这本书,我感受到了,数学特别好玩。我特别喜欢书中的怪怪老师,因为,我觉得他讲的数学课非常好玩,所以,在我读了《不一样的数学故事》我就发现,学习是快乐的,是简单的,只要你找对方法。最后,我建议同学们读一读这本书。
我爱数学!
这本书的作者是张秀丽,书里写了这几个主要的人物,它们是:怪怪老师,皮豆,蜜蜜,女王,十一,和乌鲁鲁(它是怪怪老师从外星球带来的一只狗狗)。这本书每章都有数学知识。我来给大家说说这本书的主要内容吧!
这本书讲了怪怪老师回到阿瓦星球充电,皮豆他们还是在数学的世界了遨游,又一次,皮豆是东西是在零食包里发现了一张卡片。上面写着集齐10000张卡片就可以得到宇宙飞船的船票,于是皮豆他们向乌鲁鲁要了40000张,因为他们有四个人。所以要了40000张,。第二天他们和乌鲁鲁一起出发前往宇宙飞船,当他们见到宇宙飞船时个个都很兴奋。就在这时乌鲁鲁却在一边大声地叫着说:“这不是真的,这是3d电影“。大家一下子就没有了兴奋劲,感觉上当受骗了。
他们一起回到家打电话给了报社,把工厂骗人的事情和报社的人说了。之后关于工厂骗人的新闻就上了头条。他们虽然是上当受骗了,但是他们却从中学到了计数单位。他们也和怪怪老师学到了四则运算。他们在打假的同时也学到了很多的知识。
我突然很想很想能成为皮豆他们这样子。这样真好啊!
《好玩的数学》的作者是中国有名的科普教授――谈祥柏,这本书也是他送给少年儿童最好的礼物。
谈祥柏教授是我国着名的科普作家,从事数学科普工作已经有半个多世纪了,他与张景中院士,李毓佩教授一起被称为“中国科普三驾马车”。谈祥柏教授还有着扎实的古文功底与非常渊博的文史知识,并通晓英、日、德、法以及阿拉伯文等多种语言,因此谈祥柏教授写的《趣味数学》的内容妙趣横生,并且与智力的训练巧妙的结合在了一起,深受我们少年儿童的喜爱。
谈祥柏教授还将许多国外的着名而且优秀教学科普作品翻译给了中国所有读者,其中包括世界着名数学科普大师马丁加德纳等许多着名人物的作品。
谈祥柏教授写的《好玩的数学》中分为许多种类,包括:数学是大花园,数学史大作坊,数学是大超市,数学是大课堂,数学是大戏台,这些内容都表达着自己含义的大题目,中题目,还有“弹子盘上的数学”中有的小题目……还有许多有趣的题目和有趣的内容,只有有趣的题目才是最吸引人的,因为只有题目新奇才可以吸引读者。
同学们,听了这些你是不是也对这本书很感兴趣了呢?不妨和我一起看看吧!
数学书的读后感篇六
这是一本相当好的专业书,它是浙江教育出版社所出“课程学科教学论丛书”之一,总主编钟启泉,主编孔企平,皆是教育或是数学教育界中的人物。随录如下:。
第一章是小学数学课程的改革与发展.它的第三节论及“近年来国际小学数学课程改革的特点”,所归纳的数学觉得完备而合乎我现有的认识,内容如下,一是强调数学的现实性;二是重视以学生为主体的活动;三是与信息技术的结合;四是重视教育过程的个性化与差别化;五是关注与其他学科的综合。p9日本的新数学学习纲要强调“学生在学习中的愉快感、充实感应该是与数学内容有本质联系的。这次数学课程改革应该让喜欢数学的学生多起来。”我也相信,光有快乐没有数学的课堂不是数学课堂.p10谈到教育目标的差别化与教育设计弹性时,阐述极少,可见“不同的人在数学上得到不同的发展”实现之难,当然,这也是个热点、待开发点。
第二章是小学数学新课程的理念与目标.照录一段提纲挈领的话,p13“本次义务教育阶段的数学课程改革,强调从以获取知识为数学教育首要目标转变为首先关注人的情感、态度、价值观和一般能力的培养,同时使学生获得作为一个公民适应现代生活所必需的基本数学知识和技能。促进学生终身可持续性发展,是学校数学教育的基本出发点。”p27在新教材中,每个知识点编排按照“问题情境-建立模型-解释、应用与拓展”的结构。
第三章是小学数学学科的几个基本问题.p31,好句子:“学生太早地、过度地被教师们安排在象征符号堆里,满脸数字印痕却不知数学在生活中有什么用。”p33,在解决街头数学问题中,儿童用的是自己的口头语言甚至是直觉的方式,而学校所教授的是书面和符号方法。这两种符号系统之间的差异是街头数学和学校数学之间的本质差异,也是学生学习数学的困难所在。p34、p15都论及小学数学所应当具有的特点是,“第一,小学数学具有现实性质,数学来自于现实生活,再运用到现实生活中去。第二,学生应该用积极主动的方式学习数学,即学生通过熟悉的现实生活,自己逐步建构数学结论,学生学习数学是一个‘再创造’的过程。第三,要通过数学教育,促进学生的一般发展。p44,“数学的学习要超越概念、步骤、运用。它包括数学素养,把数学看做一种强有力的审视情境的方式。素养不仅指态度,而且指具有思考的倾向和积极的行动方式。学生的数学素养体现在他们是否能够自信地接近目标,乐于探索,具有意志力和兴趣,以及能否有反映他们自己思维的倾向性等几方面。”
数学书的读后感篇七
一个酋长要分给一位名叫纪塔娜的美丽女神一块土地,这块土地的大小可以用一张灰鼠皮围起来。纪塔娜接过鼠皮,并没有把它直接铺在地上,而是把它剪成了很细很细的皮条,把这些皮条连接成了一条很长的皮绳,她用这条皮绳靠着海岸,围出了一块很大的半圆形的土地,结果她就分到了一块很大的土地,自作聪明的酋长这下可傻了眼。原来,用一定长度的绳子,围出一块面积,其中,围成的圆的面积是最大的,二如果围成一个完全的圆形,那它的面积确是有限的。纪塔娜利用了海岸线,把海岸线当成了这个半圆的直径,这样围得的土地是最多的。
读了这篇故事,我体会到做事情不能只看事物的表面,有时一个小小东西的应用得当,可以创造出很大的成就。这个故事还告诉我们考虑事情要从事物的多个角度出发,如果没有仔细考虑,就得出来的结论只是片面的、不一定是最好的。
数学书的读后感篇八
今年暑假,我迷上了数学绘本,一口气把李毓佩爷爷的“数学故事系列”全套读完了。我已经对这套书如痴如醉了,有时候几个小时赖在书桌上,不肯挪动;有时老妈叫我几十遍“吃饭了!”我都没听见。七本书中,我最痴迷的要数《数学西游记》了!《数学西游记》是在原版《西游记》的故事情节上改写的,把更多的数学知识融入了精彩的名著中,这样,让我们学起数学来更加生动有趣了。
其中我最感兴趣的一个情节是数学猴和猪八戒智斗公蜘蛛精的故事:猪八戒打败了母蜘蛛精,扛着钉耙,嘴里哼着小曲,独自往前走:“打死妖精多快活!啦,啦,啦!再找点好吃的多美妙!啦,啦,啦!”突然一只大蜘蛛精拦住了八戒的去路,原来是公蜘蛛精来为“爱妻”报仇雪恨,猪八戒与那公蜘蛛精大战了有一百回合,八戒渐渐不是对手,决定“三十六计,走为上策”可那公蜘蛛精不依不饶,紧紧追赶,半路又跑出些蜻蜓精、蝉精支援公蜘蛛精,正当走投无路的时候,数学猴出现了,它一把把八戒拉进山洞里,并告诉八戒蜘蛛,蜻蜓,蝉都怕鸟,必须请鸟来帮忙!
但是到底有几只蜘蛛,几只蜻蜓,几只蝉,得请几只鸟来帮忙呢?八戒忙于逃跑,只记得三种妖精总共有18只,共有20对翅膀,118条腿,于是就产生了一个“鸡兔同笼”的数学问题:蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和一对翅膀,假设这18只都是蜘蛛精,应该有8×18=144(条)腿。实际腿数少了144-118=26(条)腿,蜻蜓或蝉币蜘蛛少2条腿,26÷2=13(条)腿,说明18只昆虫中有13只或是蜻蜓,或是蝉。18-13=5(只),所以这里有5只蜘蛛精,假设13只都是蜻蜓精,应该有2×13=26(对),但实际上只有20对翅膀,每只蜻蜓比蝉多出一对翅膀,26-20=6对,说明有6只是蝉精,7只是蜻蜓精。
《数学西游记》中的猪八戒贪吃可爱,沙僧忠厚老实,孙悟空有勇无谋,数学猴聪明机灵,这些形象栩栩如生。《西游记》本身就是一本深受中国孩子们喜爱的魔幻小说,经过李毓佩爷爷幽默的笔触,把数学故事融入其中,让我们更快、更生动地了解数学,爱上数学。
数学书的读后感篇九
《数学史》把数学几千年的发展浓缩为这本编年史中。从希腊人到哥德尔,数学一直辉煌灿烂,名人辈出,观念的潮涨潮落到处清晰可见。而且,尽管追踪的是欧洲数学的发展,但并没有忽视中国文明、印度文明和阿拉伯文明的贡献,是一部经典的关于数学及创造这门学科的数学家们的单卷本历史著作。读了这本书,让我对数学学习有了新的认识和感悟,也让我更深层次的了解到数学的魅力和伟大,以及对前人的崇敬。
数学源于人类的生活与发展。书中说,“人类在蒙昧时代就已具有识别事物多寡的能力,从这种原始的‘数觉’到抽象的‘数’概念的形成,是一个缓慢的,渐进的过程。”人类为了便于生活生产的需要,开始以手指头计数,手指数不够了,开始用石头计数,结绳计数,刻痕计数。又经过几万年的发展,随着几种文明的诞生与发展,记数系统在各种文明中都有了表示方式。古埃及的象形数字,巴比伦楔形数字,中国甲骨文数字,中国筹算数码等等。
但是,为什么时至今日我们最习惯和擅长使用的是十进制计数的方式呢,难道就是因为老师们一代一代这样教出来的吗?很多人可能就是这样认为的,或者根本并未思考过。书里写到:“十进制在今天的普遍使用,只不过是解剖学上一次偶然事件的结果而已:我们中的大多数人,生来就有10个手指、10个脚趾。”经历过扳着手指头数数的过程,可能十进制早已在我们的心中留下了牢固的烙印。这就是一个知识的自然形成。
通过对书中一些知识的'阅读与思考,可以感觉到许多知识并不是那些先驱者凭空乱想出来的,是根据某种需要而研究出来的规律,而且是一些自然存在的规律,我们今天所学的知识正是这些已经总结出来的规律。“坐标系”这个词,对很多人来说可能并不陌生,即使他的数学知识已经“还给老师”很多年了,他也许还知道什么是“经度纬度”。为什么会出现这样的现象呢,也许是因为后者在生活中出现的更多一些,但其实两者的实质都是一样的。一个小故事说:“笛卡尔小时候在一次晨思时看见天花板上有一只苍蝇在爬,他的头脑中闪现出智慧的火花,如果知道苍蝇和相临两个墙壁的距离之间的关系,就能描述它在天花板上的位置与运动路线。”这个故事可能是编造的,但最终形成了我们今天所知的“笛卡尔坐标系”。这样的思想广泛的应用在天文,地理,物理等许多的学科中。
数学源于生活,高于生活,最终也将服务生活,运用于生活。在一般人看来,数学是一门枯燥无味的学科,因而很多人视其为畏途,从某种程度上说,这也许是由于我们的数学所教的往往是一些僵化的、一成不变的数学内容,如果在数学教学中渗透数学史内容而让数学活起来,这样也许可以激发学生的学习兴趣,也有助于学生对数学认识的深化,让更多的学生懂得数学。
数学书的读后感篇十
世纪老人冰心说过:"读书好,好读书,读好书。""读一本好书,可以使你心灵充实;读一本好书可以使你明辨是非;读一本好书可以使你有爱心,知礼仪。"让我们喜欢读书,热爱读书,从读书中获得快乐与幸福。这是我们第二实验小学师生们不断的追求。
我最近读了《数学故事》这本书。本书紧密联系现实生活,是以课本为依据,贯彻新课程的标准理念,从数字,运用,计算,代数,几何,统计,与概率,逻辑推理等方面讲述了一个个精彩的小故事。这里不仅能给予学生智慧,还能给予学生力量,在教育之路上收获的快乐与幸福。
这里的数学不在是枯燥的数字和公式,而是一个个活泼有趣的故事,每个故事后面的小板块也为它增色不少。
就说神秘的数字1吧,先讲小故事,数字王国召开大会,主要是讲讲各个数字成员的用途。再说,1是有着特殊含义的数字。
我们大家都知道,排序的时候,1就意味着第一位。而所谓第一位,就是大王或者头目,甚至班长,队长什么的。可是在衡量物品的数量或大小的时候,1也被用作代表"很小","少"的意思。这时的1,和刚才所说的代表顺序的1的意思就完全相反了。
即使在一个很小的地方,1也能发出耀眼的光芒。
大家听过"一字值千金"这句话吧这里把"一"和"千"放在一起比较,更突出了"一"的力量。还有像"千里之行始于足下","以一推十"这类的名句也足以证明1的神奇之处。
之所以数学里面的一些抽象的东西变成了活了的东西,数是数学学习的基础,数字是蕴藏智慧的精灵,每一个数字背后都有着有趣的故事。0是由谁创造的呢?无穷无尽的数字都有怎样的分类呢?数字之间会发生一些怎样有趣的故事呢?数字王国的秩序如何维持?这些有趣的数学问题在这本书中都有讲述。每一个平凡的数字背后都有一段不平凡的故事,这些故事会给我们打开一个完整不同的数学世界。在这里,数学不再枯燥,数字成了一个个充满智慧的精灵。有趣的`数学问题,灵活的解题思路。它不要求你一定解出答案,而是希望你从这些故事中提炼出一种数学思维。
奇数,偶数隐藏的秘密这个故事的后面考考你,韩信率部队屡克敌兵,于是赏三军,并且举行了一场拔河比赛。左边的参赛人员是3个小兵和2个大兵,右边参赛人员是4个大兵和1个小兵。比赛之前人们都知道4个大兵的力气和5个小兵的力气相当,但左边那2个大兵是孪生兄弟,力气特别大,他们的力气是2个小兵加1个大兵的力气之和。还没比赛,韩信就说出了胜败,赛后结果正是韩信所说的。
那么韩信到底是说哪边胜利呢?
象这样有趣的数学问题充分体现了在故事中提炼出一种数学思维。还有休闲吧,思维拓展训练营,问题直通车等帮助理解数学知识。相信这本书将激励孩子告别普通与平庸,在轻松的故事中变得更加优秀。
合上书本,我想,我如何才能让我的学生喜欢我,让我的学生喜欢数学,会学数学好好努力吧,我对自己说。
数学书的读后感篇十一
数学真是这样吗?当然不是,那小学数学是什么?什么是有价值的数学?数学教师首先应该关注的是数学还是学生的心灵?如何建构生命课堂?……董文华老师《让小学生恋上数学》一书给出了回答。
基于以上的思考,董老师把关注“教师如何教”转变为为关注“学生如何学”。她力求把课设计得更“朴实”,更“体贴”,让课堂更贴近学生的已有知识经验和生活经验这两层“厚土”。上课前,她努力把课堂向前延伸,围绕着学生的认知困难来设计教学;课堂上,她努力构建一个师生情感交融、共同成长的生命场,怀着极大的耐心,尊重、启发、引领、关注每一个学生,尤其是那些弱势群体,让学生在“心理安全、心灵自由”的教学氛围中去经历、体验、尝试和控究,让“先学后教,少教多学,以学定教”的理念在课堂中得到最大的体现;课堂40分钟结束了,并不意味着教学课程的结束,不代表数学学习的停止,课后,她会让孩子们精心设计一些弹性作业,比如,写数学日记,开展课后小实践、小调查等活动,让学生学习数学的视角延伸到生活这个大课堂中来,努力拓展数学的宽度和厚度,实现“大数学”的教育观。
董老师的课堂,那些冰冷的符号和规则都能闪耀学生智慧的光芒,学生能在课堂上享受到思维的大餐,感受到数学的丰富和神奇,体验到“征服”数学、应用数学的乐趣;她的课堂能给学生一双数学的眼睛,一对善于倾听的耳朵,一个思考的头脑;每个孩子都能在她的课堂中记住一些属于自己的东西。事实也证明,学生们学习数学的激情一旦被激发出来,他们就会用各种各样的方式来表达学数学、用数学的热情。他们乐此不疲地记录贴近生活的小实践、小调查,写下了大量的数学日记和学习数学的心灵体验。那些数字、符号、概念都带着鲜活的体温,赋予了生命的色彩。
透过文字,让我这个阅读者也感受到了学生学习数学的喜怒哀乐,触摸到学生思维跳动的脉博,也能品尝到数学在促进学生发展中显示出的强大力量。这样的数学,师生就像一个生命的共同体,是一对共同成长的伙伴,在老师的引领下行走其中,向课堂的更深处漫溯。
数学书的读后感篇十二
读这本书是因为朋友的差评:“太无聊了,日本哥们压力大到用无聊解压,真的看不下去。”
我向来好奇心重,作者的大便书在国内外如此畅销,怎么会low到这个程度?好奇心就是动力,一定要评下无聊度数,反正姐也是亚历山大,实在无聊也顺便解压了。
带着这个有色眼镜,我开始批判性阅读。
没想到的是,从无聊开始,到有聊还没结束,我一直被这本书引领着,开启了更上一层的快乐生活。
作者的画风还是那么独树一帜,用最简单的笔画画出的却是传奇,看似小儿科,其实却是大家的范;文字不多,提纲挈领,点到为止,留更多的发挥空间让读者去思考,可谓仁者见仁智者见智;书中涵盖的内容非常宽泛,把抽象而枯燥的数字形象化具体化,引入生活、工作,通过思维的改变,让我们获得发现美和乐趣的能力。
通过这些小的图文并茂的实例,我掌握了送礼的艺术、定价的策略、消费的陷阱、目标制定的技巧、绩效方案的策略,并把这些融入到生活和工作中,起到了非常好的效果。同时了解了符合人性的思维架构并建立之,在很多方案的设计中运用,大大提高了方案通过的成功率!
关于竹节的篇章,我自己也受益匪浅,生活未必总是多姿多彩的,但如果我们拥有了发现和创造爱或美的能力,我们总会拥有快乐,因为我们拥有了创造快乐的能力。自己快乐了,我们会带给身边的人快乐,生活就不一样了!
看似浅显的漫画书,其实蕴含了很多的人生哲理,这个浮夸的时代,需要静下心来品读!
书是不是无聊,你也来试试!
数学书的读后感篇十三
《数学史》一直是我最想读的一本书教学中我越来越觉得作为一个数学教师,数学史对我们有多少重要!于是我拜读了数学史。
我知道了,数学的历史源远流长。我了解到,在早期的人类社会中,是数学与语言、艺术以及宗教一并构成了最早的人类文明。数学是最抽象的科学,而最抽象的数学却能催生出人类文明的绚烂的花朵。这便使数学成为人类文化中最基础的工具。而在现代社会中,数学正在对科学和社会的发展提供着不可或缺的理论和技术支持。
我知道了,第一次数学危机——你知道根号2吗?你知道平时的一块钱两块糖之中是怎么迸溅出无理数的火花的吗?正是他——希帕苏斯,是他首先发现了无理数,是他开始质疑藏在有理数的背后的神奇数字。从那时起无理数成为数字大家庭中的一员,推理和证明战胜了直觉和经验,一片广阔的天地出现在眼前。但是,希帕苏斯却被无情地抛进了大海。不过,历史却绝对不会忘记他,纵然海浪早已淹没了他的身躯,我们今天还保留着他的名字——希帕苏斯!
第二次数学危机——知道吗?站在巨人的肩膀上的牛顿,曾经站在英国大主教贝克莱的前面,用颤抖的嗓音述说者自己的`观点,没有人相信他,没有人支持他,即便他的观点着实是今天的正解!数学分析被建立在实数理论的严格基础之上,数学分析才真正成为数学发展的主流。
我知道了,我们中国在数学上的成就也绝对不能忽视,从《九章算术》到《周髀算经》,中国传统数学源远流长,有其自身特有的思想体系与发展途径。它持续不断,长期发达,成就辉煌,呈现出鲜明的“东方数学”色彩,对于世界数学发展的历史进程有着深远的影响。
数学书的读后感篇十四
《黄爱华与活的数学课堂》这本书是我在学校图书室偶然间看到的,一看内容写的是活的数学课堂,我就把这本书借了出来,认真的翻阅它,我感觉到它真是一本好书,书页间飘散的墨香中,每每嗅出它那深藏的思想,也触发自己心底的思绪。读了黄爱华老师的书后,他的嗜书如命、执著追求以及精彩智慧的课堂深深打动了我,吸引着我,鼓舞着我。
黄爱华老师“活”的数学课堂艺术特色是“趣”、“实”、“活”。“趣”,让学生们感到新鲜有趣、富有吸引力;、“实”,在知识点教学的关键下真功夫,重点特出;“活”,在教学过程中对教材的灵活处理,应变自如、驾轻就熟、左右逢源。
《黄爱华与活的数学课堂》一书告诉我们:数学课堂教学要在多元智能理论的指导下,树立尊重个性的教育观;为学生创设自主探索的问题情境,提供充分的感性材料,让学生多种感官参与实践活动,致力改变学生的学习方式,使学生在自己动手操作、独立思考、观察讨论、合作交流、自主探究的过程中感受、理解数学知识,在经历掌握数学知识的过程中,培养了学生分析、比较、概括等逻辑思维能力,使他们在知、情、意诸方面和谐发展;数学课堂让儿童在再创造的过程中同化和顺应,以此不断丰富和完善知识结构,这样的课堂才是适合儿童发展的数学课堂,才是高效的课堂。
黄爱华老师是营造现实而富有吸引力学习背景的高手,善于根据实际创设现实的、有趣的、探究性的、开放的和新奇的及喻理的问题情境。这些良好的问题情境深深地吸引学生,唤起学生的求知欲望,燃起学生智慧的火花,有效地发展了学生的数学思维。
揣摩黄爱华老师的课堂案例,几乎每节课都有大量的学生动手操作的内容;黄老师善于引导学生在操作中独立思考,在自主探索中产生交流的需要;他鼓励和引导学生在小组交流中,既要正确表达自己的想法,又要倾听别人的意见,有效地增进合作交流的“涵养”;班级交流中,往往会呈现多样的学生思考方法和多种解决问题的策略,促使每个学生在数学上都有新的发展。
“问渠哪得清如水,为有源头活水来”。营造和谐、灵动的课堂,毫无疑问教师自身的素质是决定性的因素。我相信,只要坚持不懈的学习、实践和思考,这样美妙的数学课堂离我们一线教师不会太远!
数学书的读后感篇十五
阅读了《特别要命的数学》这本书,我发现,数学真奇妙!
这本书以有趣的漫画、详细的文字和精彩的小故事把我们带入了一个有趣的数学世界里。比如,《有趣的方格》中,几何老师芬迪施教授告诉我们,骨牌有很多类型,也能拼成很多块。再比如,《水池问题》里,买护栏、买地砖和买优质池水。它告诉我们这三个问题要有不同的条件才能买到合适这个水池的材料。
我最喜欢那篇关于三维世界的解释文。里面说,二维世界里可以看到一维世界里的人,三维世界里的人可以看到二维世界里的人。同样,生活中竟然有能看到我们(三维世界的人)的四维世界的人!我感到不可思议!
数学是奇妙的,它的一些秘密我们人类也许还不知道。虽然如此,但这本书已经带我领略了部分数学的奥秘。我很开心,因为它让我感到数学奇幻的魅力。
数学书的读后感篇十六
第一次看到书名《印度数学》,和封面上的小标题—世界上最神奇的数学课。我就在想,印度数学?它和我们学的数学有什么不一样么?数学还有不同的?“最神奇的数学”,为什么神奇?神奇在哪?难道不用加减乘除?带着满心的疑问,我翻开了书。
书里讲的也是加减乘除,那神奇在哪呢?它的神奇就在它算式的算法。咦?难道不是按个位,十位的竖式计算方法吗?没错,印度数学的计算方法还真不是这样,不信?我举个例子吧。比如两位数减两位数:92-43,它的计算方式是把92分成90+2,43分成50-7,再从高到低计算,整数相减,个位相加。
我最喜欢的是“结网计数”这篇,因为它完全是用画图来计数。
书里还有许多计算方法是我看不明白的,比如面积计算法,一元一次和两元一次的计算。
果然,印度数学的这些计算方法和我们学的很不同,但是真的很有趣。我真是第一次知道,原来数学还有这样的啊。
数学书的读后感篇十七
今天读了一篇《零国王斗跳蚤》的故事。
零国王被跳蚤咬了,它拿剑向跳蚤刺去,跳蚤准备和它大战。
跳蚤拿出一把比老鼠胡须还细的小宝剑跟零国王杀在一起。零国王被杀到跷跷板上,跳蚤跳到另一头,把国王弹飞到半空。零国王说自己表面个头大,但是没重量,因为是零。跳蚤打了喷嚏把国王冲出去好远,零国王一屁股坐在地上。跳蚤说连个喷嚏都经受不住还跟我斗,再见吧!
零国王气的双目圆瞪,摘下腰间的乘法钩子勾住跳蚤,喊道:"变",跳蚤不见了,国王自言自语说它能把任何东西乘没,就连法术高强的小数点都治不它。
这个故事让我明白了零是一个很厉害的数字。
数学书的读后感篇十八
在我阅读数学史之前,数学在我的脑子里,就是一个很难很难的学科。数学漂浮在我的脑海里,像一只枯萎的蝴蝶,死板而又无味。
但是在阅读数学史之后我知道了,数学的历史源远流长。我了解到,在早期的人类社会中,是数学与语言、艺术以及宗教一并构成了最早的人类文明。数学是最抽象的科学,而最抽象的数学却能催生出人类文明的绚烂的花朵。这便使数学成为人类文化中最基础的工具。而在现代社会中,数学正在对科学和社会的发展提供着不可或缺的理论和技术支持。
就像书中所写的一样,或许在数学课上讲一些有趣的小故事,可以提高学生的专注力和兴趣,然后引入课堂。
可能是由于我见识短浅(?)我一直认为中国数学是非常高深,深不可测的那种,认为中国数学在世界有最高的影响力和地位。但其实中数是非常具有影响力(九九乘法表,11的两边一拉中间相加)但希腊数学是独一无二的,尽管在现在的数学之中,希腊数学家的逻辑推理和证明都是摆在数学中心的。数学家或许有许多不同,但他们绝对拥有财力·时间和数学天赋。他们的严谨性和专业精神恐怕是我毕生难以追求的吧。
总的来说,数学是人类创造活动的过程,而不单纯是一种形式化的结果;运用辨证唯物主义的观点看待数学科学及数学教育,在他们的形成和发展过程中,不但表现出矛盾运动的特点,而且它们与社会、政治、经济以及一般人类的文化有着密切的联系,而这些联系就像龙须酥一样香浓醇厚,万般丝滑,密不可分,是不能够轻易斩断的关系!
数学史不仅仅是单纯的数学成就的编年记录。数学的发展决不是一帆风顺的,在跟读的情况下是充满犹豫、徘徊,要经历艰难曲折,甚至会面临困难和战盛危机的斗争记录。无理量的发现、微积分和非欧几何的创立…这些例子可以帮助人们了解数学创造的真实过程,而这种真实的过程是在教科书里以定理到定理的形式被包装起来的。对这种创造过程的了解则可以使人们探索与奋斗中汲取教益,获得鼓舞和增强信心。
我相信在未来,数学史带给我的影响,会影响到我的一生,我也希望中国数学能够源远流长,从《九章算术》到《周髀算经》呈现出更多的”东方数学“的色彩!
数学书的读后感篇十九
数学是一门枯燥的学科,我从小就这样认为。但是通过这个寒假,这本《这才是好读的数学史》,打开了知识文化的一扇大门,让我对数学有了更深入的了解与思考,并且领悟到了其中的魅力。
数学的历史非常悠久,从很久很久以前就已经有了数学。那时候的人们刚刚接触到了它,而随着时代的变迁,数学的文化越来越博大精深。正是因为那些伟大的数学家们所做出的巨大贡献,才让后代的人类将数学发展得越来越好。例如一位亚历山大的希腊数学家欧几里得,他从一小部分公理中总结了欧几里德几何的原理,还写了另外五部关于球面几何、透视、数论、圆锥截面和严谨性的作品。欧几里得因此被人们称为“几何学之父”。
数学文化奇幻无穷。最让我印象深刻的便是阿拉伯数学文化。阿拉伯数学家不仅让代数成为数学的重要组成部分,而且还在几何学和三角学方面做出了重要的贡献。同时,“帕斯卡三角形”也就是“杨辉”三角也被他们所了解。阿拉伯数学文化的特点则是能够从其他数学的知识中汲取到最有用的精华,并且发展它。
数学的发展并不是我们想象中的那么顺利,而是经历了无数的困难和挫折,才成为了我们现代的数学。它的成就则是数学家们日日夜夜的研究与思考所造就的,让数学真正地显露出了它的价值。中国的数学源远流长,拥有着它自己的特色与意义。重大的数学定义、理论总是在继承与发展原有的理论的基础所建立起来的,它们不但不会改变原本的理论,而且经常将最初的理论思想包含进去。正是因为我们不断地为它注入灵魂力量,它才能越来越强大,越来越辉煌!
数学史的学习让我们更加理解数学的意义,从而在知识的海洋中不断发现、不断进取、不断研究,逐渐形成对数学的热爱!
数学书的读后感篇二十
首先,看到这本书后,第一个感觉是这本书太厚了,肯定无聊。而第二个印象是在每一个概念后的“见数学概念小史某某页”,然后这最重要的事是这书讲了这我不曾了解的事。
从过去到现在,先是古埃及人,他们的方法对于现代太不实用了,但是他们还是聪明,知道用符号,用两个符号来表示1()和10(),这东西就是幂,在生活中肯定很少用,而且我还发现这数学呢我一直认为是想从简单到复杂,但是并不是如此,可以说是相反的。
比巴伦的数学家们特别有趣,造的题目也有趣,不实用,但是很好玩,在本书的15页,有这原题,这大概就是用一根芦苇去测量田有多大,其实就是二元一次方程,但是看完头都大了,不知到底在讲什么。
继续读着,诶!看见了老熟人——欧几里得,从小学周围的人都在谈论着他,给我讲他的旷世巨作《几何原本》,过去经常说“好,好,好,《几何原本》好。”但是我并不知道这书居然是公元前三千多年左右写的,我一直认为他是希腊人,但是他居然是埃及人,这好奇怪,据书中说有很多的希腊数学家都不是希腊人。
继续读,数学也和天文学有关,从天文学中又出现了三角学,原来三角学是从天文学出来的,在读阿拉伯数学时,看见了“杨辉”三角形,但是这书中的是“帕斯卡三角形”,其实也是“杨辉”三角形,所以后者好记些。
微积分里面看见了伽利略,但是似乎不是他的主场,所以不管他,微积分这里知道了流数和微分基本上都是我们现在所称的导数。他们的发明者分别是牛顿和莱布尼茨。牛顿这特别熟悉了,这莱布尼茨是个律师和数学家,他最可以的是他的公式几乎都是在颠簸的马车上写下。在各个学科每每留下了著作。
还有一个人让我记住了,叫做欧拉,不光名字好记,他自己也是一个喜欢记的人,据书上所说,他可以说是一个论文天才也是数学天才,因为只要他有一个好的方法,自己马上就写一篇论文,来记下自己的观念。
这便是这《这才是好读的数学史》上篇的读后感,不是特别无聊,反而还有一些有趣,整体的布局也不错,让读者一步步深入,有特别强的吸引力,可能因人而异吧,下篇就是纯数学了,所以这便是我的读后感了。
【本文地址:http://www.xuefen.com.cn/zuowen/13994654.html】